JPH0133720B2 - - Google Patents

Info

Publication number
JPH0133720B2
JPH0133720B2 JP54103586A JP10358679A JPH0133720B2 JP H0133720 B2 JPH0133720 B2 JP H0133720B2 JP 54103586 A JP54103586 A JP 54103586A JP 10358679 A JP10358679 A JP 10358679A JP H0133720 B2 JPH0133720 B2 JP H0133720B2
Authority
JP
Japan
Prior art keywords
water level
air
air tank
value
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54103586A
Other languages
Japanese (ja)
Other versions
JPS5628399A (en
Inventor
Makoto Matsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP10358679A priority Critical patent/JPS5628399A/en
Publication of JPS5628399A publication Critical patent/JPS5628399A/en
Publication of JPH0133720B2 publication Critical patent/JPH0133720B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pipeline Systems (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は送液管内の水槌防止装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a water hammer prevention device in a liquid pipe.

(従来の技術) 下水の送液管のように流体が管路を充満して流
れる場合に、該管路を急速に全開するか、又は部
分的に閉鎖すると、管内の液流は急激に減速若し
くは遮断されるため、閉鎖部の前方及び後方の圧
力もまた急にそれぞれ著しく上昇あるいは下降し
て、いわゆる水槌が発生し、送液管その他周辺設
備が破損せしめられたり、騒音や振動等がひき起
される。
(Prior art) When fluid flows through a pipe, such as a sewage pipe, when the pipe is rapidly fully opened or partially closed, the liquid flow in the pipe decelerates rapidly. As a result, the pressure at the front and rear of the closed part also suddenly increases or decreases significantly, respectively, resulting in a so-called water hammer, which can damage liquid pipes and other surrounding equipment, and cause noise and vibration. be aroused.

従来、かかる水槌を防止する一つの手段とし
て、密閉した圧力容器の上部に空気を封入し、か
つ下部を水溜りとなした水槌防止用空気槽を直立
して送液管の圧送部に取付け、送液管内の圧力の
高低に従つて空気槽内に送液の一部が入出して平
衡を保たしめることによつて、水槌を防止する方
法が採用されている。
Conventionally, as a means to prevent such water hammer, air is sealed in the upper part of a closed pressure vessel, and an air tank for preventing water hammer, which has a water reservoir in the lower part, is placed upright in the pressure-feeding section of the liquid delivery pipe. A method of preventing water hammering is adopted in which a portion of the liquid is moved in and out of the air tank according to the level of pressure in the installation and liquid feeding pipe to maintain balance.

(発明が解決しようとする問題点) しかしながら、上述の従来の水槌防止方法は、
常に水槌防止用密閉型空気槽内に液と空気を共存
させるものであるために、特に圧力下において
は、空気が液中に溶解する割合が大きくなり、空
気の溶解により空気槽内の水位が上昇して空気が
少なくなると、空気槽内の液を排出できなくな
り、送液管内の急激な圧力低下を防止できなくな
る、すなわち水槌を防止できなくなるという欠点
があつた。従来は、これに対し、小規模なもので
は、液と空気を接触せしめないように隔膜等によ
り遮断する方法が採用され、大規模なものでは、
溶解して減少した空気を補充する方法が採用され
ている。
(Problem to be solved by the invention) However, the above-mentioned conventional water hammer prevention method
Since liquid and air are always allowed to coexist in the sealed air tank to prevent water hammer, the proportion of air dissolved in the liquid increases, especially under pressure, and the water level in the air tank increases due to the dissolution of air. When the amount of air increases and the amount of air decreases, the liquid in the air tank cannot be discharged, resulting in a disadvantage that it becomes impossible to prevent a sudden pressure drop in the liquid pipe, that is, it becomes impossible to prevent water hammer. Conventionally, on a small scale, a method was used to block the liquid and air from coming into contact with each other using a diaphragm, etc., but on a large scale,
A method is used to replenish the air that has been reduced by dissolution.

そして、後者の方法による場合、とくに自動化
を行うときには、空気槽内の水位及び圧力を調べ
て制御することが必要になつてくる。しかし、通
常の場合、下水送液管の送液量や圧力等はそれぞ
れ常に変化しており、その変化に対応して直ちに
空気槽内の貯溜液の圧力や水位を調整すること
は、困難であるという問題点があつた。
In the case of the latter method, especially when automating the process, it becomes necessary to check and control the water level and pressure in the air tank. However, under normal circumstances, the amount and pressure of liquid in the sewage pipes are constantly changing, and it is difficult to immediately adjust the pressure and water level of the stored liquid in the air tank in response to these changes. There was a problem.

従来は、これに対し、単極の水位検出器を用い
て制御することが試みられているが、これによる
ときは、検出器のセンサー部に流液による汚染が
発生するために、大きな変動範囲で大まかに制御
できるのみであつた。また、空気槽内における空
気の溶解量をあらかじめ予側して、送液中に空気
を混入して空気槽に送つたり、あるいは時限運転
により空気を空気槽内に送入することも行われて
いるが、この場合も送液管の送液量や圧力の変動
幅が比較的大きいときは適正な制御が不可能であ
つた。
Conventionally, attempts have been made to control this using a single-pole water level detector, but when using this, the sensor part of the detector is contaminated by the flowing liquid, resulting in a large fluctuation range. could only be roughly controlled. It is also possible to predict the amount of air dissolved in the air tank in advance and mix air into the air tank during feeding, or to send air into the air tank by timed operation. However, in this case as well, proper control was not possible when the fluctuation range of the amount of liquid sent through the liquid sending pipe or the pressure was relatively large.

本発明は、上述の事情に鑑みてなされたもので
あつて、水槌防止用空気槽内の水位を自動的に水
槌防止に最適な位置に保つことのできる送液管内
の水槌防止装置の提供を目的とするものである。
The present invention has been made in view of the above-mentioned circumstances, and is a water hammer prevention device in a liquid supply pipe that can automatically maintain the water level in the water hammer prevention air tank at an optimal position for water hammer prevention. The purpose is to provide the following.

(問題点を解決するための手段) 第1発明は、前記の目的を達成するために、送
液管の途中に配設せられ、かつ圧力計と差圧式水
位計と空気補給用制御弁付き空気補給管と空気放
出用制御弁付き空気放出管とが装着せられた水槌
防止用密閉型空気槽と、前記圧力計によつて検出
して送られる空気槽内の圧力のアナログ信号値に
基いて水槌防止に最適の水位を計算し、この計算
結果の値と前記差圧式水位計によつて検出して送
られる空気槽内の水位のアナログ信号値とを比較
し、前記計算結果の値が水位のアナログ信号値よ
りも小さいときにはその出力信号によつて前記空
気補給用制御弁を開いて空気槽内に空気を補給せ
しめ、計算結果の値が水位のアナログ信号値より
も大きいときにはその出力信号によつて前記空気
放出用制御弁を開いて空気槽内の空気を放出せし
めるようになした演算器とからなり、前記空気槽
内の水位を水槌防止に最適な位置に保つようにな
したことを特徴とする送液管内の水槌防止装置で
ある。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the first invention is provided with a pressure gauge, a differential pressure type water level gauge, and an air replenishment control valve, which is disposed in the middle of a liquid sending pipe. A sealed air tank for water hammer prevention equipped with an air supply pipe and an air release pipe with an air release control valve, and an analog signal value of the pressure in the air tank detected and sent by the pressure gauge. The optimum water level for water hammer prevention is calculated based on the above calculation result, and the value of this calculation result is compared with the analog signal value of the water level in the air tank detected and sent by the differential pressure type water level gauge. When the value is smaller than the water level analog signal value, the output signal opens the air replenishment control valve to replenish air into the air tank, and when the calculated value is larger than the water level analog signal value, and a computing unit configured to open the air release control valve and release the air in the air tank in response to an output signal, and to maintain the water level in the air tank at an optimal position to prevent water hammer. This is a water hammer prevention device in a liquid sending pipe.

第2発明は、前記の目的を達成するために、送
液側の水位によつてポンプの運転台数をポンプ運
転制御器によつて制御するようになした複数台の
ポンプが各個別々に連結された一本の送液管の途
中に配設せられ、かつ差圧式水位計と空気補給用
制御弁付き空気補給管とが装着せられた水槌防止
用密閉型空気槽と、前記ポンプの性能及び運転台
数と送液管等の設計条件に基いてあらかじめ計算
して求めたポンプ運転台数ごとの水槌防止に最適
の水位を各別に記憶せしめ、各記憶水位のうち前
記ポンプ運転制御器から送られるポンプ運転台数
のデジタル信号によつて選択された設定水位置と
前記差圧式水位計によつて検出して送られる空気
槽内の水位のアナログ信号値とを比較し、前記設
定水位値が水位のアナログ信号値よりも小さいと
きにはその出力信号によつて前記空気補給用制御
弁を開いて空気槽内に空気を補給せしめるように
なした水位制御用演算器とからなり、前記空気槽
内の水位を水槌防止に最適な位置に保つようにな
したことを特徴とする送液管内の水槌防止装置で
ある。
In order to achieve the above object, the second invention provides a system in which a plurality of pumps are connected individually, the number of pumps being operated is controlled by a pump operation controller according to the water level on the liquid sending side. A sealed air tank for preventing water hammer, which is installed in the middle of one liquid sending pipe and equipped with a differential pressure type water level gauge and an air supply pipe with an air supply control valve, and the performance of the pump. The optimal water level for water hammer prevention for each number of pumps in operation is calculated in advance based on the number of pumps in operation and the design conditions of liquid sending pipes, etc., and is stored separately. The set water position selected by the digital signal indicating the number of pumps in operation is compared with the analog signal value of the water level in the air tank detected and sent by the differential pressure type water level gauge, and the set water level value is determined to be the water level. and a water level control calculator configured to open the air replenishment control valve according to the output signal to replenish air into the air tank when the output signal is smaller than the analog signal value of the water level in the air tank. This is a water hammer prevention device in a liquid sending pipe, characterized in that the water hammer is kept at an optimal position for preventing water hammer.

(作用) 第1発明は上述のように構成されているので、
空気槽内の水位と圧力が変動すると、演算器は圧
力計から送られる空気槽内の圧力のアナログ信号
値に基いて水槌防止に最適の水位を計算し、この
計算結果の値と差圧式水位計によつて検出して送
られる空気槽内の水位のアナログ信号値とを比較
し、前記計算結果の値が水位のアナログ信号値よ
りも小さいときにはその出力信号によつて空気補
給用制御弁を開いて空気槽内に空気を補給せし
め、計算の結果の値が水位のアナログ信号値より
も大きいときにはその出力信号によつて空気放出
用制御弁を開いて空気槽内から空気を放出せしめ
ることによつて、空気槽内の水位は水槌防止に最
適な位置に自動的に保たれるのである。
(Operation) Since the first invention is configured as described above,
When the water level and pressure in the air tank fluctuate, the calculator calculates the optimal water level for water hammer prevention based on the analog signal value of the pressure in the air tank sent from the pressure gauge, and uses this calculated value and the differential pressure formula. The analog signal value of the water level in the air tank detected and sent by the water level meter is compared, and if the value of the calculation result is smaller than the analog signal value of the water level, the output signal is used to control the air supply control valve. When the calculated value is greater than the water level analog signal value, the output signal opens the air release control valve to release air from the air tank. As a result, the water level in the air tank is automatically maintained at the optimal position to prevent water hammer.

また、第2発明は上述のように構成されている
ので、送液側の水位が変動すると、ポンプ運転転
制御器によつてポンプの運転台数が制御され、送
液管内の送液量が変わわる。以上のように送液管
内の送液量が変わると、水位制御用演算器はポン
プ運転制御器から送られるポンプ運転台数のデジ
タル信号によつて該ポンプの運転台数に対する最
適の水位を選別して設定し、この設定水位値と差
圧式水位計によつて検出して送られる空気槽内の
水位のアナログ信号値とを比較し、設定水位値が
水位のアナログ信号値よりも小さいときにはその
出力信号によつて空気補給用制御弁を開いて空気
槽内に空気を補給せしめることによつて、空気槽
内の水位は設定水位すなわちあらかじめ計算して
求めたポンプの運転台数ごとの水槌防止に最適な
位置に自動的に保たれるのである。
Further, since the second invention is configured as described above, when the water level on the liquid sending side changes, the number of pumps in operation is controlled by the pump operation controller, and the amount of liquid sent in the liquid sending pipe changes. Waru. As described above, when the amount of liquid sent in the liquid sending pipe changes, the water level control calculator selects the optimal water level for the number of pumps in operation based on the digital signal of the number of pumps in operation sent from the pump operation controller. This set water level value is compared with the analog signal value of the water level in the air tank detected and sent by the differential pressure type water level meter, and if the set water level value is smaller than the analog signal value of the water level, the output signal is By opening the air replenishment control valve and replenishing air into the air tank, the water level in the air tank is adjusted to the set water level, which is optimal for preventing water hammering for each number of pumps in operation, calculated in advance. It is automatically held in the correct position.

(実施例) 以下、第1発明と第2発明の実施例を図面によ
つて詳細に説明する。
(Example) Hereinafter, examples of the first invention and the second invention will be described in detail with reference to the drawings.

まず、第1発明の実施例を示す第1図におい
て、1は耐圧容器型の水槌防止用密閉型空気槽で
あつて、接続管2にて送液管3に倒立状に接続さ
れていて、該空気槽1内に流入する液体によつて
空気を空気槽1内に封入し、送液管3内の圧力の
変動に応じて水位4が平衡するようになつてい
る。
First, in FIG. 1 showing an embodiment of the first invention, numeral 1 is a pressure-resistant container-type sealed air tank for preventing water hammer, and is connected to a liquid feeding pipe 3 through a connecting pipe 2 in an inverted manner. Air is sealed in the air tank 1 by the liquid flowing into the air tank 1, and the water level 4 is balanced according to fluctuations in the pressure inside the liquid feeding pipe 3.

5は差圧式水位計であつて、該水位計5の両側
の圧力感知部はそれぞれ通気管6と通液管7とに
よつて空気槽1の上部と下部に接続されている。
空気槽1の上部と下部とにおける圧力差は水位4
となり、通液管7内の液の流動は微少なので、液
中の汚物等による閉塞は少なく、誤測定は少な
い。また、差圧による水位測定なので、空気槽1
内の空気圧の変動には影響されない。該差圧式水
位計5によつて空気槽1内の水位4を常時アナロ
グ値として検出し、これをアナログ信号に転換し
て入力配線13を介して後記する演算器12に送
るようになつている。
5 is a differential pressure type water level gauge, and the pressure sensing parts on both sides of the water level gauge 5 are connected to the upper and lower parts of the air tank 1 through a vent pipe 6 and a liquid passage pipe 7, respectively.
The pressure difference between the upper and lower parts of air tank 1 is water level 4
Since the flow of the liquid in the liquid passage pipe 7 is minute, there are few blockages due to dirt in the liquid, and there are few erroneous measurements. In addition, since the water level is measured by differential pressure, the air tank 1
It is not affected by fluctuations in the air pressure inside. The differential pressure type water level gauge 5 constantly detects the water level 4 in the air tank 1 as an analog value, converts this into an analog signal, and sends it to an arithmetic unit 12, which will be described later, via an input wiring 13. .

10は圧力計であつて、連絡管11によつて空
気槽1の頂壁に取付けてある。該圧力計10によ
つて空気槽1内の圧力を常時アナログ値として検
出し、これをアナログ信号に転換して入力配線1
5を介して後記する演算器12に送るようになつ
ている。なお、圧力計10の取付け位置を空気槽
1の下部または送液管3に変更しても同様であ
る。また、送液管3内に流量計を設けて、所定の
水頭計算から算出した圧力値も空気槽1内の圧力
値として使用できる。
Reference numeral 10 denotes a pressure gauge, which is attached to the top wall of the air tank 1 through a connecting pipe 11. The pressure inside the air tank 1 is constantly detected as an analog value by the pressure gauge 10, and this is converted into an analog signal and sent to the input wiring 1.
5 to an arithmetic unit 12, which will be described later. Note that the same effect can be obtained even if the mounting position of the pressure gauge 10 is changed to the lower part of the air tank 1 or to the liquid feeding pipe 3. Further, a pressure value calculated from a predetermined water head calculation by providing a flow meter in the liquid sending pipe 3 can also be used as the pressure value in the air tank 1.

12は演算器であつて、該演算器12は入力配
線15を介して圧力計10から送られる圧力のア
ナログ信号値に基いてボイル・シヤルルの法則に
従つて、この信号値に対する水槌防止に最適の水
位を計算し、この計算結果の値と入力配線13を
介して差圧式水位計5から送られる空気槽1内の
水位4のアナログ信号値を比較し、計算結果の値
が水位4のアナログ信号値よりも小さいときに
は、出力して出力配線16を介して空気補給用制
御弁17を開き、計算結果の値が水位4のアナロ
グ信号値よりも大きいときは、出力して出力配線
16と18を介して空気放出用制御弁19を開く
ようになつている。演算器12の作動例を示す
と、第3図のブロツク図のとおりである。
Reference numeral 12 denotes a calculator, which calculates water hammer prevention for this signal value based on the pressure analog signal value sent from the pressure gauge 10 via the input wiring 15 in accordance with the Boyle-Charles law. The optimum water level is calculated, and the value of this calculation result is compared with the analog signal value of the water level 4 in the air tank 1 sent from the differential pressure type water level gauge 5 via the input wiring 13. When it is smaller than the analog signal value, it is output and opens the air supply control valve 17 via the output wiring 16, and when the value of the calculation result is larger than the analog signal value of water level 4, it is output and connected to the output wiring 16. 18 to open a control valve 19 for air release. An example of the operation of the arithmetic unit 12 is shown in the block diagram of FIG.

20は空気補給用制御弁17と空気槽1の上部
とを連絡する空気補給管であり、21は空気放出
用制御弁19と空気槽1の上部とを連絡する空気
放出管であり、22は放出口で大気に開放してい
る。
20 is an air supply pipe that communicates the air supply control valve 17 and the upper part of the air tank 1; 21 is an air discharge pipe that communicates the air discharge control valve 19 and the upper part of the air tank 1; It is open to the atmosphere at the outlet.

23は空気圧縮機であつて、常時空気を補給で
きる状態になつている。該空気圧縮機23は導管
24と空気補給用制御弁17と空気補給管20を
介して空気槽1内に空気を補給するようになつて
いる。25は空気槽1の頂壁に取付けた安全弁で
ある。
Reference numeral 23 is an air compressor, which can be constantly supplied with air. The air compressor 23 is adapted to supply air into the air tank 1 via a conduit 24, an air supply control valve 17, and an air supply pipe 20. 25 is a safety valve attached to the top wall of the air tank 1.

第1発明は以上のように構成されているので、
常時、空気槽1内の水位4は差圧式水位計5によ
つて水位のアナログ信号として入力配線13を介
して演算器12に送られるとともに、空気槽1内
の圧力は圧力計10によつて圧力のアナログ信号
として入力配線15を介して演算器12に送られ
る。
Since the first invention is configured as described above,
At all times, the water level 4 in the air tank 1 is sent to the calculator 12 as an analog water level signal by the differential pressure type water level gauge 5 via the input wiring 13, and the pressure in the air tank 1 is sent to the calculator 12 by the pressure gauge 10. It is sent to the computing unit 12 via the input wiring 15 as an analog pressure signal.

そして、空気槽1内の圧力と水位が変動する
と、演算器12は圧力計10から送られる圧力の
アナログ信号値に基いて、ボイル・シヤルルの法
則に従つてこの信号値に対する水槌防止に最適の
水位を計算し、この計算結果の値と入力配線13
を介して差圧式水位計5から送られる空気槽1内
の水位4のアナログ信号値を比較する。
When the pressure and water level in the air tank 1 fluctuate, the calculator 12 uses the pressure analog signal value sent from the pressure gauge 10 to determine the optimal water hammer prevention for this signal value according to the Boyle-Charles law. Calculate the water level of this calculation result and input wiring 13
The analog signal value of the water level 4 in the air tank 1 sent from the differential pressure type water level gauge 5 via the air tank 1 is compared.

この計算結果の値が水位4のアナログ信号値よ
りも小さいときには、演算器12は出力し、出力
配線16を介して空気補給用制御弁17を開い
て、空気圧縮機23から導管24と空気補給用制
御弁17と空気補給管20を介して空気槽1内に
空気を補給せしめ、計算結果の値と水位4のアナ
ログ信号値が一致するに及んで、演算器12の出
力が停止し、空気補給用制御弁17は閉じ、空気
槽1内への空気の補給は停止せしめられる。ま
た、計算結果の値が水位4のアナログ信号値より
も大きいときには、演算器12は出力し、出力配
線16と18を介して空気放出用制御弁19を開
いて、空気槽1から空気放出管21と空気放出用
制御弁19と放出口22を介して大気に空気を放
出せしめ、計算結果の値と水位4のアナログ信号
値が一致するに及んで、演算器12の出力が停止
し、空気放出用制御弁19は閉じ、空気槽1内か
らの空気の放出は停止せしめられる。
When the value of this calculation result is smaller than the analog signal value of the water level 4, the calculator 12 outputs an output, opens the air replenishment control valve 17 via the output wiring 16, and connects the air compressor 23 to the conduit 24 for air replenishment. Air is supplied to the air tank 1 via the control valve 17 and the air supply pipe 20, and when the calculated value and the analog signal value of the water level 4 match, the output of the calculator 12 is stopped and the air is The replenishment control valve 17 is closed, and the replenishment of air into the air tank 1 is stopped. Further, when the value of the calculation result is larger than the analog signal value of the water level 4, the calculator 12 outputs an output, opens the air release control valve 19 via the output wirings 16 and 18, and connects the air tank 1 to the air release pipe. 21, the air release control valve 19, and the outlet 22 to release air into the atmosphere, and when the calculated value and the analog signal value of the water level 4 match, the output of the calculator 12 stops, and the air The release control valve 19 is closed and the release of air from the air tank 1 is stopped.

なお、空気の放出については、送液中の混合空
気が少なく、空気の過剰供給の可能性が小さいと
予想される場合には、空気の放出を省略できる。
また、外界の温度によつて空気槽1内の空気が収
縮または膨張せしめられて、空気槽1内の水位4
が変化せしめられる場合には、空気槽1の頂壁に
連絡管を介して温度計を設け、空気槽1内の空気
の温度を、常時アナログ値として検出し、これを
アナログ信号に転換して入力配線を介して演算器
12に送り、水位の制御を温度要素によつて補正
せしめるようにしてもよい。
Note that the release of air can be omitted if the amount of mixed air during liquid feeding is small and the possibility of excessive supply of air is expected to be small.
In addition, the air in the air tank 1 is contracted or expanded by the temperature of the outside world, and the water level in the air tank 1 is
When the temperature is to be changed, a thermometer is installed on the top wall of the air tank 1 via a connecting pipe, and the temperature of the air in the air tank 1 is constantly detected as an analog value, and this is converted into an analog signal. The data may be sent to the arithmetic unit 12 via input wiring, and the water level control may be corrected based on the temperature factor.

以上のようにして、水槌防止用空気槽1内の水
位4は水槌防止に最適な位置に自動的に保たれる
のである。
As described above, the water level 4 in the air tank 1 for preventing water hammer is automatically maintained at the optimum position for preventing water hammer.

次に、第2発明の実施例を示す第2図におい
て、第1図と共通の部分には同じ符号を記入して
あるので、その説明を省略する。
Next, in FIG. 2 showing an embodiment of the second invention, parts common to those in FIG.

27,…はポンプ槽26内に並設した複数台の
ポンプであつて、各ポンプ27,…はそれぞれの
弁28と共通のヘツダ29とを介して一本の送液
管3に連結されている。
27,... are a plurality of pumps arranged in parallel in the pump tank 26, and each pump 27,... is connected to one liquid feeding pipe 3 via each valve 28 and a common header 29. There is.

30はポンプ運転制御器であつて、該ポンプ運
転制御器30はポンプ槽26に流入する液量を計
量する流入量感知部33からの信号によりポンプ
27,…の運転、起動を制御し、運転台数をデジ
タル値として検出し、これをデジタル信号に転換
して入力配線15を介して水位制御用演算器34
に記憶せしめてある後記する記憶水位を選択して
設定水位となすようになつている。31は送液管
3の適所に配置した弁であり、32は安全弁であ
る。
Reference numeral 30 denotes a pump operation controller, and the pump operation controller 30 controls the operation and startup of the pumps 27, . Detects the number of units as a digital value, converts it into a digital signal, and sends it to the water level control calculator 34 via the input wiring 15.
A stored water level, which will be described later, is selected and used as the set water level. Reference numeral 31 indicates a valve disposed at an appropriate position in the liquid feeding pipe 3, and reference numeral 32 indicates a safety valve.

一方、前記の演算器12による計算に替えて、
ポンプ27の吐出量、吐出圧力等のポンプ性能及
び運転台数と、送液管3の内径、長さ、揚程等の
設計条件に基いてあらかじめポンプ27の運転台
数ごとの水槌防止に最適な水位を計算によつて求
め、この計算によつて求めた水位を水位制御用演
算器34に各別に記憶せしめてある。
On the other hand, instead of the calculation by the arithmetic unit 12,
The optimal water level for preventing water hammering for each number of pumps 27 in operation is determined in advance based on pump performance such as discharge amount and discharge pressure of the pumps 27 and the number of operating pumps, and design conditions such as the inner diameter, length, and head of the liquid sending pipe 3. is determined by calculation, and the water levels determined by this calculation are stored separately in the water level control calculator 34.

第2発明は以上のように構成されているので、
常時、空気槽1内の水位4は差圧式水位計5によ
つてアナログ信号として入力配線13を介して水
位制御用演算器34に送られるとともに、ポンプ
27の運転台数はポンプ運転制御器30によつて
デジタル信号として入力配線15を介して水位制
御用演算器34に送られ、水位制御用演算器34
にポンプの運転台数による水位を設定せしめる。
Since the second invention is configured as above,
At all times, the water level 4 in the air tank 1 is sent as an analog signal by the differential pressure type water level gauge 5 to the water level control calculator 34 via the input wiring 13, and the number of operating pumps 27 is sent to the pump operation controller 30. Therefore, it is sent as a digital signal to the water level control calculator 34 via the input wiring 15.
The water level is set based on the number of pumps in operation.

そして、ポンプ槽26内の水位、すなわち送液
側の水位の変動に応じてポンプ27の運転台数が
変わると、水位制御用演算器34は、ポンプ運転
制御器30から送られるポンプ運転台数のデジタ
ル信号によつて記憶水位を選択して設定水位とな
すとともに、この設定水位値と差圧式水位計5か
ら送られる空気槽1内の水位4のアナログ信号値
を比較し、前記設定水位値が水位4のアナログ信
号値よりも小さいときには、水位制御用演算器3
4は出力し、出力配線16を介して空気補給用制
御弁17を開いて、空気圧縮機23から導管24
と空気補給用制御弁17と空気補給管20を介し
て空気槽1内に空気を補給せしめ、設定水位値と
水位4のアナログ信号値が一致するに及んで、水
位制御用演算器34の出力が停止し、空気補給用
制御弁17は閉じ、空気槽1内への空気の補給は
停止せしめられる。
Then, when the number of operating pumps 27 changes according to fluctuations in the water level in the pump tank 26, that is, the water level on the liquid feeding side, the water level control calculator 34 receives the digital number of operating pumps sent from the pump operation controller 30. The stored water level is selected by the signal and set as the set water level, and this set water level value is compared with the analog signal value of the water level 4 in the air tank 1 sent from the differential pressure type water level gauge 5, and the set water level value is determined as the water level. When it is smaller than the analog signal value of 4, the water level control calculator 3
4 outputs, opens the air supply control valve 17 via the output wiring 16, and connects the air compressor 23 to the conduit 24.
Air is supplied to the air tank 1 via the air supply control valve 17 and the air supply pipe 20, and when the set water level value and the analog signal value of the water level 4 match, the output of the water level control calculator 34 is is stopped, the air supply control valve 17 is closed, and the supply of air into the air tank 1 is stopped.

なお、空気槽1内の空気の放出が必要な場合に
は、第1発明と同様に空気の放出を行うのであ
る。
Incidentally, when it is necessary to release the air in the air tank 1, the air is released in the same manner as in the first invention.

以上のようにして、水槌防止用空気槽1内の水
位は設定水位、すなわちあらかじめ計算して求め
たポンプの運転台数ごとの水槌防止に最適な位置
に自動的に保たれるのである。
As described above, the water level in the water hammer prevention air tank 1 is automatically maintained at the set water level, that is, the optimal position for preventing water hammer for each number of operating pumps calculated in advance.

(発明の効果) 以上の説明によつて明らかなように、第1発明
と第2発明によると、それぞれ空気槽内の圧力及
び水位の変化とポンプの運転台数及び空気槽内の
水位の変化に対応して、空気槽内の水位を水槌防
止に最適な位置に保つように自動的に精密に制御
できる送液管内の水槌防止装置の提供が可能とな
つた。
(Effects of the Invention) As is clear from the above explanation, according to the first invention and the second invention, changes in the pressure and water level in the air tank, the number of operating pumps, and the water level in the air tank, respectively, Correspondingly, it has become possible to provide a water hammer prevention device in a liquid supply pipe that can automatically and precisely control the water level in the air tank to maintain the optimum position for preventing water hammer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1発明の実施例の系統図、第2図は
第2発明の実施例の系統図、第3図は第1発明に
おける演算器の作動例を示すブロツク図である。 1:水槌防止用密閉型空気槽、3:送液管、
4:水位、5:差圧式水位計、10:圧力計、1
2:演算器、13,15:入力配線、16,1
8:出力配線、17:空気補給用制御弁、19:
空気放出用制御弁、26:ポンプ槽、27:ポン
プ、30:ポンプ運転制御器、33:流入量感知
部、34:水位制御用演算器。
FIG. 1 is a system diagram of an embodiment of the first invention, FIG. 2 is a system diagram of an embodiment of the second invention, and FIG. 3 is a block diagram showing an example of the operation of the arithmetic unit in the first invention. 1: Closed air tank to prevent water hammer, 3: Liquid feed pipe,
4: Water level, 5: Differential pressure type water level gauge, 10: Pressure gauge, 1
2: Arithmetic unit, 13, 15: Input wiring, 16, 1
8: Output wiring, 17: Air supply control valve, 19:
Air release control valve, 26: pump tank, 27: pump, 30: pump operation controller, 33: inflow sensor, 34: water level control calculator.

Claims (1)

【特許請求の範囲】 1 送液管の途中に配設せられ、かつ圧力計と差
圧式水位計と空気補給用制御弁付き空気補給管と
空気放出用制御弁付き空気放出管とが装着せられ
た水槌防止用密閉型空気槽と、前記圧力計によつ
て検出して送られる空気槽内の圧力のアナログ信
号値に基いて水槌防止に最適の水位を計算し、こ
の計算結果の値と前記差圧式水位計によつて検出
して送られる空気槽内の水位のアナログ信号値と
を比較し、前記計算結果の値が水位のアナログ信
号値よりも小さいときにはその出力信号によつて
前記空気補給用制御弁を開らいて空気槽内に空気
を補給せしめ、計算結果の値が水位のアナログ信
号値よりも大きいときにはその出力信号によつて
前記空気放出用制御弁を開らいて空気槽内から空
気を放出せしめるようになした演算器とからな
り、前記空気槽内の水位を水槌防止に最適な位置
に保つようになしたことを特徴とする送液管内の
水槌防止装置。 2 送液側の水位によつてポンプの運転台数をポ
ンプ運転制御器によつて制御するようになした複
数台のポンプが各個別々に連結された一本の送液
管の途中に配設せられ、かつ差圧式水位計と空気
補給用制御弁付き空気補給管とが装着せられた水
槌防止用密閉型空気槽と、前記ポンプの性能及び
運転台数と送液管等の設計条件に基いてあらかじ
め計算して求めたポンプ運転台数ごとの水槌防止
に最適の水位を各別に記憶せしめ、各記憶水位の
うち前記ポンプ運転制御器から送られるポンプ運
転台数のデジタル信号によつて選択された設定水
位値と前記差圧式水位計によつて検出して送られ
る空気槽内の水位のアナログ信号値とを比較し、
前記設定水位値が水位のアナログ信号値よりも小
さいときにはその出力信号によつて前記空気補給
用制御弁を開らいて空気槽内に空気を補給せしめ
るようになした水位制御用演算器とからなり、前
記空気槽内の水位を水槌防止に最適な位置に保つ
ようになしたことを特徴とする送液管内の水槌防
止装置。
[Scope of Claims] 1. Disposed in the middle of a liquid sending pipe, and equipped with a pressure gauge, a differential pressure type water level gauge, an air supply pipe with an air supply control valve, and an air discharge pipe with an air discharge control valve. The optimum water level for water hammer prevention is calculated based on the sealed air tank for water hammer prevention that has been detected and the analog signal value of the pressure in the air tank detected and sent by the pressure gauge, and the water level that is optimal for water hammer prevention is calculated. The value is compared with the analog signal value of the water level in the air tank detected and sent by the differential pressure type water level gauge, and when the value of the calculation result is smaller than the analog signal value of the water level, the output signal is used. The air replenishment control valve is opened to supply air into the air tank, and when the value of the calculation result is greater than the water level analog signal value, the air release control valve is opened by the output signal to supply air. A water hammer prevention device in a liquid sending pipe, comprising a computing unit configured to release air from inside the tank, and maintaining the water level in the air tank at an optimum position for preventing water hammer. . 2 A pump operation controller controls the number of pumps operated according to the water level on the liquid sending side, and a plurality of pumps are arranged in the middle of a single liquid sending pipe that are individually connected. Based on the design conditions such as the performance and number of pumps in operation and the liquid supply pipe, etc. The optimum water level for preventing water hammering is calculated in advance for each number of pumps in operation, and is stored separately, and one of the stored water levels is selected based on a digital signal indicating the number of pumps in operation sent from the pump operation controller. Compare the set water level value and the analog signal value of the water level in the air tank detected and sent by the differential pressure type water level gauge,
and a water level control calculator configured to open the air replenishment control valve in response to the output signal to replenish air into the air tank when the set water level value is smaller than the water level analog signal value. . A water hammer prevention device in a liquid sending pipe, characterized in that the water level in the air tank is maintained at an optimum position for preventing water hammer.
JP10358679A 1979-08-16 1979-08-16 Control device for water hammer preventive air tank in liquid transfer pipeline Granted JPS5628399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10358679A JPS5628399A (en) 1979-08-16 1979-08-16 Control device for water hammer preventive air tank in liquid transfer pipeline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10358679A JPS5628399A (en) 1979-08-16 1979-08-16 Control device for water hammer preventive air tank in liquid transfer pipeline

Publications (2)

Publication Number Publication Date
JPS5628399A JPS5628399A (en) 1981-03-19
JPH0133720B2 true JPH0133720B2 (en) 1989-07-14

Family

ID=14357871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10358679A Granted JPS5628399A (en) 1979-08-16 1979-08-16 Control device for water hammer preventive air tank in liquid transfer pipeline

Country Status (1)

Country Link
JP (1) JPS5628399A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6742534B2 (en) * 2002-05-30 2004-06-01 Richard John Hogsden Method of damping surges in a liquid system
JP4509606B2 (en) * 2004-03-15 2010-07-21 株式会社名機製作所 Hot press hot plate temperature control device
DE102014212021A1 (en) * 2014-06-23 2015-12-24 Putzmeister Solid Pumps Gmbh Apparatus and method for damping pressure fluctuations in the delivery line of a slurry pump

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4729609U (en) * 1971-04-21 1972-12-04
JPS5322611A (en) * 1976-08-13 1978-03-02 Hitachi Ltd Controlling system for oil surface in pressureaccumul ating tank

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4729609U (en) * 1971-04-21 1972-12-04
JPS5322611A (en) * 1976-08-13 1978-03-02 Hitachi Ltd Controlling system for oil surface in pressureaccumul ating tank

Also Published As

Publication number Publication date
JPS5628399A (en) 1981-03-19

Similar Documents

Publication Publication Date Title
US5886267A (en) System and method for bidirectional flow and controlling fluid flow in a conduit
TWI406119B (en) A system for remotely controlling pressure within a zone and a chemical mechanical polishing machine system
US5601413A (en) Automatic low fluid shut-off method for a pumping system
JPH11502010A (en) Flow compensation type pressure control system
JPH03505925A (en) Liquid container with hydrostatic fuel gauge
JP2011504836A (en) Apparatus and method for testing aircraft tank systems
JP2016525682A5 (en)
CA3040545C (en) Method and system for controlling air flow within a ventilation system
CN100365395C (en) Air bubble type liquid level gauge
JPH0133720B2 (en)
US6742534B2 (en) Method of damping surges in a liquid system
US20150053272A1 (en) Pressure stabilization method
US4880039A (en) Increasing the accuracy of liquid volume measurements utilizing liquid level sensing
KR20170117251A (en) Apparatus for testing of water meter
US3589389A (en) Method and system for maintaining equal and continuous flows of liquid to and from intermittently operating apparatus
BR112021010771A2 (en) SYSTEM AND METHOD TO REDUCE ENVIRONMENTAL POLLUTION AT A MATERIAL TRANSFER POINT
JPH07174593A (en) Measuring method of water supply amount by means of water level in tank
JPH03105217A (en) Differential pressure type water level measuring apparatus
JPS607770Y2 (en) Filter cleaning device
GB2371088A (en) A method of damping surges in a liquid system
JP2923040B2 (en) Power plant and water level control method and apparatus
CA1283834C (en) Water trap valve for fail safe operation of an air inleakage monitoring system in a steam turbine
US2860654A (en) Fuel system head control unit
JPS59148819A (en) Abnormality detector for flow meter
JP3525602B2 (en) Surge prevention control device for return gas blower