JPH0133641B2 - - Google Patents

Info

Publication number
JPH0133641B2
JPH0133641B2 JP56037050A JP3705081A JPH0133641B2 JP H0133641 B2 JPH0133641 B2 JP H0133641B2 JP 56037050 A JP56037050 A JP 56037050A JP 3705081 A JP3705081 A JP 3705081A JP H0133641 B2 JPH0133641 B2 JP H0133641B2
Authority
JP
Japan
Prior art keywords
hot water
casing
impeller
rotating
rotating cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56037050A
Other languages
Japanese (ja)
Other versions
JPS57151001A (en
Inventor
Tatsuo Araki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP3705081A priority Critical patent/JPS57151001A/en
Publication of JPS57151001A publication Critical patent/JPS57151001A/en
Publication of JPH0133641B2 publication Critical patent/JPH0133641B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/06Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines traversed by the working-fluid substantially radially

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 本発明はトータルフロータービンに係る。[Detailed description of the invention] The present invention relates to a total flow turbine.

トータルフロータービンは、熱水または熱水と
蒸気の混合物を作動流体とし、それらの有するエ
ネルギを回転動力に変換するもので、地熱発電用
として多く使用されている。
A total flow turbine uses hot water or a mixture of hot water and steam as a working fluid and converts the energy thereof into rotational power, and is often used for geothermal power generation.

而して、熱水または熱水と蒸気の混合物の圧力
が十分高い場合には、それらをラバールノズルか
ら噴出させることにより、5ミクロン以下の径の
水滴を含む飽和蒸気流とすることができ、これを
軸流タービンに噴射すれば、効率よく動力を回収
することができる。これに対し、熱水または熱水
と蒸気の混合物の圧力が低い場合には、ラバール
ノズルやその変形ノズルにより微細な水滴を含む
飽和蒸気とすることはできない。そのため軸流タ
ービンに噴射しても羽根車中で遠心力により熱水
と蒸気に分離し、熱水は羽根車に衝突してブレー
キとして作用し効率を著しく低下させるばかりで
なく、エロージヨンを発生させる。
Therefore, if the pressure of hot water or a mixture of hot water and steam is high enough, by jetting it from a Laval nozzle, a saturated steam stream containing water droplets with a diameter of 5 microns or less can be produced. If it is injected into an axial flow turbine, power can be efficiently recovered. On the other hand, when the pressure of hot water or a mixture of hot water and steam is low, it is impossible to convert it into saturated steam containing fine water droplets using a Laval nozzle or a modified nozzle thereof. Therefore, even if it is injected into an axial flow turbine, it will separate into hot water and steam in the impeller due to centrifugal force, and the hot water will collide with the impeller and act as a brake, significantly reducing efficiency and causing erosion. .

本発明は上記の事情に基きなされたもので、低
圧の熱水または熱水と蒸気の混合物を作動流体と
し、効率よく回転動力を回収し得るトータルフロ
ータービンを得ることを目的としている。
The present invention has been made based on the above-mentioned circumstances, and an object of the present invention is to obtain a total flow turbine that uses low-pressure hot water or a mixture of hot water and steam as a working fluid and can efficiently recover rotational power.

以下、図面につき本発明の詳細を説明する。 The invention will be explained in detail below with reference to the drawings.

第1図A,Bにおいて、円筒状のケーシング1
内にはケーシング1の一方の端板中心に軸2を支
持させて回転円板3が可回動に設置され、回転円
板3外周には両端にそれぞれ内フランジ4を有す
る回転筒5が、その内周において固着されてい
る。また、回転円板3外周には円周方向に等配し
て多数の切欠6が設けてある。
In Fig. 1A and B, the cylindrical casing 1
A rotary disk 3 is rotatably installed inside with a shaft 2 supported at the center of one end plate of the casing 1, and a rotary cylinder 5 having inner flanges 4 at both ends is provided on the outer periphery of the rotary disk 3. It is fixed at its inner circumference. Further, a large number of notches 6 are provided on the outer periphery of the rotating disk 3 at equal intervals in the circumferential direction.

また、ケーシング1内には回転円板3の軸2と
は反対側の面に対向し回転筒5内に位置させた羽
根車7が収容され、その軸8は軸2に対し上方に
偏心した位置においてケーシング1の他方の端板
に可回動に支持されている。羽根車7は、第2図
に示したように、平面形状が円弧状で側方から見
て軸8に向つて傾斜した形状の多数の羽根7aを
その外周にそなえている。さらに、上記の軸の偏
心量は羽根車7外周の偏心側の一部分の羽根がそ
の回転に差支えない限りで、回転円筒5内周に最
も接近し得るよう選定する。
Further, an impeller 7 is housed in the casing 1 and is located in the rotating cylinder 5 facing the surface of the rotating disk 3 opposite to the shaft 2, and the impeller 7 is eccentrically arranged upwardly with respect to the shaft 2. It is rotatably supported by the other end plate of the casing 1 at this position. As shown in FIG. 2, the impeller 7 is provided on its outer periphery with a large number of blades 7a each having an arcuate planar shape and slanting toward the axis 8 when viewed from the side. Furthermore, the amount of eccentricity of the shaft is selected so that the blades on the eccentric side of the outer circumference of the impeller 7 can come closest to the inner circumference of the rotating cylinder 5, as long as there is no problem with the rotation thereof.

軸2が支持された端板には、同一円周上に配置
され噴射軸を回転筒5内に位置させ且つ端板に対
し同一角度傾斜させ、その端板上への投影が前記
円周への接線となる如くした4個のラバールノズ
ル9が設けられている。また、この端板中心近傍
には蒸気排出口10が設けてある。
The end plate on which the shaft 2 is supported is arranged on the same circumference, and the injection axis is located inside the rotary cylinder 5 and inclined at the same angle with respect to the end plate, so that the projection onto the end plate is on the circumference. Four Laval nozzles 9 are provided so that they are tangential to each other. Further, a steam outlet 10 is provided near the center of this end plate.

他方の端板には、羽根車7から排出される熱水
または熱水と蒸気の混合物をケーシング1外に排
出する排出口11が設けてある。
The other end plate is provided with a discharge port 11 for discharging hot water or a mixture of hot water and steam discharged from the impeller 7 to the outside of the casing 1 .

上記構成の本発明トータルフロータービンでは
ラバールノズル9からケーシング1内に噴射され
た熱水または熱水と蒸気の混合物は、第3図に示
すように回転円板3および回転円筒5内周に衝突
し、それらを噴流速度ベクトルの円周方向のベク
トル成分にほぼ等しい速度で回転させる。
In the total flow turbine of the present invention having the above configuration, hot water or a mixture of hot water and steam injected into the casing 1 from the Laval nozzle 9 collides with the inner periphery of the rotating disk 3 and the rotating cylinder 5, as shown in FIG. , rotate them at a speed approximately equal to the circumferential vector component of the jet velocity vector.

回転円板3に吹きつけられた水滴は前記の回転
に基く遠心力により、半径方向外側に移動し回転
円筒5の内周には回転円筒5とほぼ同じ速度で回
転する水層12が形成される。なお、回転円板3
の外周には多数の切欠6が設けられているため、
水槽12は回転円筒5の内周の全体幅に渡つて形
成される。なお、蒸気は半径方向内側に移動し蒸
気排出口10からケーシング1外に排出される。
The water droplets blown onto the rotating disk 3 move radially outward due to the centrifugal force based on the rotation, and a water layer 12 is formed on the inner periphery of the rotating cylinder 5, rotating at approximately the same speed as the rotating cylinder 5. Ru. In addition, rotating disk 3
Since many notches 6 are provided on the outer periphery of the
The water tank 12 is formed over the entire width of the inner circumference of the rotating cylinder 5. Note that the steam moves inward in the radial direction and is discharged to the outside of the casing 1 from the steam exhaust port 10.

羽根車7は、前記の如く回転円板3に対する偏
心量を設定してあるため、上方に位置する羽根を
回転円筒5内周に形成された水層中に浸漬させて
おり、水層を形成する熱水はここから羽根車7内
に流入し、羽根車7の中心に向つて流れ、その運
動量の変化によつて羽根車7を回転させる。この
羽根車7の回転速度は、回転円板3従つて回転円
筒5の回転速度の約1/2に保持される。
Since the impeller 7 has the eccentricity set relative to the rotating disk 3 as described above, the blades located above are immersed in the water layer formed on the inner periphery of the rotating cylinder 5, forming a water layer. The hot water flows into the impeller 7 from here, flows toward the center of the impeller 7, and rotates the impeller 7 by changing its momentum. The rotational speed of the impeller 7 is maintained at approximately 1/2 of the rotational speed of the rotating disk 3 and therefore the rotating cylinder 5.

羽根車7に流入した熱水は、羽根車通過中に熱
水と飽和蒸気の二相流となり、排出口11からケ
ーシング1外に排出される。
The hot water that has flowed into the impeller 7 becomes a two-phase flow of hot water and saturated steam while passing through the impeller, and is discharged to the outside of the casing 1 from the discharge port 11.

本発明の羽根車7は、以上のように偏心位置に
あるため以下のような作用効果を生ずる。
Since the impeller 7 of the present invention is located at the eccentric position as described above, it produces the following effects.

すなわち特開昭55−92802号公報に示すように、
半径流タービンが回転リングと同心円にあるよう
にすると運転状態によつてはリング内に付着する
熱水の量が増加する場合があり、このような場合
には半径流タービンの外周全部が、熱水膜の表面
に接触するため、定格回転する半径流タービンと
の間に回転差を生じ、このタービンにブレーキを
かけ効率を著しく低下させる。しかしながら、本
発明では全周が羽根車でありかつ、一部しか水層
に接触しないのでこのようなエネルギ伝達効率を
低下させる恐れはない。
That is, as shown in Japanese Patent Application Laid-Open No. 55-92802,
If the radial flow turbine is placed concentrically with the rotating ring, the amount of hot water that adheres to the inside of the ring may increase depending on the operating conditions.In such cases, the entire outer circumference of the radial flow turbine is Because it comes into contact with the surface of the water film, it creates a rotational difference between it and the radial flow turbine that rotates at its rated speed, applying a brake on this turbine and significantly reducing its efficiency. However, in the present invention, the entire circumference is an impeller and only a part of the impeller comes into contact with the water layer, so there is no risk of such a reduction in energy transfer efficiency.

又、半径流タービンを同心にして流体の流れの
反動を利用し全周からエネルギを得て、タービン
を回転させる方式にすると、熱水の圧力の高低に
対応すべくデフユーザー等の設置をしなければな
らないが、本発明のように羽根の一部からのエネ
ルギ取得の場合は、圧力の高低にかかわらず、流
体の衝動エネルギを有効に利用できるのであり、
よつて本発明では装置が安価で単純であるという
効果を生ずるものである。
In addition, if the radial flow turbine is made concentric and uses the reaction of the fluid flow to obtain energy from the entire circumference and rotate the turbine, it is possible to install a differential user etc. to respond to the high and low pressure of hot water. However, in the case of acquiring energy from a part of the blade as in the present invention, the impulse energy of the fluid can be effectively used regardless of the pressure level.
Therefore, the present invention has the advantage that the device is inexpensive and simple.

上記のように本発明によれば圧力の低い熱水又
は熱水と蒸気との混合物であつても、ケーシング
内で熱水と蒸気とに分離し、熱水によつて羽根車
を回転させるようにしているので、熱水がブレー
キ作用を呈したりエロージヨンを生じたりするお
それはなく、効率よく回転動力を回収することが
できる。
As described above, according to the present invention, even if it is low pressure hot water or a mixture of hot water and steam, it is separated into hot water and steam within the casing, and the impeller is rotated by the hot water. Therefore, there is no fear that the hot water will act as a brake or cause erosion, and rotational power can be efficiently recovered.

【図面の簡単な説明】[Brief explanation of drawings]

第1図Aは本発明一実施例の正面図、同図Bは
その縦断面図、第2図は第1図Bの−線にお
ける断面図、第3図は作動流体と回転円板回転円
筒との関係を示す断面図である。 1……ケーシング、3……回転円板、4……内
フランジ、5……回転円筒、6……切欠、7……
羽根車、7a……羽根、9……ラバールノズル。
FIG. 1A is a front view of one embodiment of the present invention, FIG. FIG. 1... Casing, 3... Rotating disk, 4... Inner flange, 5... Rotating cylinder, 6... Notch, 7...
Impeller, 7a...Blade, 9...Laval nozzle.

Claims (1)

【特許請求の範囲】[Claims] 1 円筒状のケーシングと、このケーシングの一
端壁中心に軸を可回動に支持され周縁に多数の切
欠を有する回転円板と、両端に内フランジを有す
る円筒状をなし前記回転円板に内周において固着
された回転円筒と、前記ケーシングの他方の端壁
の偏心板に軸を支持され、外周に多数の羽根を有
し前記回転円筒内にあり前記偏心側の外周の一部
分の羽根を回転円筒内周に近接させた羽根車と、
前記回転円板を支持する端壁に設けられ前記回転
円板および回転円筒内周に向つて作動流体を噴射
するラバールノズルとを有することを特徴とする
トータルフロータービン。
1 A cylindrical casing, a rotary disk whose shaft is rotatably supported around one end wall of the casing and has a number of notches on its periphery, and a cylindrical casing with inner flanges at both ends, and a rotary disk with an inner flange at both ends. A rotating cylinder fixed at the periphery and a shaft supported by an eccentric plate on the other end wall of the casing, having a large number of blades on the outer periphery, and rotating blades on a part of the outer periphery on the eccentric side inside the rotating cylinder. an impeller placed close to the inner circumference of the cylinder;
A total flow turbine comprising: a Laval nozzle that is provided on an end wall that supports the rotating disk and injects working fluid toward the rotating disk and the inner circumference of the rotating cylinder.
JP3705081A 1981-03-14 1981-03-14 Total flow turbine Granted JPS57151001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3705081A JPS57151001A (en) 1981-03-14 1981-03-14 Total flow turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3705081A JPS57151001A (en) 1981-03-14 1981-03-14 Total flow turbine

Publications (2)

Publication Number Publication Date
JPS57151001A JPS57151001A (en) 1982-09-18
JPH0133641B2 true JPH0133641B2 (en) 1989-07-14

Family

ID=12486746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3705081A Granted JPS57151001A (en) 1981-03-14 1981-03-14 Total flow turbine

Country Status (1)

Country Link
JP (1) JPS57151001A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1908422A (en) * 2006-08-16 2007-02-07 丛洋 Wind gas engine by replacing fuel resources with wind and gas pressure
KR101178379B1 (en) 2010-12-10 2012-08-29 황희찬 Vertical type super dynamics high effiency hybrid turbine engine
KR101178322B1 (en) 2010-12-10 2012-08-29 황희찬 Horizontal type super dynamics high effiency hybrid turbine engine and automatic control method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3972195A (en) * 1973-12-14 1976-08-03 Biphase Engines, Inc. Two-phase engine
JPS5592802A (en) * 1978-11-27 1980-07-14 Biphase Energy Systems Generating method and device of steam from brine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3972195A (en) * 1973-12-14 1976-08-03 Biphase Engines, Inc. Two-phase engine
JPS5592802A (en) * 1978-11-27 1980-07-14 Biphase Energy Systems Generating method and device of steam from brine

Also Published As

Publication number Publication date
JPS57151001A (en) 1982-09-18

Similar Documents

Publication Publication Date Title
US5338158A (en) Pressure exchanger having axially inclined rotor ducts
US6233942B1 (en) Condensing turbine
US4336039A (en) Geothermal turbine
USRE39891E1 (en) V-blade impeller design for a regenerative turbine
US6354800B1 (en) Dual pressure Euler turbine
US3286984A (en) Rotary turbine
JPH0133641B2 (en)
US2640678A (en) Fluid translating device
US3926534A (en) Turbine
JPH0226077B2 (en)
JPH0245441Y2 (en)
US1166257A (en) Centrifugal pump, turbine, condenser, and the like.
US4158526A (en) Turbine assembly including a rotatable liquid collection ring
JPH08121101A (en) Turbine device
JP3679860B2 (en) Radial turbine
JP2007138864A (en) Steam turbine stage and steam turbine
JPS63117105A (en) Moisture removing device for blade cascade of steam turbine
CN114127389B (en) Axial turbine
WO2023276385A1 (en) Turbine stator vane and steam turbine
CN216025613U (en) Groove-shaped flow channel formed by special-shaped flow guide columns of rotary atomizer
JPS5974306A (en) Nozzle diaphragm
JP2940600B2 (en) Self-propelled pump
KR100744194B1 (en) Low pressure steam turbin device
RU2239725C2 (en) Centrifugal pump
JPH0340201B2 (en)