JPH0133619Y2 - - Google Patents

Info

Publication number
JPH0133619Y2
JPH0133619Y2 JP2976184U JP2976184U JPH0133619Y2 JP H0133619 Y2 JPH0133619 Y2 JP H0133619Y2 JP 2976184 U JP2976184 U JP 2976184U JP 2976184 U JP2976184 U JP 2976184U JP H0133619 Y2 JPH0133619 Y2 JP H0133619Y2
Authority
JP
Japan
Prior art keywords
parison
detection sensor
defective
calculation
phase adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2976184U
Other languages
Japanese (ja)
Other versions
JPS60143743U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2976184U priority Critical patent/JPS60143743U/en
Publication of JPS60143743U publication Critical patent/JPS60143743U/en
Application granted granted Critical
Publication of JPH0133619Y2 publication Critical patent/JPH0133619Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Description

【考案の詳細な説明】 〔考案の技術分野〕 本考案は中空ガラス物品吹成装置のパリソン検
出機構に関するもので、詳しくは溶融ガラス塊
(以下パリソンという)が吹成金型に入いる直前
に複数個の赤外線検出センサーにより、前記パリ
ソンから放射される輻射熱を感知させ、パリソン
形状の良否を判定し、かつ不良パリソンを自動的
に排出するように構成したパリソン検出機構に関
する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a parison detection mechanism for a hollow glass article blowing device. The present invention relates to a parison detection mechanism configured to detect radiant heat emitted from the parison using infrared detection sensors, determine whether the parison shape is good or bad, and automatically discharge defective parisons.

〔考案の技術的背景と問題点〕[Technical background and problems of the invention]

従来たとえば電球バルブ等の中空ガラス物品を
製造する場合は、ガラス溶融炉から取り出した溶
融ガラスを一旦ブランクモールドに受け止めて所
定のガラス塊に成形し、未だ軟らかい状態のガラ
ス塊をオリフイスプレートに移し替え、上方から
ブローヘツドを押し当ててエアーを吹き入れ、吹
成金型中でガラスをふくらませて成形している
が、上記ブローヘツドを押し当てて吹成する直前
のガラス塊所謂パリソンの形状が中空ガラス物品
を成形する上で品質に極めて重要な影響をぼして
いることは知られている。
Conventionally, when manufacturing hollow glass articles such as light bulbs, the molten glass taken out of the glass melting furnace is first received in a blank mold and formed into a predetermined glass lump, and the still soft glass lump is transferred to an orifice plate. In this process, a blow head is pressed against the glass from above and air is blown into the mold to inflate and form the glass. It is known that it has a very important effect on quality during molding.

しかし従来技術では中空ガラス物品吹成装置の
場所的な問題や検出センサーの保守および精度的
な問題などから、上記パリソン形状の良否は作業
者の目視による判断のみに委ねられていた。その
ため特に重要なパリソン長さの良否判断には作業
者の個人差があり、また不正確でもあつた。従つ
て最終検査工程での不良品混入率が高く、かつ生
産工程へのフイードバツクも遅くなり、品質向上
と装置の自動化に伴う省人化などに大きな支障と
なつていた。
However, in the prior art, the quality of the parison shape has been left solely to the visual judgment of an operator due to problems with the location of the hollow glass article blowing device, maintenance and accuracy problems with the detection sensor, and so on. Therefore, there were individual differences in the judgment of parison length, which is particularly important, among workers, and it was also inaccurate. Therefore, the rate of defective products in the final inspection process is high, and feedback to the production process is slow, which is a major hindrance to improving quality and saving labor through equipment automation.

〔考案の目的〕[Purpose of invention]

本考案は上記事情を考慮してなされたもので、
中空ガラス物品吹成装置のパリソン形状を自動測
定し、その良否を判定し、不良パリソンを自動的
に排出するパリソン検出機構を提供することを目
的とする。
This idea was made in consideration of the above circumstances,
The object of the present invention is to provide a parison detection mechanism that automatically measures the parison shape of a hollow glass article blowing device, determines its quality, and automatically discharges defective parisons.

〔考案の概要〕[Summary of the idea]

本考案は上記目的を達成するためにパリソンか
ら放出される輻射熱を、複数個の赤外線検出セン
サーにより感知させ、パリソン形状のうち特に重
要な長さの良否を判定する演算機構と、不良パリ
ソンを排出させる出力信号を所定時間シフトさせ
る演算機構等を具備して自動的に不良パリソンを
排出する手段を有するパリソン検出機構である。
In order to achieve the above objectives, this invention uses multiple infrared detection sensors to detect the radiant heat emitted from the parison, and includes a calculation mechanism that determines the quality of the particularly important length of the parison shape, and a calculation mechanism that ejects defective parisons. This parison detection mechanism is equipped with a calculation mechanism for shifting an output signal for a predetermined period of time, and has means for automatically discharging defective parisons.

〔考案の実施例〕[Example of idea]

次に本考案を図示の実施例に基づき詳述する。
図面は本考案のパリソン検出機構の構成を示すブ
ロツクダイヤグラムとパリソン周辺の要部側面図
である。1はオリフイスプレートより垂れ下がつ
た溶融ガラス(パリソン)、2は吹成用金型、3
はパリソン位置検出センサー、4はパリソン形状
検出センサーの視野を限定し、センサーヘツドを
外乱から保護するフードである。5は光フアイバ
ー式赤外線検出センサーを用いたパリソン形状検
出センサーヘツド、6および7はそれぞれ5およ
び3のセンサー信号増幅変換器、8はパリソン形
状の判定部であり、9は7と8の信号の時間ずれ
を調整する位相調整部である。10は生データー
表示部、11〜15は不良パリソンを所定時間遅
らせて排出するためのシフト演算機構であり、1
1はシフト演算部、12はシフト数設定部、13
は不良パリソン排出時間設定部、14はシフトデ
ータ表示部、15は不良パリソン排出出力増幅部
より構成され16の不良パリソン排出部の電磁弁
に接続されている。
Next, the present invention will be explained in detail based on illustrated embodiments.
The drawings are a block diagram showing the configuration of the parison detection mechanism of the present invention and a side view of the main parts around the parison. 1 is the molten glass (parison) hanging down from the orifice plate, 2 is the blowing mold, 3
4 is a parison position detection sensor, and 4 is a hood that limits the field of view of the parison shape detection sensor and protects the sensor head from external disturbances. 5 is a parison shape detection sensor head using an optical fiber type infrared detection sensor, 6 and 7 are sensor signal amplification converters for 5 and 3, respectively, 8 is a parison shape determination section, and 9 is a sensor head for detecting the signals of 7 and 8. This is a phase adjustment section that adjusts time lag. 10 is a raw data display section; 11 to 15 are shift calculation mechanisms for discharging defective parisons after a predetermined time delay;
1 is a shift calculation section, 12 is a shift number setting section, 13
14 is a shift data display section, and 15 is a defective parison discharge output amplifying section, which are connected to the electromagnetic valve of the defective parison discharge section 16.

次に上記の如く構成されているパリソン検出装
置の作用について説明する。パリソン1の放出す
る輻射熱をフード4を取り付けた赤外線検出セン
サー5の上下2段で検知する。すなわち、フード
4を取り付けた赤外線検出センサー5で視野をそ
の位置のみに限定し、外乱から保護された状態で
上下2段のセンサーのONまたはOFFの状態によ
りパリソン長さを判別する。適正な長さのパリソ
ンの場合には上段のセンサーがONとなり、下段
のセンサーがOFFとなるようにセツトしておく
と、上段センサーONで下段センサーOFFの場
合は良品、上段センサーと下段センサーの両セ
ンサーともONの場合はパリソンが長過ぎて不
良、上段センサーと下段センサーの両センサー
ともOFFの場合はパリソンが短か過ぎて不良と
なる。この赤外線検出センサー5のアナログ信号
を信号増幅変換器6に入れ、この変換されたデジ
タルのON、OFF信号をパリソン長さ判定部8に
入力して良否の判別をさせる。またパリソン検出
タイミング検知センサー3で得る信号は、パリソ
ンが所定位置に廻つて来た時にのみ上記赤外線検
出センサーの出力信号をパリソン長さ判定部8で
受けつけるようにするためのものであり、この信
号は増幅変換器7を介して位相調整部9にも入力
される。またON、OFFのデジタル信号に変換さ
れた検出タイミング信号は位相調整部9で7と8
の信号の時間ずれを調整した後シフト部11のク
ロツクパルスとしても利用される。位相調整部9
から出された信号は生データ表示部10でパリソ
ン長さの長短が確認し表示されると同時にシフト
演算部11に入力される。パリソン長さを検出す
る位置と不良パリソンの排出位置は距離的に離れ
た位置にあつてもよく、不良パリソンの排出信号
が数個シフトした後に出力するように設定され
る。さらに排出部の応答性も考慮に入れた出力時
間の設定が可能である。図面上11〜15が上記
不良パリソンの排出動作を行なう部分である。シ
フト演算部11はパリソン長さの良否信号が入力
されると、シフト数設定部12によつて設定され
た数だけシフト回路でその信号をシフトし、その
シフト数が設定した位置に達したところで不良パ
リソン排出時間設定部13により設定された時間
だけ排出出力信号を送り続ける。この信号は不良
パリソン排出出力増輻部15で出力を増幅され、
不良パリソン排出部16の電磁弁に入力される。
またシフト演算部11のデータはシフトデータ表
示部14で表示され確認される。
Next, the operation of the parison detection device configured as described above will be explained. The radiant heat emitted by the parison 1 is detected by two upper and lower infrared detection sensors 5 to which a hood 4 is attached. That is, the field of view is limited to only that position by the infrared detection sensor 5 attached to the hood 4, and the parison length is determined by the ON or OFF states of the upper and lower two-stage sensors while being protected from external disturbances. If you set the parison so that the upper sensor is ON and the lower sensor is OFF when the parison is of the appropriate length, if the upper sensor is ON and the lower sensor is OFF, it is a good product. If both sensors are ON, the parison is too long and the product is defective. If both the upper and lower sensors are OFF, the parison is too short and the product is defective. The analog signal from the infrared detection sensor 5 is input to a signal amplification converter 6, and the converted digital ON/OFF signal is input to a parison length determination section 8 to determine whether it is good or bad. Further, the signal obtained by the parison detection timing detection sensor 3 is for allowing the parison length determination unit 8 to receive the output signal of the infrared detection sensor only when the parison has turned to a predetermined position. is also input to the phase adjustment section 9 via the amplification converter 7. In addition, the detection timing signals converted to ON and OFF digital signals are sent to 7 and 8 in the phase adjustment section 9.
After adjusting the time lag of the signal, it is also used as a clock pulse for the shift section 11. Phase adjustment section 9
The signal output from the raw data display unit 10 confirms and displays the length of the parison, and at the same time is input to the shift calculation unit 11. The position at which the parison length is detected and the position at which the defective parison is ejected may be located at a distance, and are set to be output after the defective parison ejection signal has been shifted several times. Furthermore, it is possible to set the output time taking into consideration the responsiveness of the discharge section. Reference numerals 11 to 15 in the drawing indicate parts for performing the above-mentioned ejection operation of the defective parison. When the shift calculation unit 11 receives the parison length pass/fail signal, it shifts the signal by the number set by the shift number setting unit 12 in a shift circuit, and when the shift number reaches the set position, The discharge output signal continues to be sent for the time set by the defective parison discharge time setting section 13. The output of this signal is amplified by the defective parison discharge output amplification section 15,
The signal is input to the solenoid valve of the defective parison discharge section 16.
Further, the data of the shift calculation section 11 is displayed on the shift data display section 14 for confirmation.

以上詳述したように本考案によればパリソンの
長さを赤外線検出センサーにより、自動的に測定
し付設する演算機構によつて良否を判別し、かつ
不良パリソンを自動的に排出することができる。
As described in detail above, according to the present invention, the length of the parison can be automatically measured using an infrared detection sensor, the attached calculation mechanism can determine whether the parison is good or bad, and the defective parison can be automatically ejected. .

なお本考案は上記実施例のみに限定されるもの
でなく、スポツト式の赤外線検出センサーの代わ
りに赤外線の波長を検出するセンサー、例えば
CCDイメージセンサー等を使用し、パリソン長
さを数値化し、データー処理装置と組合せて行な
うことも差し支えない。
It should be noted that the present invention is not limited to the above-described embodiments, and instead of a spot-type infrared detection sensor, a sensor that detects infrared wavelengths, such as a sensor that detects infrared wavelengths, may be used.
It is also possible to quantify the parison length using a CCD image sensor or the like, and to perform this in combination with a data processing device.

また本考案はパリソンの長さの検出のみに限定
されるものでなく、パリソンの形状や溶融ガラス
の有無を検知させて溶融ガラス量の制御や吹成金
型の過冷却を防止する等の応用も出来る。
Furthermore, the present invention is not limited to only detecting the length of the parison, but can also be applied to detect the shape of the parison and the presence or absence of molten glass to control the amount of molten glass and prevent overcooling of blowing molds. I can do it.

〔考案の効果〕[Effect of idea]

本考案のパリソン長さ検出装置によれば、吹成
金型に入る前のパリソン長さを自動的に測定し、
その良否を判断して不良パリソンを自動的に排出
できるため、品質の大幅な向上と生産工程への情
報の迅速化による製造能率向上に大きな効果を奏
する。付随して省人化計画の推進などにも役立つ
など有形、無形の利点を有する。
According to the parison length detection device of the present invention, the parison length can be automatically measured before entering the blowing mold.
Since it is possible to judge the quality of parisons and automatically discharge defective parisons, it has a significant effect on improving manufacturing efficiency by significantly improving quality and speeding up information to the production process. It also has tangible and intangible benefits, such as being useful in promoting labor-saving plans.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本考案のパリソン長さ検出機構の構成を
示すブロツクダイヤグラムと一部パリソン周辺の
要部側面図である。 1パリソン、3パリソン検出タイミング検知セ
ンサー、4フード、5パリソン長さ検出センサー
ヘツド、16不良パリソン排出部、17パリソン
長さ判定、排出の演算機構。
The drawings are a block diagram showing the structure of the parison length detection mechanism of the present invention and a side view of a part of the main part around the parison. 1 parison, 3 parison detection timing detection sensor, 4 hood, 5 parison length detection sensor head, 16 defective parison discharge section, 17 parison length judgment and discharge calculation mechanism.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 溶融されたガラス塊を支承し、上面からブロー
ヘツドを当接して吹成に適するパリソンに作り、
モールド内で吹成し中空ガラス物品を成形する装
置において、パリソンから放出される輻射熱を感
知する複数個の赤外線検出センサーと溶融ガラス
塊の有無を確かめ、かつ所定の位置に到達したこ
とを感知する検出センサーと、上記各センサーか
らのそれぞれの電気信号を増幅しパリソン形状の
良否を判定する演算部およびデータ表示部と、上
記赤外線検出センサーと上記位置検出センサーと
の増幅信号の時間ずれを調整する位相調整機構と
を備え、この位相調整機構から出力されたクロツ
クパルスとパリソン形状の良否信号が不良パリソ
ンを排出する所定の位置にくるまでの時間、演算
部の出力信号をシフトさせる演算機構を具備した
ことを特徴とする中空ガラス物品吹成装置のパリ
ソン検出機構。
A parison suitable for blowing is made by supporting the molten glass gob and applying a blow head from above.
In a device that blows and forms hollow glass articles in a mold, multiple infrared detection sensors detect the radiant heat emitted from the parison, check for the presence of a molten glass gob, and sense when it has reached a predetermined position. a detection sensor, a calculation unit and a data display unit that amplify the electrical signals from each of the sensors and determine the quality of the parison shape, and adjust the time lag between the amplified signals of the infrared detection sensor and the position detection sensor. a phase adjustment mechanism, and a calculation mechanism that shifts the output signal of the calculation section by the time it takes for the clock pulse output from the phase adjustment mechanism and the parison shape pass/fail signal to reach a predetermined position for ejecting a defective parison. A parison detection mechanism for a hollow glass article blowing device, characterized in that:
JP2976184U 1984-03-01 1984-03-01 Parison detection mechanism for hollow glass article blowing equipment Granted JPS60143743U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2976184U JPS60143743U (en) 1984-03-01 1984-03-01 Parison detection mechanism for hollow glass article blowing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2976184U JPS60143743U (en) 1984-03-01 1984-03-01 Parison detection mechanism for hollow glass article blowing equipment

Publications (2)

Publication Number Publication Date
JPS60143743U JPS60143743U (en) 1985-09-24
JPH0133619Y2 true JPH0133619Y2 (en) 1989-10-12

Family

ID=30528860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2976184U Granted JPS60143743U (en) 1984-03-01 1984-03-01 Parison detection mechanism for hollow glass article blowing equipment

Country Status (1)

Country Link
JP (1) JPS60143743U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2901551B1 (en) * 2006-05-29 2008-07-25 Saint Gobain Emballage Sa AUTOMATIC LUBRICATION OF MOLDS FOR FORMING HOLLOW GLASS PRODUCTS

Also Published As

Publication number Publication date
JPS60143743U (en) 1985-09-24

Similar Documents

Publication Publication Date Title
EP1525469B1 (en) Analytical system and method for measuring and controlling a production process
US20090278286A1 (en) In-line inspection system for vertically profiling plastic containers using multiple wavelength discrete spectral light sources
JPS6052097B2 (en) Device and method for reducing dead time during operation of a glass container forming machine
US6401491B1 (en) Final blow/finish cooling valve function monitor
JPS63176318A (en) Method and device for controlling automation of glass vessel manufacture
NL9301568A (en) Analysis system for analyzing, monitoring, diagnosing and / or controlling a production process in which products are heat-treated, production process with an analysis system and a method therefor.
US9458042B2 (en) Method and apparatus for controlling the blowing air and cooling air of an I.S. glassware forming machine
JPH0133619Y2 (en)
US4599099A (en) Cyclic process of forming glassware in an individual section glassware forming machine
JPH05185508A (en) Diameter control of tubular film manufactured by blow-in molding plant
GB2297548A (en) Controlling air supply to glassware blow mould by computer
WO2011040318A1 (en) Glass product molding machine
US6477862B1 (en) Monitoring gob diameter in a glassware forming system
JPS6452619A (en) Method for molding molded product of optical glass
JPH0426419Y2 (en)
CN105750352B (en) Vehicle dormer window guide rail extrudes production quality control system
CN214361007U (en) Quick and accurate alarm device for roller bonding of microcrystalline glass crystallization annealing roller kiln
JPS6465033A (en) Press for producing glassware
JP2553769Y2 (en) Plunger control mechanism in parison molding machine of bottle making machine
CN108907129A (en) Steel leakage detection device and method
US3607191A (en) Glass-forming machine with position sensing means
GB2165049A (en) A method of sensing gobs of molten glass
SU455920A1 (en) The method of automatic control of the temperature regime of forming glassware
SU1270128A1 (en) Device for monitoring operating conditions of glass mould with moisture-absorbing coating
JPH09301723A (en) Plunger supporting mechanism and supporting method