JPH0133014B2 - - Google Patents

Info

Publication number
JPH0133014B2
JPH0133014B2 JP8662881A JP8662881A JPH0133014B2 JP H0133014 B2 JPH0133014 B2 JP H0133014B2 JP 8662881 A JP8662881 A JP 8662881A JP 8662881 A JP8662881 A JP 8662881A JP H0133014 B2 JPH0133014 B2 JP H0133014B2
Authority
JP
Japan
Prior art keywords
vacuum
case
shield
tank
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8662881A
Other languages
Japanese (ja)
Other versions
JPS57202028A (en
Inventor
Hiroshi Myagawa
Shuzo Tanigaki
Tomio Fukushima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP8662881A priority Critical patent/JPS57202028A/en
Publication of JPS57202028A publication Critical patent/JPS57202028A/en
Publication of JPH0133014B2 publication Critical patent/JPH0133014B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

【発明の詳細な説明】 本発明は真空しや断装置の真空度監視装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vacuum degree monitoring device for a vacuum shearing device.

一般に真空しや断器は内部の真空度の良否によ
つて能力が大きく左右されるため真空度を監視す
ることが必要になる。このため、従来においても
種々の真空度監視装置が提案されているが、いず
れも絶縁、大きさ、コストなどにおいて問題があ
り、実用的でなかつた。
In general, the capacity of a vacuum chamber or disconnector is greatly affected by the quality of the internal vacuum, so it is necessary to monitor the vacuum. For this reason, various vacuum degree monitoring devices have been proposed in the past, but all of them have problems with insulation, size, cost, etc., and are not practical.

本発明は上記の従来の欠点を除去して、構成が
簡単小形で安価であるとともに絶縁上の問題もな
く、かつ真空度を常時高感度、高信頼性で監視す
ることができるとともに設置の容易な真空度監視
装置を提供することを目的とする。
The present invention eliminates the above-mentioned conventional drawbacks, has a simple configuration, is small, inexpensive, has no insulation problems, can constantly monitor the degree of vacuum with high sensitivity and high reliability, and is easy to install. The purpose of this invention is to provide a vacuum level monitoring device.

まず、本発明の基本的な考え方を第1図A,
B、第2図および第3図A,Bによつて説明す
る。第1図A,Bは夫々通電状態における真空し
や断器およびその等価回路を示し、1は固定電
極、2は可動電極、3は固定リード、4は可動リ
ード、5は絶縁筒、6,7は絶縁筒5の両端に封
着された端板で、固定リード3は端板6に取付け
られ、可動リード4はベローズ8を介して端板7
に封着される。9は絶縁筒5の中間に取付けられ
たシールドである。又10,11は夫々真空しや
断器の設置された回路の電源および負荷、12,
13は夫々固定電極1とシールド9間の抵抗およ
び静電容量、14,15は夫々可動電極2とシー
ルド9間の抵抗および静電容量、16a,16b
は絶縁筒5の抵抗、17はシールド9とアース電
位間の静電容量である。
First, the basic idea of the present invention is shown in Figure 1A.
This will be explained with reference to FIG. 2 and FIGS. 3A and 3B. 1A and 1B respectively show a vacuum shield breaker and its equivalent circuit in the energized state, where 1 is a fixed electrode, 2 is a movable electrode, 3 is a fixed lead, 4 is a movable lead, 5 is an insulating cylinder, 6, Reference numeral 7 denotes an end plate sealed to both ends of the insulating cylinder 5, the fixed lead 3 is attached to the end plate 6, and the movable lead 4 is attached to the end plate 7 via a bellows 8.
is sealed. 9 is a shield attached to the middle of the insulating cylinder 5. Further, 10 and 11 are the power supply and load of the circuit in which the vacuum shield and circuit breaker are installed, respectively, 12,
13 is the resistance and capacitance between the fixed electrode 1 and the shield 9, 14 and 15 are the resistance and capacitance between the movable electrode 2 and the shield 9, respectively, 16a and 16b
is the resistance of the insulating tube 5, and 17 is the capacitance between the shield 9 and the ground potential.

上記した真空しや断器においては絶縁筒5およ
び端板6,7によつて形成された真空容器の内部
は高真空に保たれており、この真空度が劣化した
場合に、静電容量13,15は大気中の誘電率が
真空誘電率にほぼ等しいため変化しないが抵抗1
2,14は急激に小さくなる。このため、電極
1,2とシールド9間の電圧が小さくなり、真空
しや断器の各部での分担電圧に変化が生じる。例
えば真空度に良好な場合には電源10の電圧を
V、固定電極1とシールド9間の電圧をV1、可
動電極2とシールド9間の電圧をV2、シールド
9とアース電位間の電圧をV3としてV1=V2
V/2、V3=V−V1=V/2となるが、真空度が劣化 した場合にはV1=V2=V/4、V3=V−V/4=3/4 Vとなる(尚、これらの値はほんの一例として示
したもので、しや断器の構造が真空度によつて変
化する。)。従つて、第2図に示すようにシールド
9の電圧V3は真空度によつて大きく変化し、シ
ールド9の外周側の電界Eも大きく変化する。
In the vacuum chamber disconnector described above, the inside of the vacuum container formed by the insulating cylinder 5 and the end plates 6 and 7 is maintained at a high vacuum, and when this degree of vacuum deteriorates, the capacitance 13 , 15 does not change because the dielectric constant in the atmosphere is almost equal to the vacuum dielectric constant, but the resistance 1
2 and 14 suddenly become smaller. For this reason, the voltage between the electrodes 1, 2 and the shield 9 becomes small, and the voltages shared at each part of the vacuum shield and disconnector change. For example, when the degree of vacuum is good, the voltage of the power supply 10 is V, the voltage between the fixed electrode 1 and the shield 9 is V 1 , the voltage between the movable electrode 2 and the shield 9 is V 2 , and the voltage between the shield 9 and the earth potential Let V 3 be V 1 = V 2 =
V/2, V 3 = V-V 1 = V/2, but if the degree of vacuum deteriorates, V 1 = V 2 = V/4, V 3 = V-V/4 = 3/4 V. (Please note that these values are shown as just an example, and the structure of the shingle breaker changes depending on the degree of vacuum.) Therefore, as shown in FIG. 2, the voltage V 3 of the shield 9 changes greatly depending on the degree of vacuum, and the electric field E on the outer peripheral side of the shield 9 also changes greatly.

又、第3図A,Bは夫々しや断状態における真
空しや断器およびその等価回路を示し、18,1
9は夫々電極1,2間の抵抗および静電容量を示
す。この場合も静電容量13,15,19は真空
度によつて変化しないが、抵抗12,14,18
は真空度によつて変化し、従つて真空度が劣化す
るとシールド9の電圧は上昇し、シールド9の外
周側の電界も大きくなる。
Moreover, FIGS. 3A and 3B show the vacuum shield disconnector and its equivalent circuit in the disconnected state, respectively, and 18 and 1
9 indicates the resistance and capacitance between electrodes 1 and 2, respectively. In this case as well, the capacitances 13, 15, 19 do not change depending on the degree of vacuum, but the resistances 12, 14, 18
varies depending on the degree of vacuum. Therefore, when the degree of vacuum deteriorates, the voltage across the shield 9 increases and the electric field on the outer circumferential side of the shield 9 also increases.

このように真空しや断器においては通電状態で
もしや断状態でもシールド9の電位が真空度によ
つて大きく変化し、シールド9の外周側の電界も
大きく変化する。又、これに伴つて真空しや断器
の外周側の電界も全般的に変化する。従つて真空
しや断器の外周側の電界を監視することにより真
空しや断器の真空度を常時監視することができ
る。
As described above, in the vacuum shield breaker, the potential of the shield 9 changes greatly depending on the degree of vacuum, whether in the energized state or the energized state, and the electric field on the outer circumferential side of the shield 9 also changes greatly. Additionally, along with this, the electric field on the outer circumferential side of the vacuum chamber and disconnector also changes overall. Therefore, by monitoring the electric field on the outer circumferential side of the vacuum shield or disconnector, the degree of vacuum of the vacuum shield or disconnector can be constantly monitored.

以下本発明の実施例を図面ととに説明する。第
4図A,B,Cは本発明の第1の実施例を示し、
支持脚20上にはタンク21が水平方向に支持さ
れ、タンク21内には絶縁材22,23および導
電部材24,25を介して真空しや断器26が水
平方向に支持される。又、タンク21の上部には
長さ方向に一対の取付座21aが設けられ、各取
付座21aには一対のブツシング27が取付けら
れる。各ブツシング27の下部には径大部27a
が形成され、径大部27aには夫々変流器28が
内蔵される。又、各ブツシング27の上端には端
子29が設けられ、端子29間に絶縁距離Lをと
るために各ブツシング27は相反する方向に傾斜
して設けられる。又、導電部材24,25と端子
29間を夫々接続する導体30がブツシング27
内に挿通され、タンク21およびブツシング27
内にはSF6ガス、フレオンガスあるいは絶縁油な
どの絶縁流体31が充填される。
Embodiments of the present invention will be described below with reference to the drawings. 4A, B, and C show a first embodiment of the present invention,
A tank 21 is supported horizontally on the support legs 20, and a vacuum shield breaker 26 is supported horizontally within the tank 21 via insulating materials 22, 23 and conductive members 24, 25. Further, a pair of mounting seats 21a are provided in the upper part of the tank 21 in the length direction, and a pair of bushings 27 are attached to each mounting seat 21a. A large diameter portion 27a is provided at the bottom of each bushing 27.
are formed, and a current transformer 28 is built in each of the large diameter portions 27a. Further, a terminal 29 is provided at the upper end of each bushing 27, and in order to maintain an insulation distance L between the terminals 29, each bushing 27 is provided inclined in opposite directions. Further, the conductors 30 connecting between the conductive members 24 and 25 and the terminals 29 are connected to the bushings 27.
The tank 21 and the bushing 27
The inside is filled with an insulating fluid 31 such as SF 6 gas, Freon gas, or insulating oil.

上記のような構成のタンク形真空しや断装置に
おいて、タンク21の下部における真空しや断器
26のシールド9と対向した部分に孔21bを設
け、孔21bの縁部を外方に突出させてフランジ
部21cを形成し、フランジ部21cにOリング
32を介して第1のケース33をボルト34によ
り密封して締着する。第1のケース33はエポキ
シ樹脂などの絶縁材で形成するとともにタンク2
1の内方側へ凹んだ形状とする。第2のケース3
5もエポキシ樹脂などの絶縁材で形成するととも
にタンク21の内方側へ凹んだ形状とされ、第2
のケース35は第1のケース33内に間隔36を
有して収納されるとともに第1のケース33の外
部側にOリング32′を介してボルト37により
密封して締着される。検知部ハウジング38もプ
ラスチツクなどの絶縁材から成り、その内部には
電気光学効果素子39(ポツケルス素子、カー素
子、電界効果形(DAP)又はねじれ効果形
(TN)の液晶などから成る。以下素子と略称す
る。)とその両端に密接された偏光子40および
検光子41とから成る検知部を密閉収納し、偏光
子40および検光子41には夫々光フアイバー4
2,43の一端を接続する。検知部ハウジング3
8は第2のケース35内の最奥部に配置し、第2
のケース35内には液状注型硬化ゴム(シリコ
ン、ポリブタジエン、エポキシ等)などの絶縁モ
ールド材44を注入固化して検知部ハウジング3
8を固定する。絶縁材モールド材44の中央部に
は凹部44aが形成される。金属製のカバー45
は各ケース33,35の外部側を覆うもので凹部
44aと嵌合する凹部45aを有しており、第1
および第2のケース33,35のフランジ部33
a,35aおよびカバー45を挿通したボルト3
7をタンク21のフランジ部21cに螺着するこ
とによりカバー45を第2のケース35および絶
縁モールド材44の外面側に圧接固定する。又カ
バー45はボルト37を介してアース電位のタン
ク21と接続されるので、カバー45もアース電
位となる。第2のケース35には絶縁流体注入パ
イプ46が密に貫通して設けられ、注入パイプ4
6はカバー45も貫通しており、この注入パイプ
46を介して間隔36は真空引きされた後SF6
スあるいは絶縁油などの絶縁流体を注入し、注入
パイプ46はキヤツプ47により密封する。光フ
アイバー42,43はカバー45を挿通して外部
に導出し、光フアイバー42の先端には発光部4
8を設け、光フアイバー43の先端には受光部4
9を設ける。又、受光部49には真空度の良否を
判定する真空度良否判定部50を電気的に接続す
る。
In the tank-type vacuum shearing device configured as described above, a hole 21b is provided in the lower part of the tank 21 in a portion of the vacuum shearing cutter 26 facing the shield 9, and the edge of the hole 21b is made to protrude outward. A flange portion 21c is formed, and the first case 33 is sealed and fastened to the flange portion 21c with bolts 34 via an O-ring 32. The first case 33 is made of an insulating material such as epoxy resin, and the tank 2
The shape is concave to the inside of 1. Second case 3
5 is also formed of an insulating material such as epoxy resin and has a shape concave toward the inside of the tank 21.
The case 35 is housed within the first case 33 with a gap 36 therebetween, and is hermetically fastened to the outside of the first case 33 with a bolt 37 via an O-ring 32'. The detection unit housing 38 is also made of an insulating material such as plastic, and inside thereof is an electro-optical effect element 39 (consisting of a Pockels element, a Kerr element, a field effect type (DAP) or a torsional effect type (TN) liquid crystal, etc., hereinafter referred to as the element). A detection unit consisting of a polarizer 40 and an analyzer 41 is hermetically housed, and each of the polarizer 40 and the analyzer 41 is equipped with an optical fiber 4.
Connect one end of 2,43. Detector housing 3
8 is arranged at the innermost part inside the second case 35, and the second
An insulating molding material 44 such as liquid cast-cured rubber (silicon, polybutadiene, epoxy, etc.) is injected into the case 35 and solidified to form the sensor housing 3.
Fix 8. A recess 44 a is formed in the center of the insulating mold material 44 . metal cover 45
covers the outside of each case 33, 35 and has a recess 45a that fits into the recess 44a;
and flange portion 33 of second case 33, 35
a, 35a and the bolt 3 inserted through the cover 45
7 to the flange portion 21c of the tank 21, the cover 45 is fixed to the second case 35 and the outer surface of the insulating mold material 44 by pressure. Further, since the cover 45 is connected to the tank 21 which is at ground potential via the bolt 37, the cover 45 is also at ground potential. The second case 35 is provided with an insulating fluid injection pipe 46 that closely penetrates the injection pipe 4.
6 also penetrates the cover 45, and after the space 36 is evacuated through this injection pipe 46, an insulating fluid such as SF 6 gas or insulating oil is injected, and the injection pipe 46 is sealed with a cap 47. The optical fibers 42 and 43 are inserted through the cover 45 and led out to the outside, and the optical fiber 42 has a light emitting section 4 at its tip.
8, and a light receiving section 4 is provided at the tip of the optical fiber 43.
9 will be provided. Further, a vacuum degree determination section 50 for determining whether the degree of vacuum is good or bad is electrically connected to the light receiving section 49.

上記の真空度監視装置の動作を第5図を用いて
説明すると、発光部48から発せられた光は光フ
アイバー42を介して偏光子40に送られ、水平
方向あるいは垂直方向に直線偏光される。素子3
9は真空しや断器26の外周側特にシールド9の
外周側の電界Eを水平方向あるいは垂直方向に加
えられ、電界Eに応じて偏光子40からの光の偏
光面を角度θだけ回転させる。次に素子39を通
過した光は偏光子40の偏光面と所定の関係にあ
る偏光面を有する検光子41に加えられ、検光子
41を通過した光は光フアイバー43を介して光
量に応じた電気信号を出す受光部49に加えられ
る。第6図に示すように真空しや断器26の真空
度が良好な場合には素子39に加わる電界Eは小
さく、真空度が不良になると電界Eが上昇する。
従つて、素子39における光の偏光面の回転角θ
は真空度が良好な場合は小さく、真空度が不良に
なるとθは大きくなる。このため、偏光子40お
よび検光子41の偏光面が直角な場合には真空度
が不良になると検光子41の通過光量は多くな
り、受光部49の出力Aは第6図の実線で示すよ
うに大きくなる。又、偏光子40および検光子4
1の偏光面が平行な場合には真空度が不良になる
と検光子41の通過光量が少くなり、受光部49
の出力Aは第6図の点線で示すように小さくな
る。このため真空度良否判定部50は出力Aが急
激に変化したことにより真空度劣化を検知して警
報や表示のための出力を出す。
The operation of the vacuum level monitoring device described above will be explained using FIG. 5. Light emitted from the light emitting section 48 is sent to the polarizer 40 via the optical fiber 42, and is linearly polarized in the horizontal or vertical direction. . Element 3
Reference numeral 9 applies an electric field E to the outer circumferential side of the vacuum shield breaker 26, particularly the outer circumferential side of the shield 9, in the horizontal or vertical direction, and rotates the polarization plane of the light from the polarizer 40 by an angle θ according to the electric field E. . Next, the light that has passed through the element 39 is applied to an analyzer 41 having a polarization plane that has a predetermined relationship with the polarization plane of the polarizer 40, and the light that has passed through the analyzer 41 is applied to the analyzer 41 via an optical fiber 43 according to the amount of light. It is added to a light receiving section 49 that outputs an electrical signal. As shown in FIG. 6, when the degree of vacuum in the vacuum chamber and disconnector 26 is good, the electric field E applied to the element 39 is small, and when the degree of vacuum becomes poor, the electric field E increases.
Therefore, the rotation angle θ of the plane of polarization of the light in the element 39
is small when the degree of vacuum is good, and becomes large when the degree of vacuum is poor. Therefore, when the polarization planes of the polarizer 40 and the analyzer 41 are at right angles, if the degree of vacuum becomes poor, the amount of light passing through the analyzer 41 will increase, and the output A of the light receiving section 49 will be as shown by the solid line in FIG. becomes larger. Moreover, a polarizer 40 and an analyzer 4
When the polarization planes 1 and 1 are parallel, if the degree of vacuum is poor, the amount of light passing through the analyzer 41 decreases, and the light receiving section 49
The output A becomes smaller as shown by the dotted line in FIG. For this reason, the degree of vacuum quality determination section 50 detects deterioration of the degree of vacuum due to a sudden change in the output A, and outputs an output for an alarm or display.

ところで、タンク21内には比誘電率(εS)が
小さく絶縁耐力の高い絶縁流体31(SE6および
フレオンはεS≒1、絶縁油はεS≒2)が充填され
ているために真空しや断器26とタンク21間の
間隔が小さくなつている。従つて、シールド9と
アース電位のタンク21間の静電容量17は、こ
の間の間隔が小さいことおよび対向面積が大きい
ことにより大きくなり、シールド9の電位が特に
真空度良好時において小さくなる。このため、真
空度劣化時のシールド9の電位変化が大きくな
り、シールド9とタンク21間における電界変化
も大きくなる。このため、素子39の電界変化の
検知感度が向上する。第7図は上記のことの説明
図で、シールド9とアース電位間の間隔が大きい
場合の電圧特性は、真空度良好時には実線イ、真
空度不良時には点線ロ、又本実施例のようにシー
ルド9とアース電位のタンク21との間の間隔が
小さい場合の電圧特性は、真空度良好時には実線
ハ、真空度不良時には点線ニとなり、本実施例の
方が真空度劣化時の電圧変化が大きいことが判明
する。又、真空しや断器26とタンク21間の間
隔が小さいためこの間の等電位線の間隔が密にな
り、特にシールド9の電位が上昇する真空度劣化
時の電界が大きくなる。このように電界および電
界変化が大きくなるため素子37の電界検知感度
が向上する。
By the way, since the tank 21 is filled with an insulating fluid 31 having a small dielectric constant (ε S ) and high dielectric strength (ε S ≒1 for SE 6 and Freon, and ε S ≒2 for insulating oil), a vacuum is generated. The distance between the shield breaker 26 and the tank 21 has become smaller. Therefore, the capacitance 17 between the shield 9 and the tank 21 at ground potential becomes large due to the small distance therebetween and the large opposing area, and the potential of the shield 9 becomes small especially when the degree of vacuum is good. Therefore, the potential change of the shield 9 increases when the degree of vacuum deteriorates, and the electric field change between the shield 9 and the tank 21 also increases. Therefore, the detection sensitivity of the electric field change of the element 39 is improved. FIG. 7 is an explanatory diagram of the above. When the distance between the shield 9 and the ground potential is large, the voltage characteristics are shown by the solid line A when the degree of vacuum is good, and by the dotted line B when the degree of vacuum is poor. 9 and the tank 21 at ground potential is small, the voltage characteristics are a solid line C when the degree of vacuum is good and a dotted line D when the degree of vacuum is poor, and the voltage change in this example is larger when the degree of vacuum deteriorates. It turns out that. Further, since the distance between the vacuum shield disconnector 26 and the tank 21 is small, the distance between the equipotential lines therebetween becomes close, and the electric field increases especially when the degree of vacuum deteriorates and the potential of the shield 9 increases. Since the electric field and electric field change become larger in this way, the electric field detection sensitivity of the element 37 is improved.

又、上記実施例では素子39などの検知部は第
2のケース35内に設置され、第2のケース35
はタンク21の内方側に凹んだ第2のケース33
内に設置されているので、光フアイバー42,4
3をタンク21に密に貫通させる必要がなく、又
素子39の交換時には第2のケース35およびカ
バー45を取外せば良く第1のケース33を取外
す必要がないのでタンク21の密閉性は保たれ
る。又、素子39などの検知部は絶縁モールド材
44などを介してタンク21側に支持されている
ので真空しや断器26の開閉時の衝撃を受け難
く、誤動作を生じない。又、検知部は絶縁モール
ド材44により密封されているので水分やホコリ
等の侵入がなく素子39などの寿命が長く誤動作
も生じなくなる。又、検知部および光フアイバー
42,43は絶縁性であるので真空しや断装置全
体としての絶縁性を損わない。
Further, in the above embodiment, the detection section such as the element 39 is installed inside the second case 35, and
is the second case 33 recessed inward of the tank 21
Since the optical fibers 42, 4 are installed inside the
3 does not need to be penetrated tightly into the tank 21, and when replacing the element 39, the second case 35 and cover 45 need only be removed, and there is no need to remove the first case 33, so the airtightness of the tank 21 can be maintained. dripping Furthermore, since the sensing portion such as the element 39 is supported on the tank 21 side via the insulating mold material 44, etc., it is not easily affected by shocks when the vacuum chamber or disconnector 26 is opened and closed, and malfunctions do not occur. Furthermore, since the detection section is sealed by the insulating mold material 44, moisture, dust, etc. do not enter, the life of the element 39 is long, and malfunctions do not occur. Furthermore, since the detection section and the optical fibers 42 and 43 are insulative, the insulating properties of the vacuum shearing device as a whole are not impaired.

さらに、第1のケース33と第2のケース35
の間に間隔36を設けているので両者の寸法精度
を厳密にする必要がなく、又間隔36に絶縁流体
を封入したことによりこの間のコロナ放電を防止
することができ、検知部の感度を向上できる。
又、アース電位のカバー45を設けたことにより
人体に対する安全性を保つことができるととも
に、カバーの凹部45aが絶縁モールド材44を
押圧するので第2のケース35と絶縁モールド材
44との間に剥離が生じ難く、この間にコロナ放
電が生じない。又、凹部45aの先端は電界が集
中するので素子39の電界検知感度が向上する。
Furthermore, the first case 33 and the second case 35
Since there is a gap 36 between them, there is no need for strict dimensional accuracy between the two, and by filling the gap 36 with insulating fluid, corona discharge can be prevented during this time, improving the sensitivity of the detection part. can.
Furthermore, by providing the cover 45 at ground potential, safety for the human body can be maintained, and since the recess 45a of the cover presses the insulating mold material 44, there is no space between the second case 35 and the insulating mold material 44. Peeling is difficult to occur and no corona discharge occurs during this time. Further, since the electric field is concentrated at the tip of the recess 45a, the electric field detection sensitivity of the element 39 is improved.

尚、絶縁モールド材44としてゴム材を用いた
場合には弾性が大きいため硬化収縮時に検知部や
光フアイバー42,43を破壊することがない。
又、各ケース33,35の材質はエポキシ樹脂が
適当であるが、アークが発生し易い場合にはアル
ミナを又アークが発生し難い場合にはシリカを充
填材として用いると良い。
In addition, when a rubber material is used as the insulating mold material 44, the elasticity is large, so that the detection part and the optical fibers 42, 43 will not be destroyed when cured and shrunk.
Epoxy resin is suitable as the material for each case 33, 35, but if arcing is likely to occur, alumina may be used as the filler, and if arcing is difficult to occur, silica may be used as the filler.

第8図は本発明の第2の実施例を示し、この例
ではタンク21の側板21dに孔21eを設ける
とともに孔21eの周辺部を外部側に突出させて
フランジ部21fに第1の実施例と同様の構成で
真空度監視装置を設けたものである。ただし、こ
の例では第1のケース33′、第2のケース3
5′およびカバー45′の凹部(45aに相当)の長
さを長くして素子39などの検知部をシールド9
の外周近傍に位置させるようにしている。
FIG. 8 shows a second embodiment of the present invention, in which a hole 21e is provided in a side plate 21d of a tank 21, and the peripheral part of the hole 21e is made to protrude outward to form a flange portion 21f. It has the same configuration as the one above, but is equipped with a vacuum level monitoring device. However, in this example, the first case 33' and the second case 3
5' and the concave part (corresponding to 45a) of the cover 45' are made longer to shield the sensing part such as the element 39.
It is positioned near the outer periphery of the

尚、上記各実施例では偏光子40および検光子
41を絶縁モールド材44中に設けたが、偏光子
40および検光子41を光フアイバーを介してカ
バー45の外部側に設けるようにしても良い。
In each of the above embodiments, the polarizer 40 and the analyzer 41 are provided in the insulating mold material 44, but the polarizer 40 and the analyzer 41 may be provided on the outside of the cover 45 via an optical fiber. .

以上のように本発明においては、タンク内に真
空しや断器を収納するとともにタンク内の空隙に
絶縁流体を充填した真空しや断装置において、タ
ンクに設けた孔に密封して取付けられるとともに
タンク内方側に凹んだ絶縁材から成る第1のケー
スと、タンク内方側に凹んだ絶縁材から成り、第
1のケース内に収納されるとともに第1のケース
の外部側に間隔36を設けて取付けられた第2の
ケースと、発光部と、偏光子と、第2のケース内
の真空しや断器外周位置に配置されるとともに絶
縁モールド材によりモールド固定された電気光学
効果素子と、検光子とから成る真空度監視装置を
設けており、真空しや断器の真空度によつて変化
する真空しや断器外周側の電界を前記素子によつ
て検知した検光子の通過光量の変化から真空度劣
化を検知するようにしており、構成が簡単小形で
安価な真空度監視装置が得られる。又、タンク内
には絶縁耐力の高い絶縁流体を充填したので真空
しや断器とタンクの間隔を小さくすることがで
き、この間の電界を大きくすることができる。
又、上記間隔を小さくしたことによりこの間の静
電容量が大きくなり、真空度劣化時の真空しや断
器外周の電界変化が大きくなる。このように電界
および電界変化が大きいことにより前記素子の電
界検知感度が向上し、真空度監視機能も向上す
る。又、前記素子はタンクの内方側に凹んだ第2
のケース内に収納され、第2のケースはタンクの
孔に密封して取付けられるとともにタンク内方側
へ凹んだ第1のケース内に収納されかつ第1のケ
ースの外部側に取付けられているので、素子から
の光情報をタンク壁に密に貫通して引出す必要が
なく、又素子の交換時に第1のケースを取外す必
要がないためタンク内の絶縁流体が流出はなく、
真空度監視装置の設置が容易となる。又、素子は
真空しや断器ではなくそのタンク側に支持される
ので真空しや断器の開閉時の衝撃による損傷や誤
動作は生じない。又、素子は絶縁モールド材によ
りモールド固定されているので水分やホコリの侵
入がなく、寿命が長く誤動作も生じ難い。又、前
記素子は絶縁材から成るため前記素子を設けたこ
とにより絶縁上支障を生じることがなく、又素
子、偏光子および検光子は受動素子で故障が少な
く、装置としての信頼性が高い。また第2のケー
スは、タンクの孔に密封して取り付けられるとと
もにタンク内方側へ凹んだ第1のケース内に間隔
36を設けて収納されているので、第2のケース
を第1のケースの寸法に厳密に合わせる必要がな
く、また、この間隔36に絶縁流体を封入してい
るので、この間のコロナ放電が防止され検知部の
感度が向上する。
As described above, in the present invention, a vacuum breaker is housed in a tank, and a gap in the tank is filled with an insulating fluid. The first case is made of an insulating material that is recessed toward the inside of the tank, and the insulating material is recessed toward the inside of the tank. A second case provided and attached, a light emitting part, a polarizer, and an electro-optic effect element disposed at the outer periphery of the vacuum shield and disconnector in the second case and fixed by molding with an insulating molding material. A vacuum level monitoring device consisting of an analyzer is installed, and the amount of light passing through the analyzer is detected by the element, which detects the electric field on the outer circumferential side of the vacuum shield and disconnector, which changes depending on the vacuum level of the vacuum shield and disconnector. The deterioration of the vacuum level is detected from the change in the vacuum level, and a vacuum level monitoring device that is simple in construction, small in size, and inexpensive can be obtained. Furthermore, since the tank is filled with an insulating fluid having a high dielectric strength, the distance between the vacuum breaker and the tank can be reduced, and the electric field therebetween can be increased.
Further, by making the above-mentioned interval small, the capacitance between them increases, and the change in the electric field around the vacuum chamber and the periphery of the disconnector increases when the degree of vacuum deteriorates. Due to such a large electric field and electric field change, the electric field detection sensitivity of the element is improved, and the vacuum degree monitoring function is also improved. Further, the element has a second part recessed inwardly of the tank.
The second case is sealed and installed in a hole in the tank, and the second case is stored in a first case recessed toward the inside of the tank and is installed on the outside of the first case. Therefore, there is no need to closely penetrate the tank wall to draw out the optical information from the element, and there is no need to remove the first case when replacing the element, so the insulating fluid inside the tank does not leak out.
It becomes easy to install a vacuum level monitoring device. Furthermore, since the element is supported on the tank side rather than on the vacuum shield or disconnector, damage or malfunction due to impact when opening and closing the vacuum shield or disconnector will not occur. Furthermore, since the element is molded and fixed using an insulating molding material, there is no intrusion of moisture or dust, the life is long, and malfunctions are less likely to occur. Further, since the element is made of an insulating material, the provision of the element does not cause problems in terms of insulation, and since the element, polarizer, and analyzer are passive elements, there are few failures, and the reliability of the device is high. Further, the second case is installed in a sealed manner in the hole of the tank and is housed with a gap 36 in the first case which is recessed inward of the tank. It is not necessary to strictly match the dimensions of the space 36, and since the insulating fluid is filled in this space 36, corona discharge is prevented during this time, and the sensitivity of the detection section is improved.

更に、真空しや断器の開閉いずれの状態でも真
空度を監視することができ、真空度を常時監視す
ることができる。
Furthermore, the degree of vacuum can be monitored whether the vacuum chamber or disconnector is open or closed, and the degree of vacuum can be constantly monitored.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A,Bおよび第2図は夫々真空しや断器
の通電状態における縦断正面図、等価回路図およ
び真空度と各部の電圧・電界との関係図、第3図
A,Bは夫々真空しや断器のしや断状態における
縦断正面図および等価回路図、第4図A,B,C
は夫々本発明の第1の実施例に係る真空度監視装
置を有する真空しや断装置の縦断正面図、真空度
監視装置の縦断正面図および真空度監視装置の底
面図、第5〜7図は夫々本発明の第1の実施例に
係る真空度監視装置の動作説明図、真空しや断器
とタンク間の電圧分布図、第8図は本発明の第2
の実施例に係る真空度監視装置を有する真空しや
断装置の縦断正面図。 9……シールド、21……タンク、21b,2
1e……孔、26……真空しや断器、31……絶
縁流体、33,33′……第1のケース、35,
35′……第2のケース、39……電気光学効果
素子、40……偏光子、41……検光子、42,
43……光フアイバー、44……絶縁モールド
材、48……発光部、49……受光部。
Figures 1A and B and Figure 2 are respectively a longitudinal sectional front view of the vacuum shield breaker in the energized state, an equivalent circuit diagram, and a diagram of the relationship between the degree of vacuum and the voltage and electric field of each part, and Figures 3A and B are respectively Vertical front view and equivalent circuit diagram of the vacuum shield breaker in the shielded state, Figure 4 A, B, C
5 to 7 are respectively a longitudinal sectional front view of a vacuum shear cutting device having a vacuum monitoring device according to a first embodiment of the present invention, a longitudinal sectional front view of the vacuum monitoring device, a bottom view of the vacuum monitoring device, and a bottom view of the vacuum monitoring device. 8 is an explanatory diagram of the operation of the vacuum degree monitoring device according to the first embodiment of the present invention, a voltage distribution diagram between the vacuum shield breaker and the tank, and FIG.
FIG. 2 is a longitudinal sectional front view of a vacuum shear cutting device having a vacuum level monitoring device according to an embodiment of the present invention. 9...Shield, 21...Tank, 21b, 2
1e...hole, 26...vacuum shield, 31...insulating fluid, 33, 33'...first case, 35,
35'... second case, 39... electro-optic effect element, 40... polarizer, 41... analyzer, 42,
43... Optical fiber, 44... Insulating mold material, 48... Light emitting section, 49... Light receiving section.

Claims (1)

【特許請求の範囲】[Claims] 1 真空部内に電圧が印加され電流が流れる導体
を備え、この導体と絶縁されるとともに、真空空
〓を介して対向する金属部材を有する真空しや断
器をタンク内に収納するとともにタンク内の空〓
に絶縁流体を充填した真空しや断装置において、
タンクに設けた孔に密封して取り付けられるとと
もにタンク内方側に凹んだ絶縁材から成る第1の
ケースと、タンク内方側に凹んだ絶縁材から成
り、第1のケース内に該ケースと間隔もつて収納
されるとともに第1のケースの外部側に密封して
取り付けられた第2のケースと、これら第1のケ
ースと第2のケースの間隔内に封入された絶縁流
体と、発光部と発光部からの光を直線偏光する偏
光子と、第2のケース内の真空しや断器の前記金
属部材の外周位置に配置されるとともに絶縁モー
ルド材によりモールド固定され、偏光子からの光
の偏光面を印加電界の大きさに応じて回転させる
電気光学効果素子と電気光学効果素子からの光を
受ける検光子とから成ることを特徴とする真空し
や断装置の真空度監視装置。
1 A vacuum shield is provided with a conductor in which a voltage is applied and current flows in the vacuum section, and a vacuum shield and disconnector having a metal member that is insulated from the conductor and faces across the vacuum space is housed in the tank, and the Sky =
In a vacuum insulation device filled with insulating fluid,
A first case made of an insulating material that is sealed and attached to a hole provided in the tank and is recessed toward the inside of the tank; a second case housed with a gap therebetween and hermetically attached to the outside of the first case; an insulating fluid sealed within the gap between the first case and the second case; and a light emitting section. and a polarizer that linearly polarizes the light from the light emitting part, and a polarizer that linearly polarizes the light from the polarizer, which is placed on the outer periphery of the metal member of the vacuum shield in the second case and fixed to the metal member with an insulating molding material. 1. A vacuum degree monitoring device for a vacuum shearing device, comprising an electro-optic effect element that rotates the plane of polarization of the plane according to the magnitude of an applied electric field, and an analyzer that receives light from the electro-optic effect element.
JP8662881A 1981-06-05 1981-06-05 Monitor for vacuum degree of vacuum breaker Granted JPS57202028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8662881A JPS57202028A (en) 1981-06-05 1981-06-05 Monitor for vacuum degree of vacuum breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8662881A JPS57202028A (en) 1981-06-05 1981-06-05 Monitor for vacuum degree of vacuum breaker

Publications (2)

Publication Number Publication Date
JPS57202028A JPS57202028A (en) 1982-12-10
JPH0133014B2 true JPH0133014B2 (en) 1989-07-11

Family

ID=13892286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8662881A Granted JPS57202028A (en) 1981-06-05 1981-06-05 Monitor for vacuum degree of vacuum breaker

Country Status (1)

Country Link
JP (1) JPS57202028A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59175523A (en) * 1983-03-24 1984-10-04 東京電力株式会社 Vacuum degree monitor of vacuum breaker

Also Published As

Publication number Publication date
JPS57202028A (en) 1982-12-10

Similar Documents

Publication Publication Date Title
US4984125A (en) Arrester apparatus
US4950979A (en) Insulating member, functioning as a voltage divider in a high voltage system
US5388459A (en) Acceleration sensor with direct mounting
JPH0133014B2 (en)
JPS644204Y2 (en)
US6212055B1 (en) Self-healing capacitor
JPS644203Y2 (en)
JPS644202Y2 (en)
JPS644201Y2 (en)
JPS644205Y2 (en)
JPS6322505Y2 (en)
KR20040105486A (en) Stack cell voltage detecting apparatus for fuel cell
JPH03120761A (en) Optical voltage detector for high voltage
JP2984104B2 (en) Distribution line monitoring device
JPS6053522B2 (en) Fault position detection device for opening/closing equipment
JP2969035B2 (en) Optical PT
JPS648415B2 (en)
JPH09215135A (en) Gas insulated machine and insulating spacer
JPS6022288B2 (en) Vacuum level monitoring device for vacuum electrical equipment
JPH0535311Y2 (en)
JP2773514B2 (en) Voltage divider
JPS638686B2 (en)
JP2586026B2 (en) Voltage detector
JPS63186512A (en) Grounding device for compact switchgear
US3768317A (en) Acceleration meter