JPH0132844B2 - - Google Patents

Info

Publication number
JPH0132844B2
JPH0132844B2 JP56200976A JP20097681A JPH0132844B2 JP H0132844 B2 JPH0132844 B2 JP H0132844B2 JP 56200976 A JP56200976 A JP 56200976A JP 20097681 A JP20097681 A JP 20097681A JP H0132844 B2 JPH0132844 B2 JP H0132844B2
Authority
JP
Japan
Prior art keywords
vinyl chloride
chloride resin
polymerization
chlorinated
chlorination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56200976A
Other languages
Japanese (ja)
Other versions
JPS58103507A (en
Inventor
Yasunobu Nakagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbide Industries Co Inc
Original Assignee
Nippon Carbide Industries Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbide Industries Co Inc filed Critical Nippon Carbide Industries Co Inc
Priority to JP20097681A priority Critical patent/JPS58103507A/en
Publication of JPS58103507A publication Critical patent/JPS58103507A/en
Publication of JPH0132844B2 publication Critical patent/JPH0132844B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、耐熱性並びに熱安定性に優れた塩素
化塩化ビニル系樹脂の製法に関するものである。 更に詳しくは、重合転化率が40〜70%の範囲で
水性懸濁重合を終了して得られる塩化ビニル系樹
脂を原料樹脂として使用し、該原料樹脂を水性媒
体中に懸濁させ、その中に酸素混在率が1000ppm
以下(導入ガスの全量に対して)の塩素系ガスを
導入して後塩素化することを特徴とする、塩素化
塩化ビニル系樹脂の製造方法に関するものであ
る。 塩化ビニル系樹脂は、耐侯性、耐薬品性、加工
性に優れた特徴を有する外に難燃性であることな
ども加わつて、広範囲の分野に極めて多量使用さ
れているが、塩化ビニル系樹脂の最大の欠点は軟
化温度が低いことであり、そのために耐熱性が要
求される用途に対しては可成り多くの制約を受け
ている。この制約を克服し塩化ビニル系樹脂の軟
化温度を改善するために、塩化ビニル系樹脂を後
塩素化して塩素化塩化ビニル系樹脂を製造するこ
とが知られている。 その手段として、塩化ビニル系樹脂の有機溶媒
溶液に塩素ガスを吹き込む溶液塩素化法、塩化ビ
ニル系樹脂の有機溶媒懸濁液或は水性懸濁液に塩
素ガスを吹き込む懸濁塩素化法、塩化ビニル系樹
脂の粉末に直接塩素ガスを接触させる直接塩素化
法が知られているが、テトラクロンエタン、ジク
ロルエタン等の有機溶媒を用いる溶液塩素化法、
或は有機溶媒懸濁液法では、塩素化塩化ビニル系
樹脂の分離が厄介である上に多量の溶剤回収が必
要であり、また、過酸化ベンゾイル、アゾイソブ
チロニトリル等の過酸化物やアゾ化合物、四塩化
チタン、五塩化燐、三塩化アンチモン等の無機化
合物、或はτ線や紫外線等の触媒の存在下で通常
行なわれる直接塩素化法では、塩化ビニル系樹脂
が不均一な塩素化を受け易いという問題がある。 本発明は、上記の水性懸濁液に塩素ガスを吹き
込む水性懸濁後塩素化方式による塩素化塩化ビニ
ル系樹脂の製造方法に関するものである。 而して、上記の水性懸濁後塩素化方式には、水
性懸濁液として全液量に対して5〜25容量%の膨
潤剤、即ちハイドロクロロメチレン化合物等を含
む水性媒体を使用し、65℃以下の温度で、常に過
剰の溶解塩素濃度を保ちながら、比の過剰塩素濃
度を維持し得る程度の、低い光化学的活性化作用
下で塩素化を行う特公昭36−888号の提案や、塩
化ビニル系樹脂を、該塩化ビニル系樹脂の溶媒若
しくは膨潤剤を実質的に含まない水性懸濁液状態
とし、紫外線照射下に塩素化するに際して、塩素
濃度を調節する代りに、特定の塩素置換量に達す
るまで、特定の反応速度の範囲内にあるように、
経時的に単位紫外線照射光量を調節する特公昭51
−48795号等の提案があるが、これらの方法に従
つて後塩素化しても、得られた塩素化塩化ビニル
系樹脂の塩素含有率が同じであるにもかかわら
ず、しばしば該塩素化塩化ビニル系樹脂の耐熱性
が大幅に違つたものを与えるものであり、耐熱性
の品質が一定した後塩素化塩化ビニル系樹脂を得
るには、更に改善すべき問題があることを知つ
た。 本発明者は、前記した工業的に有利な水性懸濁
方式の後塩素化方法に着目し、高度の耐熱性を有
し、しかも該耐熱性の品質が一定した後塩素化塩
化ビニル系樹脂を与える後塩素化ビニル系樹脂の
製造方法を提供すべく、公知の塩素化要因、水性
媒体中の膨潤剤の量や種類、導入する塩素ガスの
純度や導入速度、光や塩素化助剤等の促進剤、紫
外線の波長、反応温度等の多数の要因について広
範囲に及ぶ研究を行つたが、これらの公知の要因
を変えても満足すべき結果が得られず、意外に
も、重合転化率を特定の範囲とした水性懸濁重合
によつて製造された塩化ビニル系樹脂を、原料樹
脂として使用するとともに、該塩化ビニル系樹脂
を水性媒体中に懸濁させて後塩素化するに際し
て、特定の酸素混在率以下の塩素系ガスを用いる
ことによつてはじめて、前記の耐熱性の品質の問
題が解決され、更に、該塩素化塩化ビニル系樹脂
は熱安定にも優れた性能を示すことを発見し本発
明を完成するに至つたものである。 即ち、本発明は品質が一定し且つ高度の耐熱性
と熱安定性を有する、水性懸濁後塩素化方式によ
る塩素化塩化ビニル系樹脂の製法を提供するもの
である。 本発明でいう「水性懸濁重合」とは、水媒体に
単量体を水適状に分散させて懸濁液となし、単量
体可溶の重合触媒を用い、懸濁した単量体の小適
内で重合反応を行うもので、別名、粒状重合また
はパール重合とも称されるものである。 上記水性懸濁重合に於いて、撹拌のみでは単量
体の良好な分散が困難になるので、通常、懸濁安
定剤として高分子分散剤、無機化合物、界面活性
剤等が使用されるが、このような懸濁安定剤とし
て高分子分散剤では、天然高分子系のものとし
て、ゼラチン、デンプン、ソルビツト、ペクチン
等、合成高分子系のものとしては、部分ケン化ポ
リビニルアルコール、メチルセルローズ、エチル
セルローズ、ヒドロキシメチルセルローズ、ヒド
ロキシプロセルローズ、CMC、メチルデンプン、
ポリエチレングリコールデンプン、ポリビニルメ
チルエーテル、ポリビニルピロリドン、マレイン
酸またはその誘導体系として、マレイン酸、無水
マレイン酸、無水マレイン酸と酢酸ビニル共重合
体、無水マレイン酸をビニルメチルエーテルの共
重合体、無水マレイン酸とエチレンの共重合体、
マレイン酸または無水マレイン酸とアクリル酸ア
ルキルとの共重合体、エチレンと無水マレイン酸
の共重合体の部分エステル化物、スチレンと酢酸
ビニルと無水マレイン酸またはマレイン酸との共
重合体、及びその塩、そのケン化物、その他、酢
酸ビニルとアクリル酸エステルとの共重合体のケ
ン化物、アルギン酸ナトリウム、ポリメタクリル
酸、等;無酸化合物では、ナトリウム、カルシウ
ム、バイウム、アルミニウム等の金属塩として、
バリウム、カルシウム、バリウム等の硫酸塩て塩
酸塩、カルシウム、マグネシウム等の炭酸塩、亜
鉛、カルシウム等の水酸化物、その他、燐酸カル
シウム、蓚酸ナトリウム、蓚酸カルシユム、酒石
酸カルシウム、ベントナイト、シリカゲル等;界
面活性剤では、アニオン、カチオン、非イオン等
の各種界面活性剤、ソルビタン脂肪酸エステル、
ポリオキシエチレンソルビタン脂肪酸エステル、
ポリオキシエチレンソルビトール脂肪酸エステ
ル、ポリオキシエチレン脂肪酸エステル、ポリオ
キシエチレン高級アルコールエーテル、グリセリ
ン脂肪酸エステル、プロピレングライコール脂肪
酸エステル、ポリオキシエチレンラノリン誘導
体、ポリオキシエチレンソルビトール密口一誘導
体、ポリオキシエチレンヒマン油誘導体、ポリオ
キシプロピレンポリオキシエチレンアルキルエー
テル、ポリオキシエチレンアルキルフエノールフ
オルムアルデヒド縮合体、アセチル化モノグリセ
ライド、ポリオキシエチレンアルキルアミンおよ
びアマイド、ポリオキシエチレンラノリンアルコ
ール誘導体、ポリオキシエチレンアルキルフエニ
ルエーテル、アルキル硫酸エステル塩、ジアルキ
ルスルホサクシネート、ポリエーテルアルコール
硫酸エステル、アルキル燐酸エステル、アシルサ
ルコシネート、低級および高級アルコール脂肪酸
エステル、脂肪酸および高級アルコール、その
他、合成樹脂の初期縮合物等;などを挙げること
ができ、これらのものは必要に応じ一種または二
種以上適宜使用することができる。 媒体としては、水のみならず、必要に応じ例え
ばメタノール、エタノール、プロパノール等の有
機溶剤を3〜20重量%添加することもでき、また
重合媒体として各種の過酸化物、アゾ化合物、例
えば、ベンゾイルパーオキサイド、ラウロイルパ
ーオキサイド、アセチルパーオキサイド、オクタ
ノイルパーオキサイド、デカノイルパーオキサイ
ド、m−トルオイルパーオキサイド、イソブチル
パーオキサイド、2,4−ジクロロベンゾイルパ
ーオキサイド、シクロヘキサノンパーオキサイ
ド、コハク酸パーオキサイド、アセチルシクロヘ
キシルスルホニールパーオキサイド、3,5,5
−トリメチルヘキサノイルパーオキサイド、メチ
ルエチルケトンパーオキサイド、ジクミールパー
オキサイド、t−ブチルクミールパーオキサイ
ド、p−メンタンハイドロパーオキサイド、ジー
イソプロピルベンゼンハイドロパーオキサイド、
t−ブチルハイドロパーオキサイド、キユメンハ
イドロパーオキサイド、1,1,3,3−テトラ
メチルブチルハイドロパーオキサイド、2,5−
ジメチルヘキサン−2,5−ジハイドロパーオキ
サイド、シ−イソプロピルパ−オキシジカーボネ
ート、ジ−n−プロピルパ−オキシジカーボネー
ト、ジ(2−エトキシエチル)パーオキシジカー
ボネート、ジ(2−エチルヘキシル)パーオキシ
ジカーボネート、ジ(3−メチル−3−メトキシ
ブチル)パーオキシジカーボネート、t−ブチル
パーオキシイソプロピルカーボネート、t−ブチ
ルパーオキシピバレート、t−ブチルパーオキシ
ラウレート、t−ブチルパーオキシイソプチレー
ト、t−ブチルパーオキシアセテート、t−ブチ
ルパーオキシベンゾエート、ジ−t−ブチルジパ
ーオキシイソフタレート、n−ブチル−4,4−
ビス(t−ブチルパーオキシ)バレレート、t−
ブチルパーオキシ(2−エチルヘキサノエート)、
1,1−ビス(t−ブチルパーオキシ)シクロヘ
キサン、t−ブチルパオキシマレイン酸、t−ブ
チルパーオキシ3,5,5−トリメチルヘキサノ
エート、2,2−ビス(t−ブチルパーオキシ)
ブタン、a,d−ビス(t−ブチルパーオキシイ
ソプロピル)ベンゼン等;アゾビスイソブチロニ
トリル、アゾビスジメチルバレロニトリル、アゾ
ジイソブチレート等;を挙げることができ、これ
らのものも必要に応じ一種または二種以上適宜使
用することができる。 更に、本発明でいう塩化ビニル系樹脂とは、前
記せる水性懸濁重合法で重合せる塩化ビニル単独
重合体のほかに、塩化ビニルを主成分とし、塩化
ビニルと共重合しうる1種もしくは2種以上の単
量体との混合物を共重合させて製造した共重合体
またはグラフト重合体が含まれる。 上記塩化ビニルと共重合しうる単量体として
は、塩化ビニリデン、酢酸ビニル、臭化ビニル、
高級アルキルビニルニーテル(例えばドデシール
ビニルエーテル等)、アクリロニトリル、アクリ
ル酸エステル(例えばアクリル酸メチル、アクリ
ル酸エチル、アクリル酸プロピル、アクリル酸ブ
チル等)、メタクリル酸エステル(例えばメタク
リル酸メチル、メタクリル酸エチル、メタクリル
酸プロピル、メタクリル酸ブチル等)、アクリル
アミド、メタクリルアミド、エチレン、プロピレ
ン、スチレン等を挙げることができる。 以上述べた懸濁重合は、一般に、単量体100重
量部に対して、脱イオン水50〜300重量部、懸濁
安定剤0.05〜1重量部、重合触媒0.01〜1重量部
の割合の処方が用いられ、重合温度35〜80℃、反
応時間3〜16時間で、重合反応槽の形状等に応じ
適宜定められた撹拌条件下で行なわれる。 前記せるように、本発明で使用する水性懸濁重
合で得られる塩化ビニル系樹脂としては、該水性
懸濁重合に於いて重合転化率が40〜70%の範囲で
重合を終了したものである必要がある。 本発明でいう重合転化率(%)とは、水性懸濁
重合に於いて生成した重合体の重量を、重合仕込
みの単量体の全重量で除した値に100を乗じたも
のを云う。該重合転化率が70%以上の塩化ビニル
系樹脂を原料とし、水性媒体中に懸濁して後塩素
化しても、得られる塩素化塩化ビニル系樹脂の耐
熱性が低くて好ましくなく、一方、該重合転化率
が40%未満のものを使用する場合、該重合転化率
の塩化ビニル系樹脂そのものの水洗、脱水等の分
離及び乾燥等の操作が極めて困難で工業的に不利
益である外に、該塩化ビニル系樹脂を後塩素化し
塩素化塩化ビニル系樹脂としても熱安定性に劣る
変しやすいものしか得られず好ましくなく、従つ
て塩化ビニル系樹脂として重合転化率が40〜70
%、好ましくは50〜65%の範囲のものである必要
がある。 本発明で使用する塩化ビニル系樹脂は、重合転
化率が40〜70%の範囲のものであれば、平均重合
数、粒径、その他の特性に関して制限なく適宜の
ものを使用することができる。しかし、該樹脂の
平均重合度が400〜2000のものでは、塩素化塩化
ビニル系樹脂を加工し成形品等とする場合、耐衝
撃性にも優れた性能を発輝するもので好ましい。 本発明で後塩素化反応に用いる水性媒体として
は、イオン交換水や工業用水の如き水のみからな
つてもよく、また塩素の溶解度を増すため塩酸等
を使用してもよく、更に必要に応じ適量の四塩化
炭素、クロムホルム等の有機溶剤、界面活性剤、
および消泡剤等を加えても差し支えなく、好適に
は該水性媒体の量は、前記せる塩化ビニル系樹脂
100重量部に対して100〜700重量部の範囲で使用
することができる。 また、該塩化ビニル系樹脂の水性媒体中に於け
る懸濁方法としては撹拌機等に依る機械的撹拌方
法、および後塩素化反応温度としては、原料塩化
ビニル系樹脂の軟化温度以下の温度、好ましくは
20〜80℃の水性媒体の温度を用いることができ
る。 後塩素化反応は、前記せる塩化ビニル系樹脂を
上記の水性媒体中に懸濁させ、その中に塩素系ガ
スを導入して行うが、塩素系ガスは、工業用塩素
を液化精製した塩素ガス等単独でもよく、また実
質的に反応を妨害しない量の窒素、塩化水素、炭
酸ガス、アルゴン、低級炭化水素のハロゲン化物
などのガスで希釈されていてもよい。但し、
1000ppmを超える量の酸素が塩素ガスまたは希釈
塩素ガス中に混在する場合、得られる後塩素化塩
化ビニル系樹脂の熱安定性を劣化させる傾向があ
るので、導入ガスの全量に対して酸素混在率が
1000ppm以下、好ましくは500ppm以下がよい。
該塩素化反応は通常は常圧下で反応を行うが、加
圧下で行つてもよく、また減圧下で行つてもよ
く、更に、定速下或は変速下で反応を行つてもよ
い。 かくして、本発明の製造方法によつて、高度の
耐熱性を有し、且つ該耐熱性の品質が一定した後
塩素化塩化ビニル系樹脂が得られるが、該後塩素
化塩化ビニル系樹脂の塩素含有率(%)として、
後塩素化塩化ビニル系樹脂を、水酸化カリウム中
で加熱して分解し、生成する塩化イオンを、クロ
ム酸カリウムを指示薬として硝酸銀で滴定する、
JISK−5634の方法に依る塩素含有率62〜70%の
ものが好ましい。 後塩素化塩化ビニル系樹脂の塩素含有率が増加
すると、それだけ軟化温度が向上し耐熱性が改善
されるが、同時に該後塩素化塩化ビニル系樹脂の
加工時に於いて、溶融粘度の増加にもとずく樹脂
の発熱が増大し、該樹脂の分解温度に近づくた
め、塩素含有率70%を超えたものでは熱安定性が
低下し成形加工が著しく困難になるので実用上好
ましくない。また、塩素含有率が62%未満のもの
では耐熱性が不十分で好ましくない。 以上述べたように、本発明の後塩素化工程に於
いては、重合転化率が40〜70%の範囲で重合を終
了して得られる水性懸濁重合塩化ビニル系樹脂を
原料として用い、該樹脂を水性媒体特定の酸素混
在率以下の塩素系ガスを導入して塩素化を行うほ
かは、特に制限がなく行うことができるが、後塩
素化反応を円滑に進行させる塩素化反応促進剤の
併用を望むならば、該促進剤を光とする光射剤の
下に後塩素化工程を行うことが好ましい。 該光の光源として、螢光灯、螢光ケミカルラン
プ、白熱電灯、ナトリウム蒸気灯、ネオン放電
管、カーボンアーク灯、あるいは高圧水銀灯など
可視光線、紫外線を放射する光源、好ましくは
3000〜6000Åの波長の光を多量放射する光源を挙
げることができ、該光の光量調節方法としては、
点灯する光源数の増減、被照射体(塩素化塩化ビ
ニル系樹脂)と光源との距離の変化等を行い、連
続的または断続的に光源の電流の調節による照射
光量の調節、或は水性媒体中に光吸収剤等を存在
させ光量を調節する方法等、種々の方法を挙げる
ことができる。 本発明の実施態様を述べれば次の通りである。 1 重合転化率が40〜70%の範囲で重合を終了し
て得られる水性懸濁重合塩化ビニル系樹脂を、
水性媒体中に懸濁させ、その中に酸素混在率が
1000ppm以下(導入ガスの全量に対して)の塩
素系ガスを導入して後塩素する塩素化塩化ビニ
ル系樹脂の製法。 2 該後塩素化を光照射下に於いて行う上記1項
記載の塩素化塩化ビニル系樹脂の製法。 3 該後塩素化を水性媒体の温度20〜80℃で行う
上記1項〜上記3項いづれかに記載の塩素化塩
化ビニル系樹脂の製法。 4 該後塩素化を塩素化含有率62〜70%の範囲で
行う上記1項〜上記4項いづれかに記載の塩素
化塩化ビニル系樹脂の製法。 本発明の塩素化塩化ビニル系樹脂は、特殊な水
性懸濁重合塩化ビニル系樹脂を使用し、水性媒体
中で懸濁下に後塩素化して得られるもので、かく
して高度の耐熱性と該品質が一定し、且つ、熱安
定性にも優れたものであるので、パイプ、シー
ト、フイルム、その他種々の成形品の分野に、該
樹脂単独で、或は塩化ビニル系樹脂、酢酸ビニル
系樹脂、EVA樹脂、ABS系樹脂、MBS系樹脂、
塩素化ポリエチレン等の1種または2種以上の樹
脂とブレンドして広範囲な用途に目的に応じて使
用することができる。 以下、実施例および比較例を挙げ本発明の後塩
素化塩化ビニル系樹脂の製法を詳しく説明する。 〔原料塩化ビニル系樹脂の製造〕 参考例1〜6 撹拌機を備えた容量300のステンレス製重合
槽に、イオン交換水140、懸濁安定剤として部
分ケン化ポリ酢酸ビニル(倉敷レーヨン(株)製;商
品名L−8)、および重合開始剤としてターシヤ
リブチルパーオキシピバレート70重量%濃度のト
ルエン溶液70gを入れ、重合槽内を減圧して窒素
置換し空気を除去したのち塩化ビニル系樹体を
110Kg仕込む。 次いで300rpmで撹拌しつつ30分間で温度58℃
に昇温し、その後、該温度(内圧約9Kg/cm2)を
保持しつつ、第1表に示す反応時間で重合を行
い、未反応の塩化ビニル単量体を回収し、遠心分
離機を用い水洗、脱水し乾燥したのち、夫々重合
転化率(%)の異る塩化ビニル系樹脂を得た。
The present invention relates to a method for producing a chlorinated vinyl chloride resin having excellent heat resistance and thermal stability. More specifically, a vinyl chloride resin obtained by completing aqueous suspension polymerization at a polymerization conversion rate of 40 to 70% is used as a raw resin, the raw resin is suspended in an aqueous medium, and the resin is suspended in an aqueous medium. The oxygen mixing rate is 1000ppm
The present invention relates to a method for producing a chlorinated vinyl chloride resin, which is characterized by introducing the following chlorine gas (based on the total amount of introduced gas) and performing post-chlorination. Vinyl chloride resin has excellent weather resistance, chemical resistance, and processability, and is also flame retardant, so it is used in extremely large quantities in a wide range of fields. The biggest drawback of this material is its low softening temperature, which imposes considerable restrictions on applications that require heat resistance. In order to overcome this limitation and improve the softening temperature of vinyl chloride resins, it is known to produce chlorinated vinyl chloride resins by post-chlorinating vinyl chloride resins. The methods include solution chlorination, which involves blowing chlorine gas into an organic solvent solution of vinyl chloride resin, suspension chlorination, which blows chlorine gas into an organic solvent suspension or aqueous suspension of vinyl chloride resin, and chlorination. A direct chlorination method is known in which vinyl resin powder is brought into direct contact with chlorine gas, but a solution chlorination method using an organic solvent such as tetrachlorethane or dichloroethane,
Alternatively, in the organic solvent suspension method, it is difficult to separate the chlorinated vinyl chloride resin, and it is necessary to recover a large amount of solvent. In the direct chlorination method, which is usually carried out in the presence of an azo compound, an inorganic compound such as titanium tetrachloride, phosphorus pentachloride, or antimony trichloride, or a catalyst such as τ rays or ultraviolet rays, the vinyl chloride resin is not uniformly chlorinated. The problem is that it is easily subject to change. The present invention relates to a method for producing a chlorinated vinyl chloride resin using a post-aqueous suspension chlorination method in which chlorine gas is blown into the above-mentioned aqueous suspension. Therefore, in the above-mentioned aqueous suspension chlorination method, an aqueous medium containing a swelling agent, i.e., a hydrochloromethylene compound, etc., in an amount of 5 to 25% by volume based on the total liquid volume is used as an aqueous suspension. The proposal of Japanese Patent Publication No. 36-888 was to carry out chlorination at a temperature of 65°C or lower, while always maintaining an excess dissolved chlorine concentration, and under a low photochemical activation effect that could maintain a relative excess chlorine concentration. When a vinyl chloride resin is made into an aqueous suspension that does not substantially contain a solvent or a swelling agent for the vinyl chloride resin and chlorinated under ultraviolet irradiation, instead of adjusting the chlorine concentration, a specific chlorine within a certain reaction rate until the displacement amount is reached.
Special Publication 1977 that adjusts the unit amount of ultraviolet irradiation over time
-48795, etc., but even after post-chlorination according to these methods, although the chlorine content of the obtained chlorinated vinyl chloride resin is the same, the chlorinated vinyl chloride resin is often It was found that the heat resistance of the resins differed greatly, and that there were problems that needed to be further improved in order to obtain chlorinated vinyl chloride resins after the quality of heat resistance was constant. The present inventor focused on the above-mentioned industrially advantageous aqueous suspension type post-chlorination method, and found that it has a high degree of heat resistance, and that after the quality of the heat resistance is constant, chlorinated vinyl chloride resin is used. In order to provide a method for producing a chlorinated vinyl resin, we will discuss known chlorination factors, the amount and type of swelling agent in the aqueous medium, the purity and introduction rate of the chlorine gas introduced, the effects of light and chlorination aids, etc. Despite extensive research into numerous factors such as accelerators, ultraviolet wavelengths, reaction temperatures, etc., changes in these known factors did not yield satisfactory results, and surprisingly, changes in polymerization conversion rates were not achieved. A vinyl chloride resin produced by aqueous suspension polymerization in a specific range is used as a raw material resin, and when the vinyl chloride resin is suspended in an aqueous medium and then chlorinated, It was discovered that the above-mentioned heat resistance quality problem could be solved only by using a chlorine gas with an oxygen content less than that, and that the chlorinated vinyl chloride resin also exhibited excellent thermal stability. This led to the completion of the present invention. That is, the present invention provides a method for producing a chlorinated vinyl chloride resin of constant quality and having high heat resistance and thermal stability using an aqueous suspension chlorination method. "Aqueous suspension polymerization" as used in the present invention refers to dispersing monomers in an aqueous medium to form a suspension, and using a polymerization catalyst that is soluble in the monomers, the suspended monomers are The polymerization reaction is carried out in a small container, and is also called granular polymerization or pearl polymerization. In the above aqueous suspension polymerization, it is difficult to disperse the monomers well with stirring alone, so polymer dispersants, inorganic compounds, surfactants, etc. are usually used as suspension stabilizers. Polymer dispersants used as suspension stabilizers include natural polymers such as gelatin, starch, sorbitol, and pectin, and synthetic polymers such as partially saponified polyvinyl alcohol, methyl cellulose, and ethyl. Cellulose, hydroxymethylcellulose, hydroxyprocellulose, CMC, methyl starch,
Polyethylene glycol starch, polyvinyl methyl ether, polyvinyl pyrrolidone, maleic acid or its derivatives, maleic acid, maleic anhydride, maleic anhydride and vinyl acetate copolymer, copolymer of maleic anhydride with vinyl methyl ether, maleic anhydride copolymer of acid and ethylene,
Copolymers of maleic acid or maleic anhydride and alkyl acrylates, partial esters of copolymers of ethylene and maleic anhydride, copolymers of styrene, vinyl acetate, and maleic anhydride or maleic acid, and salts thereof. , saponified products thereof, and other saponified products of copolymers of vinyl acetate and acrylic ester, sodium alginate, polymethacrylic acid, etc.; non-acid compounds include metal salts of sodium, calcium, baium, aluminum, etc.
Barium, calcium, sulfates and hydrochlorides of barium, carbonates of calcium and magnesium, hydroxides of zinc and calcium, others, calcium phosphate, sodium oxalate, calcium oxalate, calcium tartrate, bentonite, silica gel, etc.; interfaces; Active agents include various surfactants such as anionic, cationic, and nonionic surfactants, sorbitan fatty acid esters,
polyoxyethylene sorbitan fatty acid ester,
Polyoxyethylene sorbitol fatty acid ester, polyoxyethylene fatty acid ester, polyoxyethylene higher alcohol ether, glycerin fatty acid ester, propylene glycol fatty acid ester, polyoxyethylene lanolin derivative, polyoxyethylene sorbitol monoderivative, polyoxyethylene human oil Derivatives, polyoxypropylene polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenol formaldehyde condensates, acetylated monoglycerides, polyoxyethylene alkyl amines and amides, polyoxyethylene lanolin alcohol derivatives, polyoxyethylene alkyl phenyl ethers, alkyl Sulfuric ester salts, dialkyl sulfosuccinates, polyether alcohol sulfuric esters, alkyl phosphoric esters, acyl sarcosinates, lower and higher alcohol fatty acid esters, fatty acids and higher alcohols, other initial condensates of synthetic resins, etc. These materials can be used alone or in combination of two or more, if necessary. As a medium, not only water but also 3 to 20% by weight of an organic solvent such as methanol, ethanol, propanol, etc. can be added as necessary.Also, as a polymerization medium, various peroxides, azo compounds, such as benzoyl peroxide, lauroyl peroxide, acetyl peroxide, octanoyl peroxide, decanoyl peroxide, m-toluoyl peroxide, isobutyl peroxide, 2,4-dichlorobenzoyl peroxide, cyclohexanone peroxide, succinic acid peroxide, Acetyl cyclohexyl sulfonyl peroxide, 3,5,5
-trimethylhexanoyl peroxide, methyl ethyl ketone peroxide, dicumyl peroxide, t-butylcumyl peroxide, p-menthane hydroperoxide, diisopropylbenzene hydroperoxide,
t-Butyl hydroperoxide, kyumene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, 2,5-
Dimethylhexane-2,5-dihydroperoxide, di-isopropyl peroxydicarbonate, di-n-propyl peroxydicarbonate, di(2-ethoxyethyl)peroxydicarbonate, di(2-ethylhexyl)peroxide Oxydicarbonate, di(3-methyl-3-methoxybutyl)peroxydicarbonate, t-butylperoxyisopropyl carbonate, t-butylperoxypivalate, t-butylperoxylaurate, t-butylperoxyiso ptylate, t-butylperoxyacetate, t-butylperoxybenzoate, di-t-butyldiperoxyisophthalate, n-butyl-4,4-
Bis(t-butylperoxy)valerate, t-
Butyl peroxy (2-ethylhexanoate),
1,1-bis(t-butylperoxy)cyclohexane, t-butylperoxymaleic acid, t-butylperoxy 3,5,5-trimethylhexanoate, 2,2-bis(t-butylperoxy)
Butane, a, d-bis(t-butylperoxyisopropyl)benzene, etc.; azobisisobutyronitrile, azobisdimethylvaleronitrile, azodiisobutyrate, etc.; One or more types can be used as appropriate. Furthermore, in addition to the vinyl chloride homopolymer polymerized by the aqueous suspension polymerization method described above, the vinyl chloride resin used in the present invention refers to one or two resins containing vinyl chloride as a main component and copolymerizable with vinyl chloride. It includes copolymers or graft polymers produced by copolymerizing a mixture with more than one type of monomer. Monomers that can be copolymerized with the above vinyl chloride include vinylidene chloride, vinyl acetate, vinyl bromide,
Higher alkyl vinyl ethers (e.g. dodecyl vinyl ether, etc.), acrylonitrile, acrylic esters (e.g. methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, etc.), methacrylic esters (e.g. methyl methacrylate, methacrylic acid) (ethyl, propyl methacrylate, butyl methacrylate, etc.), acrylamide, methacrylamide, ethylene, propylene, styrene, and the like. The above-mentioned suspension polymerization is generally carried out using a formulation containing 50 to 300 parts by weight of deionized water, 0.05 to 1 part by weight of a suspension stabilizer, and 0.01 to 1 part by weight of a polymerization catalyst to 100 parts by weight of monomer. The reaction is carried out at a polymerization temperature of 35 to 80°C, a reaction time of 3 to 16 hours, and stirring conditions appropriately determined depending on the shape of the polymerization reaction tank. As mentioned above, the vinyl chloride resin obtained by aqueous suspension polymerization used in the present invention is one whose polymerization is completed at a polymerization conversion rate of 40 to 70% in the aqueous suspension polymerization. There is a need. In the present invention, the polymerization conversion rate (%) refers to the value obtained by dividing the weight of the polymer produced in aqueous suspension polymerization by the total weight of the monomers charged in the polymerization, multiplied by 100. Even if a vinyl chloride resin with a polymerization conversion rate of 70% or more is used as a raw material and is suspended in an aqueous medium and then chlorinated, the resulting chlorinated vinyl chloride resin has low heat resistance, which is undesirable. When using a polyvinyl chloride resin with a polymerization conversion rate of less than 40%, operations such as washing, dehydration, etc. separation and drying of the vinyl chloride resin itself with the polymerization conversion rate are extremely difficult, and it is industrially disadvantageous. Even if the vinyl chloride resin is post-chlorinated, only a chlorinated vinyl chloride resin with poor thermal stability and easily changeable can be obtained, which is undesirable.
%, preferably in the range of 50-65%. As long as the vinyl chloride resin used in the present invention has a polymerization conversion rate in the range of 40 to 70%, any suitable vinyl chloride resin can be used without any limitations regarding the average polymerization number, particle size, and other properties. However, a resin having an average degree of polymerization of 400 to 2000 is preferable because it exhibits excellent impact resistance when the chlorinated vinyl chloride resin is processed into a molded product or the like. The aqueous medium used in the post-chlorination reaction in the present invention may consist only of water such as ion-exchanged water or industrial water, or may contain hydrochloric acid or the like to increase the solubility of chlorine. Appropriate amounts of carbon tetrachloride, organic solvents such as chromium form, surfactants,
There is no problem in adding a defoaming agent, etc., and preferably the amount of the aqueous medium is the same as the vinyl chloride resin mentioned above.
It can be used in a range of 100 to 700 parts by weight per 100 parts by weight. In addition, the method of suspending the vinyl chloride resin in the aqueous medium is a mechanical stirring method using a stirrer, etc., and the post-chlorination reaction temperature is a temperature below the softening temperature of the raw material vinyl chloride resin, Preferably
Temperatures of the aqueous medium from 20 to 80°C can be used. The post-chlorination reaction is carried out by suspending the vinyl chloride resin described above in the aqueous medium and introducing chlorine gas into it. It may be used alone, or it may be diluted with a gas such as nitrogen, hydrogen chloride, carbon dioxide, argon, or a halide of a lower hydrocarbon in an amount that does not substantially interfere with the reaction. however,
If more than 1000 ppm of oxygen is mixed in chlorine gas or diluted chlorine gas, it tends to deteriorate the thermal stability of the resulting post-chlorinated vinyl chloride resin, so the oxygen mixing ratio should be adjusted based on the total amount of introduced gas. but
It is preferably 1000 ppm or less, preferably 500 ppm or less.
The chlorination reaction is usually carried out under normal pressure, but may be carried out under increased pressure or reduced pressure, and further may be carried out at constant speed or variable speed. Thus, by the production method of the present invention, a chlorinated vinyl chloride resin having a high degree of heat resistance and a constant quality of heat resistance can be obtained; As content (%),
Post-chlorinated vinyl chloride resin is heated and decomposed in potassium hydroxide, and the generated chloride ions are titrated with silver nitrate using potassium chromate as an indicator.
A chlorine content of 62 to 70% according to the method of JISK-5634 is preferable. As the chlorine content of the post-chlorinated vinyl chloride resin increases, the softening temperature increases and the heat resistance improves, but at the same time, during processing of the post-chlorinated vinyl chloride resin, the melt viscosity also increases. Since the heat generation of the resin increases and approaches the decomposition temperature of the resin, if the chlorine content exceeds 70%, the thermal stability decreases and molding becomes extremely difficult, which is not preferred in practice. Moreover, those with a chlorine content of less than 62% are not preferred because of insufficient heat resistance. As described above, in the post-chlorination step of the present invention, an aqueous suspension-polymerized vinyl chloride resin obtained by completing polymerization with a polymerization conversion rate in the range of 40 to 70% is used as a raw material. The resin can be chlorinated without any particular restrictions, as long as it is chlorinated by introducing a chlorine-based gas with an oxygen content below a specified oxygen content in an aqueous medium. If a combination use is desired, it is preferable to carry out the post-chlorination step under a light emitting agent using the promoter as light. The light source is preferably a light source that emits visible light or ultraviolet light, such as a fluorescent lamp, a fluorescent chemical lamp, an incandescent electric lamp, a sodium vapor lamp, a neon discharge tube, a carbon arc lamp, or a high-pressure mercury lamp.
A light source that emits a large amount of light with a wavelength of 3000 to 6000 Å can be mentioned, and methods for adjusting the amount of light include:
Adjust the amount of light irradiated by adjusting the current of the light source continuously or intermittently by increasing or decreasing the number of light sources lit, changing the distance between the object to be irradiated (chlorinated vinyl chloride resin) and the light source, or adjusting the amount of light irradiated by adjusting the current of the light source, or by adjusting the amount of light emitted by aqueous media. Various methods can be used, such as a method in which a light absorber or the like is present to adjust the amount of light. The embodiments of the present invention will be described as follows. 1 Aqueous suspension polymerized vinyl chloride resin obtained by completing polymerization at a polymerization conversion rate of 40 to 70%,
Suspended in an aqueous medium, with an oxygen mixture ratio in it.
A method for producing chlorinated vinyl chloride resin by introducing chlorine gas of 1000 ppm or less (based on the total amount of introduced gas) and then chlorinating it. 2. The method for producing a chlorinated vinyl chloride resin according to item 1 above, wherein the post-chlorination is carried out under light irradiation. 3. The method for producing a chlorinated vinyl chloride resin according to any one of the above items 1 to 3, wherein the post-chlorination is carried out at a temperature of the aqueous medium of 20 to 80°C. 4. The method for producing a chlorinated vinyl chloride resin according to any one of the above items 1 to 4, wherein the post-chlorination is carried out at a chlorination content in the range of 62 to 70%. The chlorinated vinyl chloride resin of the present invention is obtained by using a special aqueous suspension-polymerized vinyl chloride resin and post-chlorinating it while suspended in an aqueous medium, and thus has a high degree of heat resistance and high quality. Because of its constant properties and excellent thermal stability, this resin is used alone or in combination with vinyl chloride resin, vinyl acetate resin, etc. in the field of pipes, sheets, films, and various other molded products. EVA resin, ABS resin, MBS resin,
It can be blended with one or more resins such as chlorinated polyethylene and used in a wide range of applications depending on the purpose. Hereinafter, the method for producing the post-chlorinated vinyl chloride resin of the present invention will be explained in detail with reference to Examples and Comparative Examples. [Manufacture of raw material vinyl chloride resin] Reference Examples 1 to 6 In a stainless steel polymerization tank with a capacity of 300 and equipped with a stirrer, 140 mL of ion-exchanged water and partially saponified polyvinyl acetate (Kurashiki Rayon Co., Ltd.) as a suspension stabilizer were added. (trade name: L-8) and 70 g of a toluene solution containing tertiary butylperoxypivalate at a concentration of 70% by weight as a polymerization initiator, and after reducing the pressure in the polymerization tank and replacing the air with nitrogen, vinyl chloride-based tree body
Prepare 110Kg. Then, the temperature was increased to 58℃ for 30 minutes while stirring at 300rpm.
Then, while maintaining this temperature (internal pressure approximately 9 kg/cm 2 ), polymerization was carried out for the reaction time shown in Table 1, unreacted vinyl chloride monomer was recovered, and the centrifuge was removed. After washing with water, dehydrating and drying, vinyl chloride resins having different polymerization conversion rates (%) were obtained.

〔塩素化塩化ビニル系樹脂の製造〕[Manufacture of chlorinated vinyl chloride resin]

実施例 1 参考例1で得られた塩化ビニル系樹脂(A)500g
と、水2.5とを容量5のグラスライニング槽
に仕込む。内容量を300rpmで充分に撹拌しなが
ら窒素ガスを吹込み反応系内の空気を置換する。
次いで加熱し60℃に保ち、酸素混在率500ppm以
下に塩素ガスを50g/minの流速で系内に導入
し、100ワツトの高圧水銀ランプの照射下で約6.5
〜約7時間、塩素含有率約66%に達するまで後塩
素化反応を行い、反応後、生成した塩素化塩化ビ
ニル系樹脂を遠心分離機を用い過し、付着して
いる塩素及び塩酸を水洗除去し乾燥した。 後塩素化反応の終点は、副反応で生成する塩酸
の定量分析から定めた。使用した原料塩化ビニル
系樹脂、塩素ガス中の酸素混在率、反応時間、お
よび、生成した塩素化塩化ビニル系樹脂の塩素含
有率分析(JIS、K5634)結果を第2表に示す。 実施例2、3および比較例1、2 実施例1において、参考例1で得られた塩化ビ
ニル系樹脂(A)を用いる代りに、参考例2〜5で得
られた塩化ビニル系樹脂(B)〜(E)をそれぞれ用いる
以外は同様にして後塩素化反応を行い塩素化塩化
ビニル系樹脂を得た。使用した原料塩化ビニル系
樹脂、塩素ガス中の酸素混在率、反応時間、およ
び、生成した塩素化塩化ビニル系樹脂の塩素含有
率分析結果を第2表に示す。 比較例 3 実施例1において、酸素混在率2000ppmの塩素
ガスを用いる以外は同様にして塩素化塩化ビニル
系樹脂を得た。使用した原料塩化ビニル系樹脂、
塩素ガス中の酸素ガス中の酸素混在率、反応時
間、および、生成した塩素化塩化ビニル系樹脂の
塩素含有率分析結果を第2表に示す。
Example 1 500g of vinyl chloride resin (A) obtained in Reference Example 1
and 2.5 liters of water into a glass-lined tank with a capacity of 5. While thoroughly stirring the contents at 300 rpm, nitrogen gas is blown in to replace the air in the reaction system.
Next, it was heated and kept at 60℃, and chlorine gas was introduced into the system at a flow rate of 50g/min to keep the oxygen content below 500ppm, and the temperature was about 6.5℃ under irradiation with a 100W high-pressure mercury lamp.
Post-chlorination reaction is carried out for approximately 7 hours until the chlorine content reaches approximately 66%. After the reaction, the generated chlorinated vinyl chloride resin is passed through a centrifuge, and the attached chlorine and hydrochloric acid are washed with water. Removed and dried. The end point of the post-chlorination reaction was determined from quantitative analysis of hydrochloric acid produced in the side reaction. Table 2 shows the raw material vinyl chloride resin used, the oxygen content in the chlorine gas, the reaction time, and the results of chlorine content analysis (JIS, K5634) of the produced chlorinated vinyl chloride resin. Examples 2 and 3 and Comparative Examples 1 and 2 In Example 1, instead of using the vinyl chloride resin (A) obtained in Reference Example 1, the vinyl chloride resin (B) obtained in Reference Examples 2 to 5 was used. A post-chlorination reaction was carried out in the same manner except for using each of ) to (E) to obtain a chlorinated vinyl chloride resin. Table 2 shows the raw material vinyl chloride resin used, the oxygen content in the chlorine gas, the reaction time, and the chlorine content analysis results of the produced chlorinated vinyl chloride resin. Comparative Example 3 A chlorinated vinyl chloride resin was obtained in the same manner as in Example 1, except that chlorine gas with an oxygen content of 2000 ppm was used. Raw material vinyl chloride resin used,
Table 2 shows the oxygen mixture ratio in the oxygen gas in the chlorine gas, the reaction time, and the analysis results of the chlorine content of the produced chlorinated vinyl chloride resin.

【表】 かくして得た塩素化塩化ビニル系樹脂の耐熱性
および熱安定性を測定した結果を第3表に示す。 第3表に示した耐熱性を表示する加熱変形温度
(℃)および熱安定性を表示するギヤーオーブン
(分)、プレート着色度は下記の方法で測定した。 (1) 加熱変形温度 (i) テストピースの調製。 塩素化塩化ビニル系樹脂100重量部に対し
て、ブチル錫マレート(日東化成(株)製;N−
2000E)3重量部、モンタン酸ワツクス(ヘ
キスト社製;ヘキストワツクス(OP)2重
量部、MBS樹脂(三菱レーヨン(株)製;メタ
ブレンC−102)5重量部を配合したコンパ
ウンドを、ロール表面温度180℃に設定した
ギヤツプ0.55mmのミキシングロールに投入
し、10分間混練したのちロールから引取り、
冷却してロールシートを作成する。次いで該
ロールシートを切断し12枚積重ね、190℃、
30Kg/cm2で10分間プレスし厚さ約13mmのプレ
ス板とし、縦12.7mm、横12.7mm、長さ120mm
の寸法のテストピースを調製する。 (ii) 加熱変形温度の測定 上記(i)項で述べた方法で調製せるテストピ
ースをJKS K−2707の試験方法で加熱変形
温度(℃)と測定す。所定の荷重下で1分間
に2℃の定速で昇温し、0.26mmのたわみが生
じた時の温度を測定す。 (2) 熱安定性 (i) ギヤーオプン試験 前記(1)の(i)項で述べた方法で得たロールシ
ート片を180℃のギヤーオープン中に放置し
て黒変する時間(分)を測定す。 (ii) 着色度試験 前記(1)の(i)項で述べた方法で得たロールシ
ート片を180℃で5分間プレスして2mm厚の
プレス板を作り、得られたプレス板の着色程
度を比較し、5段階に分けて等級を判定す。 着色度 1……無色透明;着色度 5……黄褐
色透明
[Table] Table 3 shows the results of measuring the heat resistance and thermal stability of the chlorinated vinyl chloride resin thus obtained. The heating deformation temperature (° C.) indicating heat resistance, the gear oven (minutes) indicating thermal stability, and the degree of plate coloring shown in Table 3 were measured by the following method. (1) Heating deformation temperature (i) Preparation of test piece. Butyltin malate (manufactured by Nitto Kasei Co., Ltd.; N-
A compound containing 3 parts by weight of Montanic acid wax (manufactured by Hoechst; 2 parts by weight of Hoechst Wax (OP)) and 5 parts by weight of MBS resin (manufactured by Mitsubishi Rayon Co., Ltd.; Metablen C-102) was applied to the roll surface. The mixture was put into a mixing roll with a gap of 0.55 mm set at a temperature of 180°C, mixed for 10 minutes, and then taken off the roll.
Cool and create a roll sheet. Next, the rolled sheets were cut, 12 sheets were stacked, and heated at 190°C.
Press at 30Kg/ cm2 for 10 minutes to make a press plate with a thickness of about 13mm, length 12.7mm, width 12.7mm, length 120mm.
Prepare a test piece with dimensions. (ii) Measurement of heating distortion temperature The heating distortion temperature (°C) of the test piece prepared by the method described in item (i) above is measured using the JKS K-2707 test method. The temperature is increased at a constant rate of 2°C per minute under a specified load, and the temperature is measured when a deflection of 0.26 mm occurs. (2) Thermal stability (i) Gear open test The roll sheet piece obtained by the method described in (i) of (1) above was left in a gear open at 180°C and the time (minutes) for it to turn black was measured. vinegar. (ii) Coloring degree test The rolled sheet piece obtained by the method described in (i) of (1) above was pressed at 180°C for 5 minutes to make a 2 mm thick pressed plate, and the degree of coloring of the obtained pressed plate was determined. The results are compared and graded into five grades. Coloration degree 1...Colorless and transparent; Coloration degree 5...Yellowish brown transparent

【表】 第3表の試験結果からも明らかなように、実施
例1〜3の重合転化率42.9%〜67.9%の塩化ビニ
ル系樹脂を原料とし、酸素混在率500ppm以下の
塩素ガスを用いた塩素化塩化ビニル系樹脂は、耐
熱性および熱安定性等にも優れた性能を示した
が、比較例1の重合転化率が40%未満の35.2%で
ある塩化ビニル系樹脂を原料とした塩素化塩化ビ
ニル系樹脂は、耐熱性は優れていたが、後塩素化
後の水洗脱水操作が容易でなく且つ熱安定性等に
も劣るものであり、一方、比較例2の重合転化率
が70%を越えた75%の塩化ビニル系樹脂を原料と
した塩素化塩化ビニル系樹脂は耐熱性に劣り、高
度の耐熱性の用途に使用するものとしては適しな
いものであつた。また、酸素混在率が1000ppmを
超えた塩素ガスを用いた塩素化塩化ビニル系樹脂
は、耐熱性は優れていたが、熱安定性に劣るもの
であつた。
[Table] As is clear from the test results in Table 3, the vinyl chloride resins of Examples 1 to 3 with polymerization conversion rates of 42.9% to 67.9% were used as raw materials, and chlorine gas with an oxygen content of 500 ppm or less was used. The chlorinated vinyl chloride resin showed excellent performance in terms of heat resistance and thermal stability. Vinyl chloride resin had excellent heat resistance, but it was not easy to wash and dehydrate after post-chlorination, and it had poor thermal stability, etc. On the other hand, the polymerization conversion rate of Comparative Example 2 was 70%. Chlorinated vinyl chloride resins made from vinyl chloride resins exceeding 75% have poor heat resistance and are not suitable for use in highly heat resistant applications. In addition, chlorinated vinyl chloride resins using chlorine gas with an oxygen content exceeding 1000 ppm had excellent heat resistance but poor thermal stability.

Claims (1)

【特許請求の範囲】[Claims] 1 重合転化率が40〜70%の範囲で重合を終了し
て得られる水性懸濁重合塩化ビニル系樹脂を、水
性媒体中に懸濁させ、その中に酸素混在率が
1000ppm以下(導入ガスの全量に対して)の塩素
系ガスを導入して後塩素化することを特徴とする
塩素化塩化ビニル系樹脂の製法。
1 The aqueous suspension-polymerized vinyl chloride resin obtained by completing the polymerization at a polymerization conversion rate of 40 to 70% is suspended in an aqueous medium, and the oxygen mixing ratio is
A method for producing chlorinated vinyl chloride resin, which is characterized by introducing chlorine gas of 1000 ppm or less (based on the total amount of introduced gas) and then chlorinating it.
JP20097681A 1981-12-15 1981-12-15 Production of chlorinated vinyl chloride resin Granted JPS58103507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20097681A JPS58103507A (en) 1981-12-15 1981-12-15 Production of chlorinated vinyl chloride resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20097681A JPS58103507A (en) 1981-12-15 1981-12-15 Production of chlorinated vinyl chloride resin

Publications (2)

Publication Number Publication Date
JPS58103507A JPS58103507A (en) 1983-06-20
JPH0132844B2 true JPH0132844B2 (en) 1989-07-10

Family

ID=16433438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20097681A Granted JPS58103507A (en) 1981-12-15 1981-12-15 Production of chlorinated vinyl chloride resin

Country Status (1)

Country Link
JP (1) JPS58103507A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3814733B2 (en) 1997-07-29 2006-08-30 株式会社カネカ Method for producing chlorinated vinyl chloride resin
JPH1143509A (en) 1997-07-29 1999-02-16 Kanegafuchi Chem Ind Co Ltd Production of chlorinated vinyl chloride-based resin
JP2007246852A (en) * 2006-03-20 2007-09-27 Kaneka Corp Method for producing chlorinated vinyl chloride-based resin
WO2014157617A1 (en) * 2013-03-29 2014-10-02 株式会社カネカ Production device and production method for chlorinated vinyl chloride-based resin

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5274A (en) * 1975-06-20 1977-01-05 Sharp Corp Safety device for centrifugal dehydrator
JPS57205405A (en) * 1981-06-11 1982-12-16 Tokuyama Sekisui Kogyo Kk Production of chlorinated vinyl chloride resin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5274A (en) * 1975-06-20 1977-01-05 Sharp Corp Safety device for centrifugal dehydrator
JPS57205405A (en) * 1981-06-11 1982-12-16 Tokuyama Sekisui Kogyo Kk Production of chlorinated vinyl chloride resin

Also Published As

Publication number Publication date
JPS58103507A (en) 1983-06-20

Similar Documents

Publication Publication Date Title
JP4319177B2 (en) Modified polyvinyl alcohol and dispersant using the same
JPH0132844B2 (en)
US2975162A (en) Process for the production of polymerization products of vinyl chloride
EP0421150B1 (en) Dispersant system for making low-colour chlorinated polyvinyl chloride
WO2013081133A1 (en) Method for producing chlorinated vinyl chloride-based resin
US3583956A (en) Vinyl chloride polymers
US2443005A (en) Fluorine-containing vinyl esters
US3287336A (en) Process for chlorinating vinyl chloride polymers with an oxygen catalyst
US6197895B1 (en) Process for production of chlorinated polyvinyl chloride resin
US2564292A (en) Polymerization of monomeric vinyl chloride in the presence of aqueous acetic acid solution and a peroxygen type catalyst
JPH07292194A (en) Resin composition
JPS5946962B2 (en) Method for producing chlorinated vinyl chloride resin
JP2547024B2 (en) Post-treatment method of post-chlorinated vinyl chloride resin
US2831844A (en) Polymerization of vinyl chloride
JPS5946521B2 (en) Method for producing vinyl chloride polymer
JPS63145305A (en) Preparation of chlorinated vinyl chloride resin
JP2818101B2 (en) Method for producing chlorinated vinyl chloride resin
JPS59136301A (en) Stabilizer for suspension polymerization
GB1596689A (en) Preparation of polyvinyl chloride resins
US3674756A (en) Copolymerization of allyl fluoride
JPH054403B2 (en)
JPS6291503A (en) Production of chlorinated vinyl chloride resin
JP2003119220A (en) Process for producing chlorinated vinyl chloride resin
JP3652832B2 (en) Method for producing chlorinated vinyl chloride resin
JP3231948B2 (en) Method for producing vinyl chloride polymer