JPH0132455B2 - - Google Patents

Info

Publication number
JPH0132455B2
JPH0132455B2 JP306480A JP306480A JPH0132455B2 JP H0132455 B2 JPH0132455 B2 JP H0132455B2 JP 306480 A JP306480 A JP 306480A JP 306480 A JP306480 A JP 306480A JP H0132455 B2 JPH0132455 B2 JP H0132455B2
Authority
JP
Japan
Prior art keywords
optical
light
adjustment
end side
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP306480A
Other languages
Japanese (ja)
Other versions
JPS56100325A (en
Inventor
Masamitsu Tokuda
Yasuji Hatsutori
Shuzo Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP306480A priority Critical patent/JPS56100325A/en
Publication of JPS56100325A publication Critical patent/JPS56100325A/en
Publication of JPH0132455B2 publication Critical patent/JPH0132455B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face

Description

【発明の詳細な説明】 本発明は、光フアイバの伝送特性を測定する装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for measuring transmission characteristics of an optical fiber.

ベースバンド周波数特性と称される光フアイバ
の周波数応答特性は、従来、次のような破壊法に
より測定されていた。即ち、被測定フアイバへサ
イン波状に振幅変調された信号光を入射してお
き、まず出射側での信号光の変調度(出射側変調
度)を測定し、しかる後入射側近傍(通常、入射
端から約1m)で該フアイバを切断して切断端か
らの信号光の変調度(入射側変調度)を測定し、
前記両変調度を比較する事によつて当該光フアイ
バのベースバンド周波数特性を測定していたので
ある。しかしながら、この測定方法では一回の測
定毎に被測定フアイバの入射側を鏡面に切断する
必要があり、ベースバンド周波数特性の測定を自
動化しようとする場合前記切断及び測定毎の被測
定フアイバの交換が大きな障害となつていた。破
壊測定法に基づく斯かる問題点は、入射側変調度
を被測定フアイバの一部を通つた信号光によら
ず、光分岐器を用いて励振系(光源系)から直接
導出した信号光より測定すれば解消されると考え
られる。
The frequency response characteristic of an optical fiber, called the baseband frequency characteristic, has conventionally been measured by the following destructive method. That is, a signal light whose amplitude is modulated in a sinusoidal manner is input into the fiber under test, first the modulation degree of the signal light on the output side (output side modulation degree) is measured, and then the modulation degree of the signal light on the output side (usually Cut the fiber at a distance of about 1 m from the end and measure the modulation degree of the signal light from the cut end (incidence side modulation degree),
By comparing the two modulation degrees, the baseband frequency characteristics of the optical fiber were measured. However, in this measurement method, it is necessary to cut the input side of the fiber under test into a mirror surface for each measurement, and when attempting to automate the measurement of baseband frequency characteristics, the fiber under test must be replaced after each measurement. was a major obstacle. Such a problem based on the destructive measurement method is that the modulation degree on the incident side is not based on the signal light that passes through a part of the fiber under test, but is based on the signal light derived directly from the excitation system (light source system) using an optical splitter. It is thought that this problem can be resolved by measuring it.

一方、光フアイバには散乱や吸収による損失と
いつた光フアイバに本質的に存在する固有の損
失、いわゆる伝送損失があり、これを被測定フア
イバの遠端出射光の絶対光量により測定すること
は、該光フアイバへの入射光量が該光フアイバの
構造パラメータ(コア径や屈折率差)に依存する
ため非破壊測定は不可能であるとされていた。し
かし伝送損失の非破壊測定には後方散乱光法が有
効であることが近年になつて判明した。この後方
散乱光法とは、光フアイバの長手方向各点におけ
る伝播光と反射光との比(Po=伝播光/反射光)
が一定であれば長手方向各点からの反射光パワー
がe-2lに比例するという事を利用したものであ
る。但し、αは電送損失、lは入射点から反射点
までの距離である。実際の測定では、入射光とし
てパルス駆動光(パルス変調や発光機構によつて
パルス状をなす光)を用い、また各点からの反射
光が該光フアイバ入射端側に設置された検出器に
達する迄の遅延時間は反射点によつて異なる事を
用い、反射光強度を時間領域で観測することによ
つて伝送損失が測定される。この場合、近来の光
フアイバにあつてはその低損失化の進行により損
失要因としては、OH基等による若干の吸収を除
けば殆んどレーレ散乱によるものであり且つ長手
方向に屈折率分布が均一であるため、後方散乱光
法の前堤である伝播光/反射光比一定の条件が満
足されている。
On the other hand, optical fibers have inherent losses such as losses due to scattering and absorption, so-called transmission losses, and it is impossible to measure this by the absolute light intensity of the light emitted from the far end of the fiber under test. It was believed that non-destructive measurement was impossible because the amount of light incident on the optical fiber depends on the structural parameters (core diameter and refractive index difference) of the optical fiber. However, it has recently been discovered that the backscattered light method is effective for non-destructive measurement of transmission loss. This backscattered light method is the ratio of propagating light to reflected light at each point in the longitudinal direction of the optical fiber (Po = propagating light/reflected light).
This takes advantage of the fact that if is constant, the power of reflected light from each point in the longitudinal direction is proportional to e -2l . However, α is the transmission loss, and l is the distance from the point of incidence to the point of reflection. In actual measurements, pulsed light (light that forms a pulse due to pulse modulation or a light emitting mechanism) is used as the incident light, and the reflected light from each point is sent to a detector installed at the input end of the optical fiber. The transmission loss is measured by observing the intensity of the reflected light in the time domain, using the fact that the delay time until reaching the reflection point differs depending on the reflection point. In this case, in modern optical fibers, due to the progress of loss reduction, the loss factor is mostly due to Lehre scattering, with the exception of some absorption by OH groups, and the refractive index distribution in the longitudinal direction is Since it is uniform, the condition that the ratio of propagated light/reflected light is constant, which is the prerequisite for the backscattered light method, is satisfied.

本発明は上述した考察から案出されたもので、
従来、測定作業上のネツクとなつていた入射側で
の被測定フアイバの切断及び切断面処理が不要と
なり、しかも被測定フアイバを一旦セツトすれば
伝送損失及びベースバンド周波数特性の測定がそ
の開始から終了までの一連動作で行なえる伝送特
性測定装置を堤供するものである。以下、図面を
参照して本発明を詳細に説明する。
The present invention was devised from the above considerations, and
It eliminates the need to cut the fiber under test and prepare the cut surface on the input side, which has traditionally been a hindrance in measurement work.Moreover, once the fiber under test is set, transmission loss and baseband frequency characteristics can be measured from the beginning. We provide a transmission characteristic measuring device that can perform a series of operations up to the end. Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は本発明の一実施例の概略構成図であ
り、図中、1は被測定光フアイバ、2及び3は光
フアイバ1の入射端及び出射端が夫々結合される
調軸ステージ、4はサイン波状に振幅変調された
信号光を発生する連続駆動光源(連続的に電流を
印加することにより連続的に光信号を発生する光
源)、5はパルス変調や発光機構によつてパルス
状の信号光を発生する光源(パルス駆動光源)、
6は光源4及び5と調軸ステージ2間に設けられ
た光源切換器、7は光源切換器6と調軸ステージ
2間に設けられ、光源4又は5からの信号光を調
軸ステージ2及び光検出器9へ分岐すると共に調
軸ステージ2を経た光フアイバ1からの反射光を
光検出器8へ導くハーフミラー等の光分岐器、1
0は光分岐器7と調軸ステージ2間に設けられた
光スイツチ、11は調軸ステージ3及び光分岐器
7と光検出器9間に設けられ、光フアイバ1から
の出射光及び光分岐器7で分岐された光源4又は
5からの信号光を光検出器9へ導くハーフミラー
等の光分岐器、12は光分岐器7と11間に設け
られた光スイツチ、13は調軸ステージ3を経た
光フアイバ1からの出射光を光検出器9が最大に
検出するよう、該光検出器9の出力を基にして調
軸ステージ2及び3を移動させる指令を出す調軸
用コントローラである。なお、6aはハーフミラ
ー等の光分岐器、6bは光スイツチ、14はレン
ズ、15は受光素子、16は発光素子、17はサ
イン波変調器、18はパルス変調器である。
FIG. 1 is a schematic configuration diagram of an embodiment of the present invention, in which 1 is an optical fiber to be measured, 2 and 3 are adjustment stages to which the input end and output end of the optical fiber 1 are respectively coupled, and 4 5 is a continuously driven light source (a light source that continuously generates an optical signal by continuously applying an electric current) that generates a signal light whose amplitude is modulated in the form of a sine wave. A light source that generates signal light (pulse-driven light source),
6 is a light source switcher provided between the light sources 4 and 5 and the axis adjustment stage 2; 7 is provided between the light source switch 6 and the axis adjustment stage 2; An optical splitter, such as a half mirror, 1 that branches to the photodetector 9 and guides the reflected light from the optical fiber 1 that has passed through the alignment stage 2 to the photodetector 8.
0 is an optical switch provided between the optical splitter 7 and the adjustment stage 2; 11 is an optical switch provided between the adjustment stage 3, the optical splitter 7, and the photodetector 9; An optical splitter such as a half mirror that guides the signal light from the light source 4 or 5 branched by the light source 4 or 5 to the photodetector 9, 12 is an optical switch provided between the optical splitters 7 and 11, and 13 is an axis adjustment stage. A controller for adjusting the axis that issues a command to move the adjusting stages 2 and 3 based on the output of the photodetector 9 so that the photodetector 9 detects the maximum amount of light emitted from the optical fiber 1 after passing through the optical fiber 1. be. In addition, 6a is an optical splitter such as a half mirror, 6b is an optical switch, 14 is a lens, 15 is a light receiving element, 16 is a light emitting element, 17 is a sine wave modulator, and 18 is a pulse modulator.

調軸ステージ2,3と光検出器9とコントロー
ラ13とにより自動調心機構が構成されるが、調
軸ステージ2,3の動作部としては通常高精度の
パルス駆動モータが用いられ、このパルスモータ
がマイクロコンピユータ等よりなるコントローラ
13によつて駆動制御される。このコントローラ
13は光フアイバ1の出射光を入力とし且つパル
スモータへの指示信号を出力とするフイードバツ
ク回路に組込まれ、光フアイバ1と光源4又は5
及び光検出器9間の結合を最適状態へ導く一連の
動作を行なう。この自動調心機構によつて、測定
に先立つ光フアイバ1の測定器へのセツトが簡単
且つ正確となり、測定作業性の向上及び測定精度
の向上が得られる。また光フアイバ1が多心の場
合を想定すると、調軸ステージ2,3夫々に多芯
の光フアイバを保持するフアイバホールダを取付
け、フアイバー心毎の測定終了後に次のフアイバ
を自動的に移動させる機構とすることにより多心
フアイバの各心を連続的に測定する事ができ、作
業性向上に寄与する。更に、光学系が十分精度良
く調整されていれば光検出器8及び9を固定設置
して良いが、これらも2や3の如き調軸ステージ
に乗せてコントローラで位置制御を行なうと光軸
合せが簡単且つ正確に行なえ、測定精度が更に向
上する。
A self-aligning mechanism is composed of the alignment stages 2 and 3, the photodetector 9, and the controller 13, but a high-precision pulse drive motor is usually used as the operating part of the alignment stages 2 and 3, and this pulse The motor is driven and controlled by a controller 13 consisting of a microcomputer or the like. This controller 13 is incorporated into a feedback circuit which inputs the light emitted from the optical fiber 1 and outputs an instruction signal to the pulse motor.
Then, a series of operations are performed to bring the coupling between the photodetectors 9 to an optimal state. This self-aligning mechanism makes it easy and accurate to set the optical fiber 1 into the measuring instrument prior to measurement, resulting in improved measurement workability and measurement accuracy. Furthermore, assuming that the optical fiber 1 has multiple cores, a fiber holder for holding a multi-core optical fiber is attached to each of the alignment stages 2 and 3, and the next fiber is automatically moved after the measurement of each fiber core is completed. By using this mechanism, each core of a multi-core fiber can be measured continuously, contributing to improved work efficiency. Furthermore, if the optical system is adjusted with sufficient precision, the photodetectors 8 and 9 may be fixedly installed, but if they are placed on an axis adjustment stage such as 2 or 3 and the position is controlled by a controller, the optical axis alignment will be difficult. can be performed easily and accurately, further improving measurement accuracy.

本発明は被測定光フアイバ1を破壊することな
く、また同一の測定系で光フアイバ1のベースバ
ンド周波数特性と伝送損失とを測定するものであ
るから、連続駆動光源4とパルス駆動光源5とを
共に備えるがこれらは切換えて使用する必要があ
る。そこで本実施例では光分岐器6aと2個の光
スイツチ6b,6dとよりなる光源切換器6を用
いた。光スイツチ6b,6dは手動式や機械式な
どどんなものでも良いが、電気的に制御されるソ
レノイドコイルを用いた光スイツチやBSO(ビス
マス・シリコン・オキサイド)等の光学結晶を用
いた光スイツチを使用すると、外部からの電気的
制御が可能となり、また便利でもある。もつとも
光源4あるいは5自体の発光を停止させる方式を
採れば光スイツチ6b,6dは勿論不要である。
なお、他の光スイツチ10,12もソレノイドコ
イルを用いた光スイツチやBSO等の光学結晶を
用いた光スイツチを用いることにより、外部から
の電気的制御が可能となる。更に、パルス駆動光
源5としては、パルス状に光が発生するものであ
れば、発光自体を断続させたり(直接変調)、あ
るいは連続発光を光スイツチで断続的に取出すも
の(外部変調)等どれでもかまわない。同様に連
続駆動光源4も直接変調、外部変調のいずれでも
良い。
Since the present invention measures the baseband frequency characteristics and transmission loss of the optical fiber 1 using the same measurement system without destroying the optical fiber 1 to be measured, the continuous drive light source 4 and the pulse drive light source 5 can be Both are provided, but these must be used interchangeably. Therefore, in this embodiment, a light source switching device 6 consisting of an optical splitter 6a and two optical switches 6b and 6d is used. The optical switches 6b and 6d may be of any type, such as manual or mechanical, but optical switches using electrically controlled solenoid coils or optical switches using optical crystals such as BSO (bismuth silicon oxide) may be used. Its use allows for external electrical control and is also convenient. Of course, if a method is adopted in which the light source 4 or 5 itself stops emitting light, the optical switches 6b and 6d are of course unnecessary.
Note that the other optical switches 10 and 12 can be electrically controlled from the outside by using an optical switch using a solenoid coil or an optical switch using an optical crystal such as BSO. Furthermore, the pulse-driven light source 5 may be one that generates light in the form of pulses, one that intermittents the light emission itself (direct modulation), or one that extracts continuous light emission intermittently with a light switch (external modulation). But it doesn't matter. Similarly, the continuous drive light source 4 may be either directly modulated or externally modulated.

そして第1図に示す実施例の光フアイバの伝送
特性測定器による測定は次のように行なう。測定
に先立ちコントローラ13で調軸ステージ2,3
を作動させて被測定光フアイバ1と光源4及び光
検出器9との結合を最適にしておく。この調軸時
には、光源4における変調周波数は任意で良い。
Measurement using the optical fiber transmission characteristic measuring device of the embodiment shown in FIG. 1 is carried out as follows. Prior to measurement, the controller 13 adjusts the axis adjustment stages 2 and 3.
is operated to optimize the coupling between the optical fiber 1 to be measured, the light source 4, and the photodetector 9. During this axis adjustment, the modulation frequency in the light source 4 may be arbitrary.

(1) ベースバンド周波数特性を測定する場合:光
源切換器6により連続駆動光源4からのサイン
波状に変調された信号光だけを選択すると共に
光スイツチ10をOFFにし且つ光スイツチ1
2をONにする。しかる後、連続駆動光源4の
変調周波数をスイープしながら、光フアイバ1
へ入射する手前のサイン波状変調信号光を光分
岐器7、光スイツチ12及び光分岐器11を介
して光検出器9で検出し、該サイン波状変調信
号光の変調度を変調周波数毎に測定する。次
に、光スイツチ10をONにし且つ光スイツチ
12をOFFにし、光フアイバ1を伝播した後
のサイン波状変調信号光を光分岐器11を介し
て検出し、変調周波数毎の変調度を測定する。
この結果ベースバンド周波数特性は、光フアイ
バ1への入射前及び出射後における前記変調度
を対応する変調周波数毎に比較する事により求
まる。
(1) When measuring baseband frequency characteristics: Select only the signal light modulated into a sine wave from the continuously driven light source 4 using the light source switch 6, turn off the optical switch 10, and turn off the optical switch 1.
Turn on 2. After that, while sweeping the modulation frequency of the continuously driven light source 4, the optical fiber 1 is
The sine wave modulated signal light before entering is detected by the photodetector 9 via the optical splitter 7, the optical switch 12, and the optical splitter 11, and the degree of modulation of the sine wave modulated signal light is measured for each modulation frequency. do. Next, the optical switch 10 is turned on and the optical switch 12 is turned off, the sine wave modulated signal light after propagating through the optical fiber 1 is detected via the optical splitter 11, and the degree of modulation for each modulation frequency is measured. .
As a result, the baseband frequency characteristic is determined by comparing the modulation degrees before and after the light enters the optical fiber 1 and after the light exits the optical fiber 1 for each corresponding modulation frequency.

(2) 伝送損失を測定する場合:光源切換器6によ
りパルス駆動光源5からのパルス状に変調され
た信号光だけを選択すると共に光スイツチ10
をONにする。そして、光検出器8により、光
フアイバ1に入射したパルス状変調信号光が該
光フアイバ1の長手方向各点で反射した後方散
乱光成分を検出する。これにより検出された後
方散乱光成分(反射光)の強度を時間領域で観
測しフアイバ各点からの反射光強度を比較する
ことにより伝送損失が得られる。
(2) When measuring transmission loss: Select only the pulse-modulated signal light from the pulse-driven light source 5 using the light source switch 6, and switch the optical switch 10.
Turn on. The photodetector 8 detects backscattered light components of the pulsed modulated signal light incident on the optical fiber 1 reflected at each point in the longitudinal direction of the optical fiber 1. The intensity of the backscattered light component (reflected light) thus detected is observed in the time domain, and the transmission loss can be obtained by comparing the intensity of the reflected light from each point of the fiber.

なお上記(1)、(2)における光検出器8,9の出力
信号からの損失算出技術は公知の方法による。
Note that the loss calculation technique from the output signals of the photodetectors 8 and 9 in the above (1) and (2) is based on a known method.

第2図は得られた伝送特性の一例を示すグラフ
であり、斜線部分が全損失のうちのベースバンド
周波数特性による減衰量であり、空白部分が伝送
損失である。
FIG. 2 is a graph showing an example of the obtained transmission characteristics, in which the shaded area represents the amount of attenuation due to the baseband frequency characteristics of the total loss, and the blank area represents the transmission loss.

以上実施例とともに具体的に説明したように、
本発明によれば、従来の測定作業上でネツクとな
つていた入射側での被測定光フアイバの切断、切
断面処理及び切断のための測定毎のフアイバ交換
という作業が不要となり、しかも被測定光フアイ
バを一旦セツトすれば、必要に応じて伝送損失及
びベースバンド周波数特性の測定をその開始から
終了まで一連動作で行なえる。
As specifically explained above with the examples,
According to the present invention, it is no longer necessary to cut the optical fiber to be measured on the incident side, process the cut surface, and replace the fiber after each measurement for cutting, which was a problem in conventional measurement operations. Once the optical fiber is set, transmission loss and baseband frequency characteristics can be measured as needed in a series of operations from start to finish.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の概略構成図、第2
図は測定結果の一例を示すグラフである。 図面中、1は被測定光フアイバ、2,3は調軸
ステージ、4はサイン波状に変調された信号光を
発生する光源(連続駆動光源)、5はパルス状に
変調された信号光を発生する光源、6は光源切換
器、6a,7,11は光分岐器、8,9は光検出
器、6b,10,12は光スイツチ、13は調軸
コントローラである。
FIG. 1 is a schematic configuration diagram of an embodiment of the present invention, and FIG.
The figure is a graph showing an example of measurement results. In the drawing, 1 is an optical fiber to be measured, 2 and 3 are adjustment stages, 4 is a light source (continuous drive light source) that generates a signal light modulated in a sine wave shape, and 5 is a signal light that generates a signal light modulated in a pulse shape. 6 is a light source switcher, 6a, 7, 11 are optical splitters, 8, 9 are photodetectors, 6b, 10, 12 are optical switches, and 13 is an axis adjustment controller.

Claims (1)

【特許請求の範囲】[Claims] 1 被測定光フアイバの入射端及び出射端が夫々
結合される2台の調軸ステージと、入射端側の調
軸ステージに互いに切換えて結合されるサイン波
状に変調された信号光を発生する連続駆動光源及
びパルス状に変調された信号光を発生するパルス
駆動光源と、出射端側の調軸ステージと光分岐器
を介して結合された光検出器と、前記両光源と前
記入射端側の調軸ステージ間に設けられ、両光源
からの信号光を前記入射端側の調軸ステージ及び
前記光分岐器へ分岐すると共に前記入射端側の調
軸ステージからの反射光を前記光検出器とは別の
光検出器に導びく、前記光分岐器とは別の光分岐
器と、これら両光分岐器間に設けられた光スイツ
チと、前記入射端側の調軸ステージと前記両光源
と入射端側調軸ステージ間に設けられた光分岐器
との間に設けられた、前記光スイツチとは別の光
スイツチと、前記出射端側の調軸ステージ側の光
検出器の出力を入力信号とし該出力が最大となる
ように前記2台の調軸ステージの位置を制御する
調軸コントローラとを備えていることを特徴とす
る光フアイバの伝送特性測定装置。
1. Two adjustment stages to which the input end and output end of the optical fiber to be measured are coupled, respectively, and a continuous stage that generates a signal light modulated in the form of a sine wave, which is switched and coupled to the adjustment stage on the input end side. a driving light source and a pulse-driven light source that generates a pulse-modulated signal light; a photodetector coupled to an axis adjustment stage on the output end side via an optical splitter; It is provided between the adjustment stages, and branches the signal light from both light sources to the adjustment stage on the input end side and the optical splitter, and also splits the reflected light from the adjustment stage on the input end side to the photodetector. includes an optical splitter different from the optical splitter that leads to another photodetector, an optical switch provided between these optical splitters, an axis adjustment stage on the incident end side, and both light sources. Inputs the output of an optical switch different from the optical switch provided between the optical splitter provided between the input end side adjustment stages and a photodetector on the output end side adjustment stage side. An apparatus for measuring transmission characteristics of an optical fiber, comprising: an adjustment controller that controls the positions of the two adjustment stages so that the output of the signal is maximized.
JP306480A 1980-01-17 1980-01-17 Measuring device of propagation characteristic of optical fiber Granted JPS56100325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP306480A JPS56100325A (en) 1980-01-17 1980-01-17 Measuring device of propagation characteristic of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP306480A JPS56100325A (en) 1980-01-17 1980-01-17 Measuring device of propagation characteristic of optical fiber

Publications (2)

Publication Number Publication Date
JPS56100325A JPS56100325A (en) 1981-08-12
JPH0132455B2 true JPH0132455B2 (en) 1989-06-30

Family

ID=11546890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP306480A Granted JPS56100325A (en) 1980-01-17 1980-01-17 Measuring device of propagation characteristic of optical fiber

Country Status (1)

Country Link
JP (1) JPS56100325A (en)

Also Published As

Publication number Publication date
JPS56100325A (en) 1981-08-12

Similar Documents

Publication Publication Date Title
EP0454113B1 (en) Optical fiber gyroscope
JPH0364812B2 (en)
US4257707A (en) Device for measuring the attenuation of optical waves on optical transmission paths
US5589933A (en) Optical fiber test instrument with mechanically positioned attenuator
US6888118B2 (en) Method, apparatus and scanning microscope with means for stabilizing the temperature of optical components
CN103558011B (en) A kind of experimental facilities measuring fibre-optic numerical aperture and attenuation coefficient
EP0616694B1 (en) Fiber optic polarization maintaining fused coupler fabricating apparatus
JPH0132455B2 (en)
US5224977A (en) Method and apparatus for fabrication of polarization maintaining fused couplers
CN203616097U (en) Experimental device for measuring numerical apertures and attenuation coefficients of light-guide fibers
EP0249923B1 (en) Method of and apparatus for measuring polarization beat-length in highly-birefringent single-mode optical fibres
US7045772B2 (en) Device and method for controlling the optical power in a microscope
JPH03502730A (en) Edge rating
CA1203702A (en) Method of measuring the cutoff wavelength of the first higher order mode in optical fibres
JP2945513B2 (en) Manufacturing method of optical fiber coupler
JPH08179148A (en) Method and device for optical axis adjustment
KR20010111731A (en) Apparatus for measuring residual stress and refractive index of an optical fiber preform
JPH05267408A (en) Electric field detector
JPH0130097B2 (en)
SU1278645A1 (en) Method for determining losses in multimode light guide
JP3032470B2 (en) Optical pulse tester
Edye et al. Automatic Alignment Station For Single Or Multimode Optical Fibers
CN114112313A (en) Single-polarization optical fiber transmission performance testing device and testing method
SU887968A1 (en) Device for measuring back scattering in light-guides
JPH07122597B2 (en) Emission spectrum width measuring device