JPH01321442A - Electrode element for charging device and manufacture of the same - Google Patents

Electrode element for charging device and manufacture of the same

Info

Publication number
JPH01321442A
JPH01321442A JP15480088A JP15480088A JPH01321442A JP H01321442 A JPH01321442 A JP H01321442A JP 15480088 A JP15480088 A JP 15480088A JP 15480088 A JP15480088 A JP 15480088A JP H01321442 A JPH01321442 A JP H01321442A
Authority
JP
Japan
Prior art keywords
charging device
electrode
electrode element
film
semiconductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15480088A
Other languages
Japanese (ja)
Other versions
JP2668951B2 (en
Inventor
Noriaki Yamazaki
憲明 山崎
Tsutomu Sugimoto
勉 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP15480088A priority Critical patent/JP2668951B2/en
Publication of JPH01321442A publication Critical patent/JPH01321442A/en
Application granted granted Critical
Publication of JP2668951B2 publication Critical patent/JP2668951B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Elimination Of Static Electricity (AREA)

Abstract

PURPOSE:To stabilize an electric charging device by forming a semiconductor film on an insulating support. CONSTITUTION:The electrode element for the charging device has a structure obtained by forming the semiconductor film 1 on the insulating substrate 2, and the end of the film 1 is provided with a contact electrode 5 in contact with a supply electrode 6. As the material for the semiconductor film 1, an inorganic material capable of conducting electrons or oxygen ions and being produced without heat treatment or grinding, such as amorphous silicon or zinc oxide, can be favorably used, and these materials can be formed into a thin film on the base body superior in flatness, thus permitting the obtained semiconductor film 1 to have a form faithful to the flatness of the insulating substrate 2, to keep the charged potential always uniform, and to stabilize the charged potential also with the lapse of time.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子写真プロセスを応用した複写機やプリン
ターに適用することができる帯電装置用電極素子及びそ
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an electrode element for a charging device that can be applied to copying machines and printers using an electrophotographic process, and a method for manufacturing the same.

従来の技術 従来、電子写真複写機のような電子写真装置においては
、第5図及び第6図に示すようなコロトロン帯電装置が
一般に使用されている。
2. Description of the Related Art Conventionally, in an electrophotographic apparatus such as an electrophotographic copying machine, a corotron charging device as shown in FIGS. 5 and 6 has been generally used.

コロトロン帯電装置は、断面はぼコの字形をなすシール
ドケース22の両端部に、絶縁ブロック23を設けて、
この絶縁ブロック23の間に、上記シールドケース22
のほぼ中央に位置するように放電ワイヤー24を張架し
た構成を有するもので、この放電ワイヤー24に、40
00〜8000 Vの高電圧を印加することにより、感
光体などの電荷受容体3との間で、コロナ放電を生じさ
せるようになっており、このコロナ放電により発生した
イオンが感光体3に付着して、感光体が帯電される。
The corotron charging device includes insulating blocks 23 provided at both ends of a shield case 22 having a rectangular cross section.
Between this insulating block 23, the shield case 22
It has a structure in which a discharge wire 24 is stretched so as to be located approximately in the center of the discharge wire 24.
By applying a high voltage of 00 to 8000 V, corona discharge is generated between the charge receptor 3 such as a photoreceptor, and ions generated by this corona discharge adhere to the photoreceptor 3. The photoreceptor is then charged.

また、放電ワイヤー24を囲むシールドケース22は、
放電ワイヤー24との間に一定の空間距離を維持するこ
とにより、放電ワイヤー24の表面に形成された電界を
強め、かつ安定化させる機能を有している。
Moreover, the shield case 22 surrounding the discharge wire 24 is
By maintaining a certain spatial distance from the discharge wire 24, it has the function of strengthening and stabilizing the electric field formed on the surface of the discharge wire 24.

しかしながら、このコロトロンは、次のような欠点を有
している。まず、機械的強度の低い細いワイヤーを張架
するため、放電による(騒動などにより、ワイヤーが切
れ易く、また、その交換に手数がかかるなどの不都合、
がある。
However, this corotron has the following drawbacks. First, since thin wires with low mechanical strength are strung, the wires tend to break easily due to electrical discharge (commotion, etc.), and it takes time to replace them.
There is.

また、別の問題として、放電ワイヤーとシールドケース
を近付けようとすると、両者の間で火花放電が発生する
ため、コロ1〜ロンの形を小さくできないという欠点が
必る。これは、両者を近付けることにより、空間インピ
ーダンスが低くなり、電流が制御できなくなるからであ
る。
Another problem is that when the discharge wire and the shield case are brought close to each other, spark discharge occurs between them, which inevitably results in the disadvantage that the shapes of the rollers 1 to 1 cannot be made smaller. This is because by bringing the two closer together, the spatial impedance becomes lower and the current becomes uncontrollable.

更に別の問題として、放電時に感光体3以外にシールド
ケース22にも電流が流れるため、放電電流か余分に流
れ、その結果、高圧電源か大型化して、価格が高くなる
と共に、放電電流が多いためにオゾンの発生量も多くな
って、周囲環境汚染の原因となる不都合もめる。
Another problem is that during discharge, current flows not only to the photoreceptor 3 but also to the shield case 22, so an extra discharge current flows.As a result, the high-voltage power supply becomes larger, the price becomes higher, and the discharge current increases. As a result, the amount of ozone generated increases, causing inconvenience as it causes pollution of the surrounding environment.

この様な問題点を解決するために第7図に示すような半
導電性固体電極25を感光体3に近接させ、半導電性固
体電極の背面に給電電極26を配設し、電源4より給電
を行う帯電装置が提案された(特開昭62−29617
4号公報)。この帯電装置は、電極と感光体3の空隙で
大きな電流が流れようとするのを半導電性固体電極25
の抵抗が制御するため、火花放電やアーク放電が起こら
ず安定したコロナ放電を行うことができる。
In order to solve such problems, a semiconductive solid electrode 25 as shown in FIG. A charging device for supplying electricity was proposed (Japanese Patent Application Laid-Open No. 62-29617
Publication No. 4). This charging device uses a semiconductive solid electrode 25 to prevent a large current from flowing in the gap between the electrode and the photoreceptor 3.
Since the resistance is controlled, stable corona discharge can be performed without causing spark discharge or arc discharge.

発明が解決しようとする課題 この様な半導電性固体電極を用いた帯電装置は、従来の
帯電装置にはない長所かめる半面、以下のような問題点
を有している。
Problems to be Solved by the Invention Although charging devices using such semiconductive solid electrodes have advantages that conventional charging devices do not have, they also have the following problems.

まず、半導電性固体電極は、その厚さが薄いと電極自体
が絶縁破壊を起こして帯電装置として使用できなくなる
。したがって、絶縁破壊を起こさないおる値以上の厚さ
が要求される。多くの半導電性@極り料を試験した結果
、厚さが2001Ii以上あれば、絶縁破壊しないこと
が明らかになった。
First, if a semiconductive solid electrode is thin, the electrode itself will suffer dielectric breakdown, making it unusable as a charging device. Therefore, the thickness is required to be at least a value that does not cause dielectric breakdown. As a result of testing many semiconductive @pole materials, it has become clear that if the thickness is 2001Ii or more, there will be no dielectric breakdown.

ところが、この厚さで使用できる半導電性固体電極は、
材料が有機物でおるか、又は無機物の場合には、焼結タ
イプのセラミックス或いは一部のガラスに限られている
。有機物は実用上使用できる材料がその電気伝導がイオ
ン伝導であるため、電気抵抗の経時的変化や環境による
変化が大きいという問題を有しており、一方、焼結によ
り作られるセラミックスは高温の為、平面度を100μ
m以下にすることが困難であり、また、平面度を出すた
めに研磨などを行うと、コストが大きくなる欠点がおっ
た。平面度が100m以上になると、感光体と半導電性
固体電極の距離が場所により変わるため、帯電電位か不
均一になり、その結果、画像濃度が不均一になる。また
、ガラスは平面度を小さくできるが、電気伝導が表面の
吸着水の水和イオンによりなされるため、環境による抵
抗の変化が大きく、実用上使用できなかった。
However, semiconductive solid electrodes that can be used at this thickness are
If the material is organic or inorganic, it is limited to sintered ceramics or some types of glass. Since the electrical conductivity of organic materials that can be practically used is ionic conduction, there is a problem in that the electrical resistance changes greatly over time and due to the environment.On the other hand, ceramics made by sintering have a problem of large changes due to the high temperature. , the flatness is 100μ
It is difficult to reduce the thickness to less than m, and if polishing or the like is performed to obtain flatness, the cost increases. When the flatness exceeds 100 m, the distance between the photoreceptor and the semiconductive solid electrode varies depending on the location, resulting in non-uniform charging potential and, as a result, non-uniform image density. Furthermore, although the flatness of glass can be reduced, since electrical conduction is achieved by hydrated ions of water adsorbed on the surface, the resistance changes greatly depending on the environment, making it impractical for practical use.

本発明は、この様な問題点に濫みてなされたものである
The present invention has been made in view of these problems.

したかって本発明の目的は、上記のような問題を解決し
、安定した帯電装置を提供することにおる。
Therefore, an object of the present invention is to solve the above-mentioned problems and provide a stable charging device.

課題を解決するための手段及び作用 本発明は、帯電装置用電極素子に関するもので、絶縁性
基体上に半導電性膜を成膜してなることを特徴とする。
Means and Effects for Solving the Problems The present invention relates to an electrode element for a charging device, and is characterized in that it is formed by forming a semiconductive film on an insulating substrate.

本発明の帯電装置用電極素子において、半導電性膜は平
面性がよいものであることが望まれるが、そのための材
料としては、電子伝導性又は酸素イオン伝導性で熱処理
や研磨を行わずに作製される無機材料、例えば、アモル
ファスSi、酸化亜鉛、酸化アンチモン、酸化鉛、ジル
コニア、酸化チタン等が好ましく使用できる。これ等の
無機材料は平面性のよい基体上に、蒸着ぞの他の適当な
手段によって薄膜状に成膜される。その場合、半導電性
膜の表面抵抗が概ね1MΩから100 MΩの範囲にあ
るのが好ましい。
In the electrode element for a charging device of the present invention, it is desirable that the semiconducting film has good flatness, and the material for this purpose should be one that has electron conductivity or oxygen ion conductivity and that does not require heat treatment or polishing. Inorganic materials produced, such as amorphous Si, zinc oxide, antimony oxide, lead oxide, zirconia, titanium oxide, etc., can be preferably used. These inorganic materials are formed into a thin film on a flat substrate by vapor deposition or other suitable means. In that case, it is preferable that the surface resistance of the semiconductive film is approximately in the range of 1 MΩ to 100 MΩ.

また、半導電性膜は薄膜であり、絶縁耐圧が少ないので
、基体としては絶縁性の材料より構成された絶縁性基体
が使用される。
Further, since the semiconductive film is a thin film and has a low dielectric strength, an insulating base made of an insulating material is used as the base.

その場合、絶縁性基体は、金属基板上に絶縁層が設けら
れたものでおってもよい。また絶縁性基体は、シート状
であってもよい。
In that case, the insulating substrate may be one in which an insulating layer is provided on a metal substrate. Further, the insulating substrate may be in the form of a sheet.

本発明の帯電装置用電極素子は、半導電性膜が絶縁性基
体の上に設けられているために、給電電極を感光体に対
して反対側に設けることができない。そこで、本発明の
帯電装置用電極素子は、給電用の電極を半導電性膜の末
端に設けることが必要となる。
In the electrode element for a charging device of the present invention, since the semiconductive film is provided on the insulating substrate, the power supply electrode cannot be provided on the opposite side to the photoreceptor. Therefore, in the electrode element for a charging device of the present invention, it is necessary to provide a power feeding electrode at the end of the semiconductive film.

ところで、半導電性固体電極を用いた平面型帯電器では
、画像の濃度のばらつきが発生することかしばしばある
。その原因は、半導電性固体電極と感光体とのギャップ
にばらつきが現れることによる。平面型帯電器では、ギ
ャップの電圧がギャップの大きざに従う性質を有してい
る。すなわち、ギャップが小さいところではギャップの
電圧が小さく、ギャップの電圧が大きなところではギャ
ップの電圧が大きい性質がおる。したがって、一つの電
極でギャップに大小がおるとギャップの小さいところで
は感光体の帯電電位が高くなり、ギャップの大きなとこ
ろでは感光体の帯電電位は小さくなる。そこで、ギャッ
プのばらつきはできる限り小さいことが望まれるが、実
験の結果、ギャップのばらつきが30〜70μsの範囲
又はそれ以下であれば、画像濃度にばらつきは現れ難い
ことが判明した。したがって、本発明においては、絶縁
性基体の表面は、上記のような平面度を有するものが好
適に使用される。
Incidentally, in a planar charger using a semiconductive solid electrode, variations in image density often occur. The reason for this is that variations appear in the gap between the semiconductive solid electrode and the photoreceptor. In a planar charger, the voltage across the gap follows the size of the gap. That is, the gap voltage is small where the gap is small, and the gap voltage is large where the gap voltage is large. Therefore, if there are gaps of different sizes in one electrode, the charged potential of the photoreceptor becomes high where the gap is small, and the charged potential of the photoreceptor becomes small where the gap is large. Therefore, it is desired that the variation in the gap be as small as possible, but as a result of experiments, it has been found that if the variation in the gap is in the range of 30 to 70 μs or less, variations in image density are unlikely to appear. Therefore, in the present invention, the surface of the insulating substrate having the flatness as described above is preferably used.

本発明において、絶縁性基体を樹脂材料のみより形成さ
せる場合には、半導電性膜の蒸着時に、平面度が上記の
範囲を越える反りが生じることがあるので、絶縁性基体
としては、金属基板上に絶縁層を設けてなるものを使用
するのが好ましい。
In the present invention, when the insulating substrate is formed only from a resin material, warping may occur when the flatness exceeds the above range during vapor deposition of the semiconductive film. It is preferable to use one provided with an insulating layer thereon.

本発明の帯電装置用電極素子を製造するには、次のよう
な方法で製造するのが好ましい。すなわち、第3図に示
すように、絶縁層7上に半導電性膜1を形成し、モの上
に接触電極51〜55を平行に複数本形成した後、この
接触電極に沿って11〜、I!5の位置で切断して複数
のシート状物を得、それ等をぞれぞれ、平面性のよい基
板上に接着剤を用いて貼り合わせて、複数の帯電装置用
電極素子を製造する。
In order to manufacture the electrode element for a charging device of the present invention, it is preferable to manufacture it by the following method. That is, as shown in FIG. 3, a semiconductive film 1 is formed on an insulating layer 7, a plurality of contact electrodes 51 to 55 are formed in parallel on the insulating layer 7, and then a plurality of contact electrodes 51 to 55 are formed in parallel along the contact electrodes. , I! A plurality of sheet-like products are obtained by cutting at the position 5, and each of the sheets is pasted onto a substrate with good flatness using an adhesive to produce a plurality of electrode elements for a charging device.

第4図は、本発明の帯電装置用電極素子を用いた電子写
真装置の概略構成図である。本発明の帯電装置用電極素
子は、感光体用帯電器21、転写用帯電器14、剥離用
帯電器17、除電用帯電器19等に適用することができ
る。第4図において、原稿台11に置かれた原稿10が
照明ランプ12により露光され、その画像がレンズ9を
通して感光体用帯電器21で帯電された感光体3上に投
影され、静電潜像が形成される。この静電m@に現像器
13で現像剤を何首させて可視像を得る。次に用紙カセ
ット15から送られた用紙16を、感光体に重ねて、転
写用帯電器14でイオ゛ンを与えることにより現像剤が
用紙に転写される。続いて剥離用帯電器17で用紙の電
荷を除電し、用紙を感光体から剥離する。現像剤は定着
器18で用紙に定着されて複写画像となる。
FIG. 4 is a schematic diagram of an electrophotographic apparatus using the electrode element for a charging device of the present invention. The electrode element for a charging device according to the present invention can be applied to a photoreceptor charger 21, a transfer charger 14, a peeling charger 17, a static elimination charger 19, and the like. In FIG. 4, a document 10 placed on a document table 11 is exposed to light by an illumination lamp 12, and its image is projected through a lens 9 onto a photoconductor 3 charged by a photoconductor charger 21, resulting in an electrostatic latent image. is formed. A visible image is obtained by applying a developer to this electrostatic charge m@ in a developing device 13. Next, the paper 16 sent from the paper cassette 15 is placed on the photoreceptor, and the transfer charger 14 applies ions to transfer the developer onto the paper. Subsequently, the charge on the paper is removed by a peeling charger 17, and the paper is peeled off from the photoreceptor. The developer is fixed on the paper by a fixing device 18 to form a copied image.

感光体上の電荷は除電用帯電器19により除電され、更
に残った感光体上の現像剤は、クリーナー20によりク
リーニングされる。
Charges on the photoreceptor are removed by a charger 19, and developer remaining on the photoreceptor is cleaned by a cleaner 20.

実施例 第1図は、本発明の帯電装置用電極素子の基本構成を説
明するもので、帯電装置用電極素子は、絶縁性基板2上
に半導電性膜1が成膜された構造を有している。半導電
性膜1の末端には、給電電極6と接触する接触電極5が
設けられている。なお、4は電源であり、3は感光体で
必る。
Embodiment FIG. 1 explains the basic structure of an electrode element for a charging device according to the present invention. The electrode element for a charging device has a structure in which a semiconductive film 1 is formed on an insulating substrate 2. are doing. A contact electrode 5 is provided at the end of the semiconductive film 1 to make contact with the power supply electrode 6 . Note that 4 is a power source and 3 is a photoreceptor.

上記構成の帯電装置用電極素子において、絶縁性基板を
構成する材料は、体積抵抗率が少なくとも1013Ω・
cmで市り、蒸着やイオンブレーティングに必要な50
〜80℃の温度により変形が少なく、また着膜強度が高
いことが要求される。それに適合する材料としては、例
えばポリカーボネート、アクリル樹脂、ポリエステル等
の樹脂材料がめげられる。
In the electrode element for a charging device having the above configuration, the material constituting the insulating substrate has a volume resistivity of at least 1013Ω.
Available in cm, 50 mm required for vapor deposition and ion blating.
It is required that there is little deformation due to the temperature of ~80°C, and that the strength of the film is high. Examples of suitable materials include resin materials such as polycarbonate, acrylic resin, and polyester.

第2図は、本発明の他の実施例で必って、帯電装置用@
極素子は、金属基板8上に絶縁性層7を設けてなる絶縁
性基板を使用し、その上に半導電性膜1が成膜されてい
る。
FIG. 2 shows a charging device @
The pole element uses an insulating substrate consisting of an insulating layer 7 provided on a metal substrate 8, and a semiconductive film 1 is formed thereon.

次に、本発明を具体的な例をあげて説明する。Next, the present invention will be explained by giving specific examples.

例1 第1図に示される構成の帯電装置用電極素子を作製した
。すなわち、上記した樹脂材料よりなる絶縁性基板2の
上記の範囲の平面度を有する表面上に、真空蒸着法でo
、 oi〜0. O5ppmの燐を含むアモルファス3
i膜よりなる半導電性膜1を表面抵抗約1MΩとなるよ
うに形成した。半導電性膜の端部には金を厚さ0.1〜
0.3μmで、半導電性膜の上に幅約1#となるように
蒸着して接触電極5を形成した。
Example 1 An electrode element for a charging device having the configuration shown in FIG. 1 was manufactured. That is, on the surface of the insulating substrate 2 made of the above-mentioned resin material and having a flatness within the above-mentioned range, o
, oi~0. Amorphous 3 containing 05ppm phosphorus
A semiconductive film 1 made of an i-film was formed to have a surface resistance of about 1 MΩ. Gold is applied to the edge of the semiconductive film to a thickness of 0.1~
The contact electrode 5 was formed by vapor deposition with a thickness of 0.3 μm and a width of about 1# on the semiconductive film.

形成された帯電装置用電極素子を感光体3にギヤツブ約
300μmをおいて対向さけ、電源4から約−2500
の電圧を印1tfl シた。この電圧は、給電電極6か
ら接触電極5を通って半導電性膜1に印加され、それに
よって感光体が一700■に帯電された。
The formed electrode element for the charging device is placed opposite to the photoreceptor 3 with a gear lug of about 300 μm, and is connected to the power source 4 by about -2500 μm.
A voltage of 1tfl was applied. This voltage was applied to the semiconducting film 1 from the power supply electrode 6 through the contact electrode 5, thereby charging the photoreceptor to 1700 μm.

なお、比較のために半導電性膜の代わりに、金属よりな
る膜を形成したものを用いたところ、放電は安定せず、
画像には鱗状の模様が現れた。
For comparison, when a film made of metal was used instead of the semiconductive film, the discharge was not stable.
A scale-like pattern appeared in the image.

例2 第2図に示される構成の帯電装置用電極素子を作製した
。すなわち、アルミニウムダイキャス1〜或いは亜鉛グ
イキャストで平面度30μm以下に形成した基板の上に
、エポキシ樹脂を厚さimになるように塗布し、硬化さ
せた。平面度は50μm以下であった。更にその上に酸
化亜鉛を蒸着により膜厚0.1〜0.3μmになるよう
に設け、例1におけると同様に金よりなる接触電極を設
けて帯電装置用電極素子を作製した。
Example 2 An electrode element for a charging device having the configuration shown in FIG. 2 was manufactured. That is, an epoxy resin was applied to a thickness of im on a substrate formed by aluminum die casting 1 or zinc die casting to have a flatness of 30 μm or less, and was cured. The flatness was 50 μm or less. Furthermore, zinc oxide was deposited thereon to a thickness of 0.1 to 0.3 μm, and a contact electrode made of gold was provided in the same manner as in Example 1 to produce an electrode element for a charging device.

この帯電装置用電極素子を例1におけると同様に用いた
ところ、均一な電子写真画像を得ることができた。
When this electrode element for a charging device was used in the same manner as in Example 1, a uniform electrophotographic image could be obtained.

酸化亜鉛の代わりに、酸化アンチモン又は酸化鉛の蒸着
膜を形成させた場合にも同様に均一な電子写真画像が得
られた。
A uniform electrophotographic image was similarly obtained when a vapor-deposited film of antimony oxide or lead oxide was formed instead of zinc oxide.

また、酸化亜鉛膜の膜厚を変化させて表面抵抗を変えた
ところ、表面抵抗1MΩ〜100Ωの範囲で均一な帯電
が可能でおった。
Furthermore, when the surface resistance was changed by changing the thickness of the zinc oxide film, uniform charging was possible within a surface resistance range of 1 MΩ to 100Ω.

例3 膜厚100μmのポリエステルシートの上に酸化チタン
を膜厚0.1〜0.3μmになるように蒸着して半導電
性膜を形成し、その上に第3図に示すように、金又はク
ロム等の接触電極51〜55を平行に複数本形成した。
Example 3 A semiconductive film was formed by depositing titanium oxide to a thickness of 0.1 to 0.3 μm on a polyester sheet with a film thickness of 100 μm. Alternatively, a plurality of contact electrodes 51 to 55 made of chromium or the like were formed in parallel.

この接触電極に沿って91〜.I!5の位置で切断して
絶縁層7及び半導電性簿膜1よりなる複数のシート状物
を得た後、それ等をそれぞれ、平面性のよいステンレス
鋼板の上に粘度の小さい接着剤を用いて貼り合わせ、多
数の帯電装置用電極素子を作製した。
91~ along this contact electrode. I! After cutting at the position 5 to obtain a plurality of sheet-like materials consisting of the insulating layer 7 and the semiconductive film 1, each sheet was placed on a stainless steel plate with good flatness using a low-viscosity adhesive. A large number of electrode elements for a charging device were produced by bonding them together.

この様にして得られた帯電装置用電極素子を用い、例1
にあけると同様に操作したところ、金又はクロムよりな
る接触電極は、給電電極と接触し、電源の電圧を受ける
ことにより、感光体を均一に帯電させることができた。
Using the electrode element for a charging device obtained in this way, Example 1
When the contact electrode made of gold or chromium came into contact with the power supply electrode and received the voltage from the power source, the photoreceptor was able to be uniformly charged.

この様な方法でシー1〜状電極を製造することのメリッ
トは、−度に多数の電極を低コストでできることに必る
The advantage of manufacturing sea-shaped electrodes by such a method is that a large number of electrodes can be manufactured at a low cost.

例4 例1における半導電性膜として、ジルコニアをイオンブ
レーティングによって膜厚0.1μmになるように成膜
した以外は同様にして帯電装置用電極素子を作製した。
Example 4 An electrode element for a charging device was produced in the same manner as in Example 1, except that zirconia was formed into a film with a thickness of 0.1 μm by ion blating as the semiconductive film.

この帯電装置用電極素子は、ジルコニアが、酸素を電気
伝導のイオン源として、常に大気から供給を受けている
ため、帯電装置において環境変化に関係なく安定して使
用することができた。
This electrode element for a charging device could be stably used in a charging device regardless of environmental changes because zirconia was constantly supplied from the atmosphere using oxygen as an ion source for electrical conduction.

以上においては、゛感光体を電荷受容体とする場合につ
いて説明したが、本発明の帯電装置用電極素子は、絶縁
性の電荷受容体に対しても使用することができる。
Although the case where the photoreceptor is used as a charge receptor has been described above, the electrode element for a charging device of the present invention can also be used for an insulating charge receptor.

発明の効果 本発明の帯電装置用電極素子は、上記のように絶縁性基
体上に半導電性膜を成膜してなる構成を有するので、半
導電性膜は、絶縁性基板の表面性に忠実な形状を有する
ものとなり、感光体の帯電電位が常に均一になる。また
、半導電性膜を構成する材料の電気抵抗は、温度、湿度
による変化が小さいので、感光体を経時的にも安定して
帯電させることができる。
Effects of the Invention The electrode element for a charging device of the present invention has a structure in which a semiconductive film is formed on an insulating substrate as described above. It has a faithful shape, and the charged potential of the photoreceptor is always uniform. Further, since the electrical resistance of the material constituting the semiconductive film changes little with temperature and humidity, the photoreceptor can be stably charged over time.

また、電圧の印加が、帯電装置用電極素子表面で行われ
、かつ半導電性膜の基体が絶縁性材料から形成されてい
るために、半導電性膜が薄層で必るにも拘らず、絶縁破
壊を起こすことがなく安定して使用することができる。
Furthermore, since the voltage is applied on the surface of the electrode element for the charging device and the base of the semiconductive film is made of an insulating material, the semiconductive film is necessarily a thin layer. , it can be used stably without causing dielectric breakdown.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を帯電装置として適用した
場合の説明図、第2図は、本発明の他の実施例を帯電装
置として適用した場合の説明図、第3図は、本発明の帯
電装置用電極素子の製造方法を説明する説明図、第4図
は、本発明の帯電装置用電極素子を用いた電子写真装置
の概略構成図、第5図は従来の帯電装置の斜視図、第6
図は、第5図の断面図、第7図は、従来の半導電性固体
電極を用いた帯電装置の作動説明図である。 1・・・半導電性膜、2・・・絶縁性基板、3・・・感
光体、4・・・電源、5・・・接触電極、6・・・給電
電極、7・・・絶縁層、8・・・金属基板、9・・・レ
ンズ、10・・・原稿、11・・・原稿台、12・・・
照明ランプ、13・・・現像器、14・・・転写用帯電
器、15・・・用紙カセット、16・・・用紙、17・
・・剥離用帯電器、18・・・定着器、19・・・除電
用帯電器、20・・・クリーナー、21・・・感光体帯
電器、22・・・シールドケース、23・・・絶縁ブロ
ック、24・・・放電ワイヤー、25・・・半導電性固
体電極、26・・・給電電極。 特許出願人  富士ゼロックス株式会社代理人    
弁理士  腹部 剛 (\ 第3図 第4図
FIG. 1 is an explanatory diagram when one embodiment of the present invention is applied as a charging device, FIG. 2 is an explanatory diagram when another embodiment of the present invention is applied as a charging device, and FIG. FIG. 4 is a schematic diagram of an electrophotographic apparatus using the electrode element for a charging device of the present invention, and FIG. 5 is a diagram illustrating a method of manufacturing an electrode element for a charging device according to the present invention. Perspective view, No. 6
The figure is a sectional view of FIG. 5, and FIG. 7 is an explanatory diagram of the operation of a charging device using a conventional semiconductive solid electrode. DESCRIPTION OF SYMBOLS 1... Semiconductive film, 2... Insulating substrate, 3... Photoreceptor, 4... Power source, 5... Contact electrode, 6... Power supply electrode, 7... Insulating layer , 8... Metal substrate, 9... Lens, 10... Document, 11... Original table, 12...
Illumination lamp, 13...Developer, 14...Transfer charger, 15...Paper cassette, 16...Paper, 17.
... Charger for peeling, 18... Fixing device, 19... Charger for static elimination, 20... Cleaner, 21... Photoreceptor charger, 22... Shield case, 23... Insulation Block, 24...Discharge wire, 25...Semiconductive solid electrode, 26...Power supply electrode. Patent applicant Fuji Xerox Co., Ltd. Agent
Patent Attorney Tsuyoshi Abori (\ Figure 3 Figure 4

Claims (7)

【特許請求の範囲】[Claims] (1)絶縁性基体上に半導電性膜を成膜してなる帯電装
置用電極素子。
(1) An electrode element for a charging device comprising a semiconductive film formed on an insulating substrate.
(2)絶縁性基体が、金属基板上に絶縁体層を設けてな
ることを特徴とする請求項1記載の帯電装置用電極素子
(2) The electrode element for a charging device according to claim 1, wherein the insulating substrate is formed by providing an insulating layer on a metal substrate.
(3)絶縁性基体がシート状であることを特徴とする請
求項1記載の帯電装置用電極素子。
(3) The electrode element for a charging device according to claim 1, wherein the insulating substrate is in the form of a sheet.
(4)半導電性膜の末端に給電電極用電極を設けたこと
を特徴とする請求項1記載の帯電装置用電極素子。
(4) The electrode element for a charging device according to claim 1, wherein an electrode for a power supply electrode is provided at the end of the semiconductive film.
(5)半導電性膜が電子伝導性材料よりなることを特徴
とする請求項1記載の帯電装置用電極素子。
(5) The electrode element for a charging device according to claim 1, wherein the semiconductive film is made of an electronically conductive material.
(6)半導電性膜が酸素イオン伝導性材料よりなること
を特徴とする請求項1記載の帯電装置用電極素子。
(6) The electrode element for a charging device according to claim 1, wherein the semiconductive film is made of an oxygen ion conductive material.
(7)板状絶縁基体上に、半導電性膜を形成し、その上
に接触電極を平行に複数本形成し、該接触電極に沿つて
切断して絶縁層及び半導電性薄膜よりなる複数の板状物
を得、該複数の板状物のそれぞれを、平面性のよい導電
性基板の上に貼り合わせることを特徴とする帯電装置用
電極素子の製造方法。
(7) A semiconductive film is formed on a plate-shaped insulating substrate, a plurality of contact electrodes are formed in parallel thereon, and a plurality of insulating layers and semiconductive thin films are cut along the contact electrodes. 1. A method for producing an electrode element for a charging device, comprising: obtaining a plurality of plate-like objects, and laminating each of the plurality of plate-like objects onto a conductive substrate with good flatness.
JP15480088A 1988-06-24 1988-06-24 Electrode element for charging device and manufacturing method thereof Expired - Fee Related JP2668951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15480088A JP2668951B2 (en) 1988-06-24 1988-06-24 Electrode element for charging device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15480088A JP2668951B2 (en) 1988-06-24 1988-06-24 Electrode element for charging device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH01321442A true JPH01321442A (en) 1989-12-27
JP2668951B2 JP2668951B2 (en) 1997-10-27

Family

ID=15592169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15480088A Expired - Fee Related JP2668951B2 (en) 1988-06-24 1988-06-24 Electrode element for charging device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2668951B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5377070A (en) * 1992-07-13 1994-12-27 Fuji Xerox Co., Ltd. Charging apparatus for photoreceptor
JP2015118343A (en) * 2013-12-20 2015-06-25 シャープ株式会社 Electron emission device, charging device, and image formation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5377070A (en) * 1992-07-13 1994-12-27 Fuji Xerox Co., Ltd. Charging apparatus for photoreceptor
JP2015118343A (en) * 2013-12-20 2015-06-25 シャープ株式会社 Electron emission device, charging device, and image formation device

Also Published As

Publication number Publication date
JP2668951B2 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
EP0274895B1 (en) Corona charging device
JPS60158582A (en) Corona charger
US4571052A (en) Electric field transfer method and apparatus
JPS5895363A (en) Corona discharging device for electrophotographic device
JPH01321442A (en) Electrode element for charging device and manufacture of the same
JPH118042A (en) Ion generation substrate and electrophotography recording device
JPH0636858A (en) Charge device
JPH0690568B2 (en) Electrophotographic charging device
EP0274894B1 (en) Corona charging device
US4122210A (en) Electrostatic powder image transfer using pair of electrodes, one pointed, one blunt
US5666601A (en) Resistive ion source charging device
JP2555641B2 (en) Discharge device for static elimination
JP2743625B2 (en) Charging device
JPS58171976A (en) Picture former
CA1159508A (en) Method for inducing an electrostatic image in a conductive member
US4103994A (en) Recording plate
JPS58132765A (en) Developing device
JPS62168173A (en) Electrostatic charging device
JP2578281Y2 (en) Charger
JPS6016630B2 (en) electrophotographic equipment
JPH07199611A (en) Electrostatic latent image carrier supporting body, electrophotographic device and electrophotographic image forming method
JPH06110297A (en) Electrostatic charger
JPS60176064A (en) Electronic discharge device
JPS62136680A (en) Cleaning device for transfer belt of electrophotographic device
JPS60142367A (en) Electrostatic charging device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees