JPH01321326A - Use of thermocouple protective pipe - Google Patents

Use of thermocouple protective pipe

Info

Publication number
JPH01321326A
JPH01321326A JP15634488A JP15634488A JPH01321326A JP H01321326 A JPH01321326 A JP H01321326A JP 15634488 A JP15634488 A JP 15634488A JP 15634488 A JP15634488 A JP 15634488A JP H01321326 A JPH01321326 A JP H01321326A
Authority
JP
Japan
Prior art keywords
temperature
layer
protective pipe
thermocouple
protection tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15634488A
Other languages
Japanese (ja)
Inventor
Hideaki Mori
森 英朗
Yoshiaki Azuma
佳昭 四阿
Otojiro Kida
音次郎 木田
Hiroshi Takeji
武次 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Nippon Steel Corp filed Critical Asahi Glass Co Ltd
Priority to JP15634488A priority Critical patent/JPH01321326A/en
Publication of JPH01321326A publication Critical patent/JPH01321326A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PURPOSE:To reduce thermometric cost and to enhance reliability by setting each of the immersing and taking-out speeds of a protective pipe composed of boride type ceramic with respect to a molten substance to 4m/min or less. CONSTITUTION:A thermometric protective pipe 1 is formed from a protective pipe main body 1a based on a Zr boride, the inner surface oxide layer 1b formed to the inner surface of said main body 1a, the outer vitreous layer 1c applied to the outer surface of said oxide layer 1b and heat-treated, and the ceramic fiber layer 1d applied to the outer surface of the layer 1c. A thermocouple 2, an Al2O3 insulating pipe 3 and an Al2O3 protective pipe 4 are incorporated in the protective pipe 1. When this protective pipe is used in a state inserted in a molten metal, each of the immersing and takng-out speeds thereof is set to 4m/min or less to secure the safety to a crack and cracking breakage due to a heat shock and high reliability is obtained in the response speed and thermometric accuracy of the thermocouple 2.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は溶融金属等の溶湯の温度を測定する測温センサ
ーを保護する測温用保護管の使用方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of using a temperature measuring protection tube for protecting a temperature measuring sensor that measures the temperature of a molten metal such as a molten metal.

[従来の技術] 従来溶銑、溶鋼等の溶融金属等の溶湯(溶融物)の温度
を測定する方法として一般に使用されているのは白金−
ロジウム系熱電対(以下B熱電対と称す)の先端を石英
管で保護する消耗型温度計であり通常溶銑、溶鋼等にそ
の熱電対を浸漬すると極めて短時間(10〜20秒間)
のうちに感熱部が溶融し使用不能となるので短時間に測
温を終了しなければならず、かつ測定1回毎に熱電対を
交換していた。このため品質、操業の管理が困難で測温
コストが高い事から長時間連続して測温出来る温度計が
強く望まれ、最近では溶融金属に耐食性の高いサイアロ
ン、ON%AIJt−C、ZrOz−Mo 、 ZrB
a等の熱電対保護管が提供されている。
[Prior Art] Conventionally, platinum is commonly used as a method for measuring the temperature of molten metals such as hot metal and molten steel.
It is a consumable thermometer that protects the tip of a rhodium-based thermocouple (hereinafter referred to as B thermocouple) with a quartz tube. Normally, when the thermocouple is immersed in hot metal, molten steel, etc., it takes an extremely short time (10 to 20 seconds).
Before long, the heat-sensitive part would melt and become unusable, so temperature measurements had to be completed in a short period of time, and the thermocouple had to be replaced after each measurement. For this reason, it is difficult to control quality and operation, and the temperature measurement cost is high, so there is a strong desire for a thermometer that can measure temperature continuously for a long time. Mo, ZrB
Thermocouple protection tubes such as a are provided.

[発明の解決しようとする課題] しかしながらこれらの保護管を用いた測温計の場合、溶
銑や溶鋼での連続測温では投入の際の予熱や測温中での
酸化や耐食性が著るしく悪く2〜20hrぐらいで保護
管が侵食されるため寿命が短い。
[Problems to be solved by the invention] However, in the case of thermometers using these protective tubes, when continuously measuring the temperature of hot metal or molten steel, oxidation and corrosion resistance during preheating and temperature measurement during charging are significant. At worst, the lifespan is short because the protection tube is eroded after about 2 to 20 hours.

又溶融金属中に投入する場合Zr02−M□、A1.0
3−C、BN等の保護管を使用した熱電対保護管は熱衝
撃性が高いので予熱は十分に行わず使用されているが強
度が弱い事や酸化しやすい1−>、耐食性が低い等の点
で十分に長時間の測温に耐えつるものは少ない。
Also, when pouring into molten metal, Zr02-M□, A1.0
3-Thermocouple protection tubes using protective tubes such as C and BN have high thermal shock resistance, so they are used without sufficient preheating, but they are weak in strength, easily oxidized, and have low corrosion resistance. In this respect, there are few that can withstand temperature measurement for a sufficiently long period of time.

しかし、最近このような保護管として好ましい材質、即
ち溶融金属に対して秀れた耐食性かつ充分な強度、耐熱
性、熱伝導性を有するものとしてホウ化物系セラミック
スが提供されている。特にZr1laは曲記の材質条件
を最も具備しており本発明を適用する場合に好ましい材
料と云える。
However, recently, boride-based ceramics have been provided as a preferred material for such protective tubes, that is, as having excellent corrosion resistance against molten metals, sufficient strength, heat resistance, and thermal conductivity. In particular, Zr1la best satisfies the material conditions described above and can be said to be a preferable material to which the present invention is applied.

しかるにこのホウ化物系セラミックスは一般の金属に比
べ靭性が低く耐熱衝撃性も劣るため溶融金属等の高温度
の測温をする場合、特に全体の高温の溶融金属に保護管
を急激に浸漬した場合、熱衝撃による割れを引き起こし
長時間連続して測温する場合に比べて折損により寿命が
低下する問題が起こりこのような断続的測温においても
長時間安定して測温可能な技術が強く望まれていた。
However, boride ceramics have lower toughness and thermal shock resistance than ordinary metals, so they are difficult to measure when measuring high temperatures of molten metal, especially when the protective tube is suddenly immersed in the molten metal at an overall high temperature. However, there is a problem that thermal shock can cause cracks and shorten the lifespan due to breakage compared to when temperature measurements are taken continuously over a long period of time.There is a strong demand for technology that can stably measure temperatures over a long period of time even during such intermittent temperature measurement. It was rare.

[課題を解決するための手段] 本発明は1′rlj述の問題点を解決すべくなされたも
のであり、Z「13□などのホウ化物を主成分とする保
護管にて測温センサーを保護しつつ湯温を連続的又は断
続的に測温するに際し保護管の溶融金属等の溶融物への
浸漬・取出速度を4m/分以下にする”ITを特徴とす
る熱電対保護管の使用方法に関するものである。
[Means for Solving the Problems] The present invention has been made to solve the problems mentioned in 1'rlj, and it is possible to install a temperature sensor in a protective tube mainly composed of a boride such as Z'13□. Use of a thermocouple protection tube characterized by "IT" that reduces the immersion and removal speed of the protection tube into and out of molten material such as molten metal to 4 m/min or less when measuring the temperature of hot water continuously or intermittently while protecting the temperature. It is about the method.

以下図面を参照して本発明を説明する。第1図は本発明
で用いる保護管の好適な構成を説明する断面図である。
The present invention will be explained below with reference to the drawings. FIG. 1 is a sectional view illustrating a preferred configuration of a protection tube used in the present invention.

本発明に使用しつる保護管の形状、構成とし7ては種々
のものが適用しつるが、望ましい典型例としての本発明
保護管1はZrの硼化物等を主成分とする保1進管本体
1aの内表面に形成した酸化物層1bと外表面にコート
して熱処理したガラス質層皮膜1c及び外表面に無機質
繊維層1dを被覆してなる保護管である。
Although various shapes and configurations 7 can be applied to the protective tube used in the present invention, the protective tube 1 of the present invention as a desirable typical example is a linear protective tube whose main component is Zr boride or the like. This protective tube is made up of an oxide layer 1b formed on the inner surface of a main body 1a, a vitreous layer film 1c coated and heat-treated on the outer surface, and an inorganic fiber layer 1d coated on the outer surface.

この保護管の中+巳1j熱電対2及びA1□03絶縁管
3、及びA1□0.!保護管4が組込まれ使用されてい
る。この保護管1を溶湯の中に装入して連続的又は断続
的に溶湯の温度変化を計測できる装置となる。
Inside this protective tube, there is a +1j thermocouple 2, an A1□03 insulation tube 3, and an A1□0. ! A protection tube 4 is incorporated and used. By inserting this protective tube 1 into molten metal, the device becomes capable of measuring temperature changes of the molten metal continuously or intermittently.

なお、本発明方法を以下このような保護管を例にとって
説明するが、保護管本体1aのみの場合であっても木質
的に材質が硼化物からなるものであればほぼ同様の条件
での使用が適用できるものである。
The method of the present invention will be explained below by taking such a protection tube as an example, but even if only the protection tube body 1a is used, it can be used under almost the same conditions as long as the wood is made of boride. is applicable.

以下本体!a、 lb、 lc、 Idからなる保護管
1についてさらに説明する。本発明において本体1aは
非酸化物系のセラミックス焼結体からなるもので溶湯に
対する高温耐食性の点からZr[32(2硼化ジルコニ
ウム)および又はTiB2(2硼化チタニウム)などの
ホウ化物を主成分とするものが最適である。
Main body below! The protection tube 1 consisting of a, lb, lc, and Id will be further explained. In the present invention, the main body 1a is made of a non-oxide ceramic sintered body, and is mainly made of borides such as Zr[32 (zirconium diboride) and/or TiB2 (titanium diboride) from the viewpoint of high-temperature corrosion resistance against molten metal. It is best to use it as an ingredient.

適切なホウ化物焼結体は次のようなものである。A suitable boride sinter is as follows.

・組成 Zrの硼化物を主成分とし、副成分として、SiCやI
IN笠を含むもの例えば重量%で、ZrB295〜70
%、SiC1〜15%、llN4〜29%等のもの。
・The main component is boride of composition Zr, and SiC and I as subcomponents.
Those containing IN caps, for example, ZrB295-70 in weight%
%, SiC 1-15%, IIN4-29%, etc.

・物性 嵩比重 30〜60 抗折強度  10kg/mm2以十 熱膨張率  0.6%以下(+000°C)比抵抗 1
0−1Ωcm以1115oo℃)耐熱衝撃性(ΔT1 
 250〜l000℃なお、耐熱衝撃性とは電気炉中で
各温度に5分間急熱し水中に急冷した試料の曲げ強度を
測定し強度が急激に低下した試料の処理温度を示すもの
で(△T’C)で表わす。
・Physical properties Bulk specific gravity 30-60 Breaking strength 10 kg/mm2 or more Coefficient of thermal expansion 0.6% or less (+000°C) Specific resistance 1
Thermal shock resistance (ΔT1
250 to 1000℃ Thermal shock resistance refers to the processing temperature at which the bending strength of the sample was measured after being rapidly heated to each temperature for 5 minutes in an electric furnace and rapidly cooled in water, and the strength suddenly decreased (△T 'C).

比抵抗は4端子法で高温で測定した値を示すf1500
℃)Ω・cm 。
Specific resistance is f1500, which is the value measured at high temperature using the 4-terminal method.
°C) Ω・cm.

本発明における非酸化物系焼結体としてはこの7. r
 B Z系のほか、Tirlz系なども使用可能である
がZrB2系に比べ高温でのスラグや溶湯に対する耐食
性が低く例え°ばTiB2系では耐酸化性が悪くなるな
どの点で劣るものであることは否めない。
As the non-oxide sintered body in the present invention, 7. r
B In addition to the Z series, Tirlz series can also be used, but they are inferior in that they have lower corrosion resistance to slag and molten metal at high temperatures than the ZrB2 series, and for example, the TiB2 series has poor oxidation resistance. I can't deny it.

つぎに内表面に形成されていると好ましい酸化物層1b
について説明すると、この酸化物層は前述の如(、Zr
82層などの非酸化物本体に起因して発生すると考えら
れる還元性ガスを少なくすることにより断線現象を防+
Lするべく形成しておくもので安定した酸化物層である
ことが必要である。
Next, an oxide layer 1b preferably formed on the inner surface
To explain, this oxide layer is as described above (, Zr
Prevents disconnection by reducing reducing gas that is thought to be generated due to non-oxide bodies such as the 82 layer.
It is necessary to form a stable oxide layer in order to obtain L.

そしてこの酸化物層1bは本体1aと一体的かつ可及的
に緻密な層であることが望ましい。ここで一体的である
ためには、本体1aを構成する金属成分を酸化してなる
酸化物からなるものが望ましく 、 ZrB2系におい
てはZrO□層ということになる。さらにより緻密層と
するためにはZrO□だけではややもろく、長期耐用と
いう点ではZrB*本体の特質を十分発揮し得ないこと
もありうるのでSiO*成分を含めた皮膜層とすること
が望ましい。
It is desirable that this oxide layer 1b be integral with the main body 1a and as dense as possible. In order to be integral, it is desirable to use an oxide formed by oxidizing the metal component constituting the main body 1a, and in the case of ZrB2, this is a ZrO□ layer. Furthermore, in order to create a denser layer, it is desirable to use a film layer that includes SiO* components, since ZrO□ alone is somewhat brittle and may not be able to fully demonstrate the characteristics of ZrB* in terms of long-term durability. .

この5iOa成分は保護管の製造法からして本体laの
金属成分として含まれているSiCの酸化によりもたら
されるものであることが好ましく、この点からすればZ
rBa系本体に別成分としてSi源となるSiC成分を
配合してなるものが好適といえる。
Considering the manufacturing method of the protective tube, it is preferable that this 5iOa component is produced by the oxidation of SiC contained as a metal component of the main body la, and from this point of view, Z
It can be said that it is preferable to use a material in which an SiC component, which serves as a Si source, is added as a separate component to the rBa-based main body.

このようなZr0z及び又はSin、を含む酸化物層は
互いの成分割合からすれば重量%でZrLが50〜10
0%、Sin□がO〜50%程度、望ましくは、Zr0
zが90〜70%、 Sin、力筒o〜30%程度のも
のである。
Such an oxide layer containing ZrOz and/or Sin has a ZrL content of 50 to 10% by weight in terms of their mutual component ratios.
0%, Sin□ is about 0 to 50%, preferably Zr0
Z is about 90 to 70%, Sin, and power cylinder is about 30%.

また、この酸化物層は厚みとしては薄くてもそれなりに
効果をもたらすものであるが、好ましくは30μ以」二
とすることであり、望ましい範囲は50〜500μ程度
である。
Further, although this oxide layer has a certain effect even if it is thin, the thickness is preferably 30 μm or more, and the preferable range is about 50 to 500 μm.

このような保護管の好ましい製造法について説明する。A preferred method of manufacturing such a protection tube will be explained.

保護管は前述の如くホウ化物系本体と一体的に形成され
た酸化物層からなるものが好ましい   ′ため、ホウ
化物本体の一部を酸化せしめ表面即ち内表面に酸化層゛
をもたらすことであり、これは管内に酸素を含む気体(
通常空気でよい)が存在する状態で保護管自体を熱処理
すれば可能である。
As mentioned above, it is preferable that the protective tube consists of an oxide layer formed integrally with the boride body, so it is preferable to oxidize a part of the boride body to form an oxide layer on the surface, that is, the inner surface. , this is a gas containing oxygen (
This can be done by heat-treating the protective tube itself in the presence of air (usually air is sufficient).

具体的にはホウ化物保護管内表面を一般には1000℃
以上の温度で1〜5時間程度熱処理しながら空気を積極
的に管内に導入することでよい。
Specifically, the inner surface of the boride protective tube is generally heated to 1000°C.
Air may be actively introduced into the pipe while being heat-treated at the above temperature for about 1 to 5 hours.

このようにすることで、例えば保護管本体の材質がSi
Cを含むZrB2系のものであれば表面部のZr及びS
iが酸化されZrO++およびSiO□からなる酸化物
層が形成される。
By doing this, for example, the material of the protection tube body can be made of Si.
If it is a ZrB2-based product containing C, Zr and S on the surface
i is oxidized to form an oxide layer consisting of ZrO++ and SiO□.

なお、この酸化皮膜の形成によって長時間の間熱電対の
劣化や断線が操業条件次第ではなくなり安定して溶湯の
連続測温が実施出来る事が認められた。又この酸化皮膜
形成によりA1□0゜保護管とZrBa質保護管との高
温での反応もな(なり溶着しないのでAl2O5保護管
の取出しも容易になりAl20a保護管は再使用が可能
になる事も認められる。
Furthermore, it was confirmed that due to the formation of this oxide film, the deterioration or disconnection of the thermocouple over a long period of time is not dependent on the operating conditions, and continuous temperature measurement of the molten metal can be carried out stably. Also, due to the formation of this oxide film, there is no reaction between the A1□0° protection tube and the ZrBa protection tube at high temperatures (there is no welding, so the Al2O5 protection tube can be easily removed, and the Al20a protection tube can be reused). is also accepted.

次にガラス質層ICについて説明する。Next, the glassy layer IC will be explained.

このようなZrなどの硼化物を主成分とする保護管は溶
湯に投入する場合、熱衝撃性が低いため十分に予熱して
溶湯へ投入される。しかしZrBz質保護管はある程度
の耐酸化性をもっているが長時間の予熱では徐々に酸化
し、ZrO□と、BJs、5iOaの酸化物となり酸化
組織はポーラス化する。B2O3は飛散するがこのポー
ラス化した組成物の保護管外表面を溶湯の中へ投入すれ
ば容易に侵食され保護管の肉厚は減少し耐用は短くなる
。この予熱中におけるZrRg質保護質性護管外表面層
を防止しておくものが好ましく、本発明で使用する保護
管にも、このためにガラス質層を形成したものとしてお
くことが望ましい。
When such a protective tube containing a boride such as Zr as a main component is thrown into the molten metal, it is sufficiently preheated before being thrown into the molten metal because it has low thermal shock resistance. However, although the ZrBz protective tube has a certain degree of oxidation resistance, it gradually oxidizes when preheated for a long time, and becomes oxides of ZrO□, BJs, and 5iOa, and the oxidized structure becomes porous. B2O3 will scatter, but if the outer surface of the protective tube made of this porous composition is poured into the molten metal, it will be easily eroded, reducing the thickness of the protective tube and shortening its service life. It is preferable to prevent the outer surface layer of the ZrRg protective tube from forming during this preheating, and it is desirable that the protective tube used in the present invention also be provided with a vitreous layer for this purpose.

このガラス質層1cについて具体的につぎに説明する。This glassy layer 1c will be specifically explained below.

このガラス質層は本質的には空気を通さないものであれ
ばどのようなものであってもよいのであるが、熱処理で
易ガラス化しつると同時に耐火性も備えていることが望
ましいため次のようなものが適切である。
This vitreous layer can be made of any material as long as it does not allow air to pass through, but it is desirable that it can be easily vitrified by heat treatment and has fire resistance at the same time. Something like this is appropriate.

・ガラス質層の物性 1000℃、3時間処理したときのZrB、質本体の酸
化消耗率は1%以下、酸化される厚み100μ以下、軟
化点2000℃以上 ・力゛ラス質層の厚み、軟化点 500〜2000μ、軟化点7200°C以上・ガラス
質をもたらす組成 耐火粉末をガラス化物を■lE成分とした被覆材を結合
材で泥漿状にしたもの。
・Physical properties of the glassy layer When treated at 1000℃ for 3 hours, the oxidation consumption rate of the ZrB material body is less than 1%, the oxidized thickness is less than 100μ, the softening point is more than 2000℃・The thickness of the glassy layer, softening Point 500 to 2000μ, softening point 7200°C or higher, Composition that gives a glassy quality. A coating material made of a vitrified refractory powder as a vitrified material and made into a slurry with a binder.

例えば両者の割合は耐火粉末50〜85重量%、ガラス
化物50〜15重量%からなるもの。
For example, the proportions of both are 50 to 85% by weight of refractory powder and 50 to 15% by weight of vitrified material.

耐火粉末はAl2O,粉末、粘−に粉末などガラス化物
は))p板ガラス粉末、無水硼砂などこの保護管は、こ
のような耐火粉末及びガラス化物を泥漿状にして保護管
本体外表面にコートしてこれを電気炉中で500°C以
上、好ましくは800〜1200℃程度の温度で熱処理
しガラス化皮膜を形成することで得られる。このガラス
化皮膜は溶湯中に投入される11訂の予熱ではガラス皮
膜を形成しているため空気を通さないのでZrB2質保
護管は酸化されず、溶湯に投入した場合でもガラス化皮
膜は溶けるが酸化されてないので緻密なZrB2質の組
成と特質をそのまま発揮できることになる。又このガラ
ス化皮膜はZrB1質保護管が急熱急冷された場合の熱
衝撃性の緩和の役目も果している。さらにZrB2質保
護管は溶湯に繻ねにくい性能を有しているがこのガラス
化皮膜の形成により/8湯浸h″1中にスラグや地金が
適度につき引トげ時の急冷による熱衝撃性の緩和も計れ
る■が認められている。即ち、このガラス皮膜を形成す
る事により酸化を防止するとともに、熱衝撃性の緩和を
計った割れにくく耐用の高い熱電対保護管を提供するこ
とを容易に可能とするものである。
Refractory powders include Al2O, powder, viscous powder, vitrified materials include p-plate glass powder, anhydrous borax, etc. This protective tube is made by coating the outer surface of the protective tube body with such refractory powders and vitrified materials in the form of a slurry. This is obtained by heat-treating this in an electric furnace at a temperature of 500°C or higher, preferably about 800 to 1200°C to form a vitrified film. This vitrified film is poured into the molten metal during preheating of the 11th edition, forming a glass film that does not allow air to pass through, so the ZrB2 protective tube will not be oxidized, and even if it is poured into the molten metal, the vitrified film will melt, but Since it is not oxidized, the dense composition and characteristics of ZrB2 can be exhibited as they are. This vitrified film also serves to alleviate thermal shock when the ZrB1 protective tube is rapidly heated and cooled. In addition, the ZrB2 protective tube has the ability to resist molten metal, but due to the formation of this vitrified film, a moderate amount of slag and base metal are present during immersion in hot water, resulting in thermal shock caused by rapid cooling during pulling. In other words, by forming this glass film, we can prevent oxidation and provide a highly durable thermocouple protection tube that is resistant to cracking and alleviates thermal shock resistance. This makes it easy to do so.

次に保護管本体の外面に配置された望ましい態様として
のセラミックスファイバーなどの無機質繊維層1dにつ
いて説明する。
Next, the inorganic fiber layer 1d, such as ceramic fiber, as a desirable embodiment disposed on the outer surface of the protective tube body will be described.

前述の如く、ZrBz質などの非酸化物本体1aに起因
して溶湯に投入し温度上昇、下降を繰返す場合特に高温
域からの温度降五時しばしば500〜600℃の領域で
本体1aのセラミックス内部の組織に微細なfハ裂が発
生しそれが顕著な場合にはセラミックス全体の割れに至
る事がある。この原因は明らかでないが熱膨張率、酸化
特性、ヤング率等の急激な変化によるものと思わねる。
As mentioned above, due to the non-oxide main body 1a such as ZrBz, when it is poured into a molten metal and the temperature rises and falls repeatedly, especially when the temperature drops from a high temperature range, the inside of the ceramic body 1a is often in the range of 500 to 600°C. Fine cracks occur in the structure of the ceramic, and if they are noticeable, they may lead to cracking of the entire ceramic. The cause of this is not clear, but it seems to be due to rapid changes in the coefficient of thermal expansion, oxidation properties, Young's modulus, etc.

しかるに高炉や連続鋳造設備において溶銑、溶鋼の測温
をする場合、1クツプの出銑毎lキャストの鋳造毎に測
温を中断する事になりホウ化物系セラミックスを用いた
保護管の場合その侵食i迂よりFdい時期に保護管が割
損する場合が多い。
However, when measuring the temperature of hot metal or molten steel in a blast furnace or continuous casting equipment, temperature measurement must be interrupted after each tap of pig iron is tapped and each liter of cast is cast. In many cases, the protection tube breaks at a time when Fd is faster than I.

これを防I卜するために該保護管本体1aの外表面に無
機質繊維層1dを被覆したものを配し、断続的な温度上
昇、下降を繰返しても保護管本体121が割損する事な
く安定して測温出来ることを容易に可能とするものであ
る。
In order to prevent this, the outer surface of the protective tube main body 1a is coated with an inorganic fiber layer 1d, so that the protective tube main body 121 remains stable without breaking even if the temperature repeatedly rises and falls intermittently. This makes it possible to easily measure temperature.

この繊維質層1dの被覆された保護管が溶湯の中に投入
された場合、又高温から取出された場合(1タツプの出
銑毎又はIキャストの鋳造毎)このファイバー層1dは
熱tit撃の緩和層となり容易に溶鋼で収縮し測温中に
スラグや地金の付着コートを形成し保護管を冷却時急冷
される・1■なく保温され割損を防1にする。
When the protective tube coated with this fibrous layer 1d is introduced into the molten metal and when it is removed from high temperature (for each tap of iron or I cast), this fibrous layer 1d is exposed to heat tit shock. It becomes a relaxation layer and easily shrinks with molten steel, forming an adhesion coat of slag and base metal during temperature measurement, and when cooling the protection tube, it is rapidly cooled and kept warm without 1. This prevents breakage.

この無機質繊維質層1dは、保護管本体1aの熱衝撃や
熱応力等の保護などの点から出来るだけ耐熱性のあるこ
とが必要であるため無機質繊維であることが必要であり
、なかでも融点が1400℃以」二程度のセラミ・ソク
スファイバーヲ主体とする繊維質層であることが望まし
7い。なお、繊維質の一部として、粘土、 j!!<機
質軽發粒子など配合したものであっても勿論差支えない
This inorganic fiber layer 1d needs to be as heat resistant as possible in order to protect the protection tube main body 1a from thermal shock and thermal stress, so it is necessary to be an inorganic fiber, and in particular, the melting point It is preferable that the layer be a fibrous layer mainly composed of ceramic fibers with a temperature of 1400° C. or higher. In addition, as part of the fibrous material, clay, j! ! <Of course, there is no problem even if it contains organic light particles.

以ド望ましい態様であるセラミックスファイバー層を例
をとって具体的に説明する。
Hereinafter, a preferred embodiment of the ceramic fiber layer will be specifically explained by taking an example.

即ち、望ましいセラミックスファイバー層はAlz03
−3iO□系のシリカ系、ジルコニア系、アルミナ系な
どのセラミックス繊維を主体としたブランケットやシー
ト状又は無機バインダーで成形された成形体としての円
筒状のものが適切である。
That is, a desirable ceramic fiber layer is Alz03
A blanket or sheet-like material mainly composed of -3iO□-based silica-based, zirconia-based, or alumina-based ceramic fibers, or a cylindrical molded object formed with an inorganic binder is suitable.

適切なセラミックスファイバー層は次の様なものである
A suitable ceramic fiber layer is as follows.

・組成 A1□0s−3iOz質を主成分としたファイバー例え
ばAl2O,40〜55%、Si0□ 60〜45%の
もの ・物性 繊維比重 2.5〜6.0 g/ am2平均繊維系 
 2.0〜15.0μm 嵩  比  重    0.05〜0.3  g / 
cm3熱伝導率   0.1〜0.4 kal/m、h
、℃(aL  1000℃ ) 具体的には以上の様な組成物を有するセラミックスファ
イバー層1dを保護管本体1aの外表面全体に厚さ5〜
50mm程度望ましくは20〜30mmに被覆して保護
管1を製作する。ブランケットやシート状の場合は針金
で数個所しばって固定する。又場合によっては吹付けに
より被覆することもできる。
・Composition A1□0s-3iOz fiber as main component, for example, Al2O, 40-55%, Si0□ 60-45% ・Physical properties Fiber specific gravity 2.5-6.0 g/am2 average fiber system
2.0~15.0μm Bulk Specific gravity 0.05~0.3 g/
cm3 thermal conductivity 0.1-0.4 kal/m, h
, °C (aL 1000 °C) Specifically, a ceramic fiber layer 1d having the above-mentioned composition is coated on the entire outer surface of the protective tube body 1a to a thickness of 5 to 50 °C.
The protective tube 1 is manufactured by covering the protective tube to a thickness of about 50 mm, preferably 20 to 30 mm. If it is in the form of a blanket or sheet, tie it in several places with wire to secure it. In some cases, the coating can also be applied by spraying.

なお、この被覆層1dは望ましくは本体1aのほぼ全外
周にわたって連続して形成しておくことであるが、勿論
目的によっては本体1aの上部分はなくてもよいが、溶
湯による輻射も厳しく本体1aや金属金具の保護の為に
全外周にわたって形成した方が好ましい。
Note that this coating layer 1d is desirably formed continuously over almost the entire outer circumference of the main body 1a, but of course the upper part of the main body 1a may be omitted depending on the purpose, but the radiation from the molten metal is also severe, It is preferable to form it over the entire outer periphery in order to protect 1a and metal fittings.

以上の様な構成によって製作された望ましい態様の熱電
対保護管Iは第2図に示される装置で使用される。以下
第2図について説明する。
A desirable embodiment of the thermocouple protection tube I manufactured as described above is used in the apparatus shown in FIG. FIG. 2 will be explained below.

熱電対保護管1は、測温に際して保温箱11で600°
C以上望ましくは1000〜+20口°Cに加熱バーナ
ー7で十分に予熱された後ガイドレール1oのついた芹
降装置8を使ってタンデイシュ鍋9へ投入される。
The thermocouple protection tube 1 is set at 600° in the heat insulation box 11 when measuring temperature.
After being sufficiently preheated with a heating burner 7 to a temperature of 1,000 to +20 degrees Celsius or above, it is placed into a tundish pot 9 using a discharging device 8 equipped with a guide rail 1o.

この場合熱電対保護管1の溶融金属溶湯に浸4”1した
場合の測温体熱電対2の温度の応答性、応答速度、測温
精度は測定温度の信頼性の意味から非常に重要である。
In this case, the temperature responsiveness, response speed, and temperature measurement accuracy of the temperature sensing thermocouple 2 when immersed in the molten metal of the thermocouple protection tube 1 are very important from the perspective of the reliability of the measured temperature. be.

第1図の熱電対性1獲管1の本体1aやAIzOi保護
管4等の形状や太さは」−2の測温精度応答性に影響す
る。例えばΔ1□0.−C管熱電対保護管では本体は直
径4゜φmm、内径20φmm、肉厚10φmmでAl
2O3保護管は熱電対の還元雰囲気劣化の保護の4二m
、三重にして使用されており、応答性や測温精度も遅く
低いと云われている。これらの事から応答性、測温精度
の高い熱電対保護管を提供するために種々検討しただ結
果第1図に示した構造形状で硼化物主成分の本体は直径
25mmφ、内径15mmφ、肉厚5mm(なお、肉厚
は概略3〜8mm程度のものが適切)とした。この寸法
肉厚は応答性、測温精度及本体の熱応力緩和の目的から
決まるものである。
The shape and thickness of the main body 1a of the thermocouple 1 capture tube 1, the AIzOi protection tube 4, etc. in FIG. 1 affect the temperature measurement accuracy response of -2. For example, Δ1□0. -The main body of the C-tube thermocouple protection tube is made of aluminum with a diameter of 4゜φmm, an inner diameter of 20φmm, and a wall thickness of 10φmm.
The 2O3 protection tube is 42m long to protect thermocouples from deterioration in reducing atmosphere.
They are used in three layers, and the response and temperature measurement accuracy are said to be slow and low. In order to provide a thermocouple protection tube with high responsiveness and temperature measurement accuracy, we conducted various studies and found that the structure shown in Figure 1 has a boride-based main body with a diameter of 25 mm, an inner diameter of 15 mm, and a wall thickness. 5 mm (appropriately, the wall thickness is about 3 to 8 mm). The dimensions and thickness are determined by the purpose of responsiveness, temperature measurement accuracy, and relaxation of thermal stress in the main body.

第3図はこの第1図の熱電対保護管1を第2図の測温装
置を使って実施した場合の溶融金属溶湯への浸漬取出の
際の熱衝撃割れや亀裂発生に対する関係を保温箱11の
予熱温度(即ち保護管1の温度)と溶融金属温度との温
度差と浸漬取出速度で示したものである。
Figure 3 shows the relationship between thermal shock cracking and cracking when the thermocouple protection tube 1 shown in Figure 1 is immersed in molten metal and removed using the temperature measuring device shown in Figure 2. The temperature difference between the preheating temperature of No. 11 (that is, the temperature of the protective tube 1) and the molten metal temperature and the immersion removal speed are shown.

熱電対保護管lの予熱温度は出来るだけ高い方が熱衝撃
性緩和のために必要であるが実際には、保温箱を設ける
事は少なく、タンデイシュ鍋にての輻射予熱やバーナー
等による予熱になる場合が多く 1200℃以上に予熱
するのは設備的に大変である。
It is necessary to preheat the thermocouple protection tube as high as possible in order to alleviate thermal shock, but in reality, a heat insulating box is rarely installed, and it is preferable to use radiation preheating in a tundish pot or preheating with a burner, etc. In many cases, preheating to 1200°C or higher is difficult in terms of equipment.

第3図で示したように予熱温度が低い場合には浸漬、取
出速度を十分遅くする必要があり、高い場合にはr7L
い速度で可能であるが、4m/min以下であれば熱衝
撃による亀裂・割れ折損に対する安全性は確保され又測
温体熱電対2の応答速度・測温精度も高い信頼性が得ら
れる。第3図の危険領域での予熱温度と浸漬取出速度で
は保護管lの亀裂割れ折損の発生や測温体2の応答性、
測温精度の信頼性も悪い事がわかった。
As shown in Figure 3, if the preheating temperature is low, it is necessary to slow down the immersion and removal speeds sufficiently; if the preheating temperature is high, r7L
Although this is possible at a speed of 4 m/min or less, safety against cracking, cracking, and breakage due to thermal shock is ensured, and the response speed and temperature measurement accuracy of the thermocouple 2 are also highly reliable. At the preheating temperature and immersion removal speed in the dangerous area shown in Fig. 3, cracks and breakage of the protective tube l occur, the responsiveness of the thermometer 2,
It was also found that the reliability of temperature measurement accuracy was poor.

第3図から分かるように望ましい態様は次の通りであり
、これは硼化物主体の保護管の場合には実用的に問題が
殆んどない範囲の保護管においてはその形状、肉厚など
にほぼかかわりなく共通した使用可能条件として適用し
うるものである。
As can be seen from Figure 3, the desirable aspects are as follows, and in the case of boride-based protection tubes, there are almost no practical problems with the protection tubes, and this is due to the shape, wall thickness, etc. It can be applied as a common usable condition almost regardless of the situation.

即ち、まずいずれの予熱温度でも必要なのは溶湯への浸
漬及び取出し速度は1分当り4m以下であり、望ましい
のは予熱温度と溶融金属温度との差が 550℃又はそ
れ以上であれば1m/分以下程度とすることである。
That is, at any preheating temperature, the immersion and removal speed of the molten metal is required to be 4 m/min or less, and preferably 1 m/min if the difference between the preheating temperature and the molten metal temperature is 550°C or higher. It should be about the following.

これは該温度差が550℃以下であれば、比較的浸漬又
は取出し速度を早くしてもある程度の信頼性が保てるか
らであり、またそうであっても該温度差が550℃以上
では十分な信頼性が得られなくなるので速度を落とす必
要があるからである。
This is because if the temperature difference is 550°C or less, a certain degree of reliability can be maintained even if the immersion or removal speed is relatively high, and even if this is the case, if the temperature difference is 550°C or more, sufficient reliability is maintained. This is because reliability will no longer be obtained, so the speed must be reduced.

一般的に予熱温度と溶融金属温度との差と速度の関係は
次のように理解できるものである。
Generally, the relationship between the difference between the preheating temperature and the molten metal temperature and the speed can be understood as follows.

Z r 112を主成分とする硼化物系の保護管では、
耐熱衝撃性がzrBz−sic複合複合へT−250〜
300°C,ZrB、−BN−SiC複合系で△T=5
00〜600°C1であり、この△T (℃)そのもの
の数値が実際の溶鋼温度へ浸漬又は取出した場合に合致
する事は困難であるが傾向は十分予測出来る(実際の測
温では溶鋼やスラグが保護管に付着し保護層を形成する
等単純ではない)。即ち、約1550℃の溶鋼を測定す
る場合、ZrBa−3iC系では1200℃程度の予熱
保温温度でなければ△T = 250〜300℃を越え
る事になり(例えば溶鋼温度1550℃とする) 、 
1000℃の予熱保温温度では温度差500〜600℃
になる。この場合あくまでZrL−3iC系で△T =
 250〜300℃を目安とすれば1200℃の予熱保
温が必要であり4m/分以下の速度で十分信頼性が得ら
れる。
In a boride-based protective tube whose main component is Zr 112,
Thermal shock resistance improves to zrBz-sic composite T-250~
300°C, ZrB, -BN-SiC composite system, △T=5
00 to 600°C1, and although it is difficult for the value of ΔT (°C) to match the actual temperature of molten steel when it is immersed in or taken out, the trend can be predicted sufficiently (in actual temperature measurements, molten steel and (It is not simple as the slag adheres to the protective tube and forms a protective layer.) That is, when measuring molten steel at about 1550°C, in the ZrBa-3iC system, unless the preheating temperature is about 1200°C, △T will exceed 250 to 300°C (for example, the molten steel temperature is 1550°C),
At a preheating temperature of 1000℃, the temperature difference is 500 to 600℃.
become. In this case, only ZrL-3iC system and △T =
If 250 to 300°C is used as a guideline, preheating and insulating at 1200°C is necessary, and sufficient reliability can be obtained at a speed of 4 m/min or less.

1000℃では温度差が大きくなるため速度を遅くし十
分保護管に温度分布がつかないように05m/分以下に
する事が必要である。
At 1000°C, the temperature difference becomes large, so it is necessary to slow down the speed to 05 m/min or less to prevent temperature distribution in the protection tube.

なお、浸漬、取出し手段は通常予め設定した自動化装置
で機械的に調整することが容易である。
Note that the immersion and extraction means can be easily adjusted mechanically using normally preset automated equipment.

[実施例] ZrB2粉末(1μ以下、純度99%以」二)にBN粉
末(1μ以下、純度99%以上)10%添加し、SiC
ボールでボットミルを用いエタノール溶媒を用い3 +
:J3間粉砕して取出後スプレィドライヤーにて有機バ
インダーを添加してものを造粒した。
[Example] 10% of BN powder (1μ or less, purity 99% or more) was added to ZrB2 powder (1μ or less, purity 99% or more), and SiC
Using a Botmill with a ball and using ethanol solvent 3 +
: After being pulverized for J3 and taken out, an organic binder was added using a spray dryer and the product was granulated.

この粉末を用いてラバープレスにより2000kg/c
m”で成形しAr雰囲気下で2100℃X3hr焼成し
、内径15φ、外径25φ、長さ850 mm℃の保護
管を製作した。(焼結体の分析値ZrBg 85%。
Using this powder, 2000 kg/c was produced using a rubber press.
A protective tube with an inner diameter of 15 φ, an outer diameter of 25 φ, and a length of 850 mm was manufactured by molding the tube at 2100°C for 3 hours in an Ar atmosphere. (Analysis value of the sintered body: ZrBg 85%.

8810%、 SiC5%、市川%) 又、ZrBz粉末(lμ以下、純度99%以上)をSi
Cボールを用い粉砕して粉末を得た。この粉末を用いラ
バープレス後、常圧焼成して内径15φ、外径25φ、
長さ850 mm℃の保護管を製作した。(焼結体の分
析値Zr11295%、 SiC5%、重量%) この保護管にA1□03扮末50%(150メツシユパ
ス)推仮ガラス粉末20%に結合材としての粘土15%
、無水硼砂5%の調合に3%濃度のPVA溶液でボット
ミルで混合し泥漿を得て、この泥漿を保護管本体の外表
面に付は塗りし乾燥した。
8810%, SiC5%, Ichikawa%) Also, ZrBz powder (less than lμ, purity 99% or more) was
It was ground using a C ball to obtain a powder. After rubber pressing this powder, it is fired under normal pressure to create an inner diameter of 15φ and an outer diameter of 25φ.
A protection tube with a length of 850 mm°C was manufactured. (Analysis values of sintered body: Zr11295%, SiC5%, weight%) This protective tube contains 50% A1□03 powder (150 mesh passes), 20% temporary glass powder, and 15% clay as a binder.
A mixture of 5% anhydrous borax and a 3% PVA solution was mixed in a bot mill to obtain a slurry, which was applied to the outer surface of the protective tube body and dried.

この保護管を電気炉中に入れ徐々に加熱し12DO”C
X2hr保持し保護管本体入口より空気を導入し内表面
を強制的に酸化し、保護管本体外表面にはガラス管皮膜
層を形成した(内表面酸化物層100μ、外表面ガラス
質皮膜層1mm厚さを形成した)。この保護管の内部に
熱電対(JIS−BlにA1□03絶縁管を配しA1□
03保護管に内装したものを組込み熱電対保護管を製作
した。この保護管の外表面にアルミナ−シリカファイバ
ー(商品名:力オウール+400)のブランケット(嵩
密度0.128g/cm3)を厚さ30mmに被覆し針
金で固定した(ファイバーの分析値A1□0.47.3
%SiC52,3%、重電%)。この保護管を用い、4
0t、onタンデイシュ鍋で保温炉を使用し測温を行っ
た。第2図に示した加熱バーナー式の保温箱で1200
℃で十分子熱し溶鋼中へ2 m/minと4m/min
の速度で浸漬した。測温は各25回鋳造毎保護管は温度
上界、下降を繰返し行われ、合計同0時間の間に正常に
測温出来た。測温温度値は消耗型の投込み成熱電対と比
べても才11度高く応答性も1〜2分以内と早く、又保
護管の割れなどの損傷もなく、測温出来る事が認められ
た。なお、溶w4温度は平均1550°Cであった。
This protective tube was placed in an electric furnace and gradually heated to 12DO"C.
The inner surface was forcibly oxidized by introducing air from the inlet of the protective tube body for 2 hours, and a glass tube coating layer was formed on the outer surface of the protective tube body (inner surface oxide layer 100μ, outer surface vitreous coating layer 1mm). (formed thickness). Inside this protection tube, a thermocouple (A1□03 insulation tube is placed in JIS-Bl)
A thermocouple protection tube was manufactured by incorporating the inner part of the 03 protection tube. The outer surface of this protective tube was covered with a blanket (bulk density 0.128 g/cm3) of alumina-silica fiber (trade name: Chikara Owl +400) to a thickness of 30 mm and fixed with a wire (analytical value of the fiber A1□0. 47.3
%SiC52,3%, heavy electric %). Using this protection tube, 4
The temperature was measured using a heat-retaining furnace in an on-tandish pot at 0 t. 1,200 yen with the heating burner type heat insulating box shown in Figure 2.
Heat at ℃ and pour into molten steel at 2 m/min and 4 m/min.
immersed at a speed of The temperature was measured 25 times for each casting, and the temperature of the protective tube was repeatedly raised and lowered, and the temperature was successfully measured within a total of 0 hours. The measured temperature value is 11 degrees higher than that of a consumable type immersion thermocouple, and the response is quick within 1 to 2 minutes, and it has been confirmed that temperature can be measured without damage such as cracks in the protective tube. Ta. Note that the melt w4 temperature was 1550°C on average.

溶鋼中の浸漬取出速度を5m/minとした場合で予熱
温度を1200℃では測温は各5回の繰返しが行われ合
計30時間の断続測温か出来たが、26〜27時間経過
中に時々測温の異常値が認められたので30時間後取出
して調べたところ、亀裂が認められ1部溶鋼が保護管内
部に侵入しており、そのために測温の異常が検出された
ものと考えられる。
When the immersion speed in molten steel was 5 m/min and the preheating temperature was 1200°C, temperature measurement was repeated 5 times each, resulting in intermittent temperature measurement for a total of 30 hours, but occasionally during 26 to 27 hours, An abnormal value was observed in the temperature measurement, so when it was taken out and examined 30 hours later, cracks were found and some molten steel had entered the inside of the protection tube, which is thought to be the reason why the temperature measurement abnormality was detected. .

又、1000°Cの予熱温度の場合でも0.5 m/m
inと] m/minの速度で浸漬及び取出の繰返しが
行われたが、I m/minの速度の場合各3回の鋳造
毎の断続測温で18時間測温したが早くも保護管に損傷
を来たし、測温温度値も15時時間上り不安定であった
。0.5m/minの速度では各20回の繰返し断続測
温で85時間の間正常に測温でき測定温度の精度、応答
性も正常であった。
Also, even at a preheating temperature of 1000°C, it is 0.5 m/m
Immersion and removal were repeated at a speed of 1 m/min, but at a speed of 1 m/min, the temperature was measured intermittently for 18 hours after every 3 castings, but the temperature was already in the protective tube. Damage occurred, and the measured temperature was unstable at 3:00 p.m. At a speed of 0.5 m/min, the temperature could be normally measured for 85 hours by repeated intermittent temperature measurements 20 times each, and the accuracy and responsiveness of the measured temperature were also normal.

[発明の効果] 以上の如く本発明の方法によれば長時間安定して溶融金
属の測温が可能となるため測温コストが低減し温度計の
信頼性が人[1]に向上する。
[Effects of the Invention] As described above, according to the method of the present invention, the temperature of molten metal can be measured stably for a long period of time, so the cost of temperature measurement is reduced and the reliability of the thermometer is improved [1].

これを使用する事によって自動化ラインによる省力化、
湯温調製、成分調製、トラブルの予知等製品の品質向上
、コストダウン、省力化に役立ちその工業的価値は多大
である。
By using this, labor saving due to automated line,
It has great industrial value as it helps improve product quality, reduce costs, and save labor by adjusting hot water temperature, preparing ingredients, and predicting troubles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のりQ型側を説明する縦断面説明図であ
る。 1・・・測温用保1獲笠、 1a・・・本体、1b・・
・内面酸化物層、 IC・・・外面ガラス質層、1d・
・・セラミックスファイバー層、2・・・熱電対、  
3・・・A120i絶縁管、4・・・A1□03保護管
、 5・・・固定金具、6・・・端子ボックス 第2図は本発明の測温用保護管の使用状況を説明する概
略図である。 I・・・測温用保護管、 7・・・加熱バーナー、8・
・・胃降装置、    9・・・タンデイシュ鍋、IO
・・・ガイドレール、 11・・・保温箱第3図は、本
発明の測温用保護管の予熱温度と溶融金属温度との差と
浸漬取出速度との関係を示した説明図である。図中の危
険とはこの範囲内以上の浸に1取出速度の場合熱応力発
生により保護管の損傷が起こる可能性の高い事を示して
いる。安全とはこの範囲内の浸漬取出速度の場合保護管
の損傷が少なく長時間の断熱測温に耐えることを示して
いる。 i  ノ IIZ
FIG. 1 is an explanatory longitudinal cross-sectional view illustrating the Q-shaped side of the glue according to the present invention. 1...Temperature measuring cap, 1a...Main body, 1b...
・Inner surface oxide layer, IC...Outer surface glassy layer, 1d・
... Ceramic fiber layer, 2... Thermocouple,
3...A120i insulation tube, 4...A1□03 protection tube, 5...fixing metal fittings, 6...terminal box Figure 2 is a schematic diagram explaining the usage situation of the temperature measurement protection tube of the present invention. It is a diagram. I...Protection tube for temperature measurement, 7...Heating burner, 8.
・・Gastric excretion device, 9・Tandish pot, IO
. . . Guide rail, 11 . . Heat insulation box FIG. 3 is an explanatory diagram showing the relationship between the difference between the preheating temperature and the molten metal temperature of the temperature measuring protection tube of the present invention and the immersion removal speed. The danger in the figure indicates that there is a high possibility that damage to the protection tube will occur due to thermal stress if the immersion/removal rate exceeds this range. Safe means that if the immersion/removal speed is within this range, the protection tube will be less damaged and can withstand long-term adiabatic temperature measurement. i no IIZ

Claims (1)

【特許請求の範囲】[Claims] (1)ホウ化物系セラミックス質からなる保護管にて測
温センサーを保護しつつ溶融物の湯温を測温するに際し
、保護管の溶融物への浸漬及び/又は取出速度を4m/
分以下にする事を特徴とする熱電対保護管の使用方法。
(1) When measuring the temperature of the molten material while protecting the temperature sensor with a protection tube made of boride-based ceramics, the immersion and/or removal speed of the protection tube into the molten material should be set at 4 m/min.
A method of using a thermocouple protection tube, which is characterized by a thermocouple protection tube of less than 1 minute.
JP15634488A 1988-06-24 1988-06-24 Use of thermocouple protective pipe Pending JPH01321326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15634488A JPH01321326A (en) 1988-06-24 1988-06-24 Use of thermocouple protective pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15634488A JPH01321326A (en) 1988-06-24 1988-06-24 Use of thermocouple protective pipe

Publications (1)

Publication Number Publication Date
JPH01321326A true JPH01321326A (en) 1989-12-27

Family

ID=15625712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15634488A Pending JPH01321326A (en) 1988-06-24 1988-06-24 Use of thermocouple protective pipe

Country Status (1)

Country Link
JP (1) JPH01321326A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115555U (en) * 1989-03-02 1990-09-17
JPH0482523U (en) * 1990-11-15 1992-07-17
JPH06229838A (en) * 1993-01-29 1994-08-19 Tokyo Yogyo Co Ltd Immersion thermocouple for measuring temperature of molten metal
DE19840198A1 (en) * 1998-04-20 1999-10-21 Rosemount Inc Temperature probe in fluid with sapphire sensor for processing fluids, especially oil evaporation installations
JP2012197478A (en) * 2011-03-22 2012-10-18 Nisshin Steel Co Ltd Tuyere unit and method for replacing thermocouple
CN106568519A (en) * 2016-11-07 2017-04-19 宁波精丰测控技术有限公司 Heat-resisting ceramic-armored high-temperature thermocouple and manufacturing method thereof
CN109282909A (en) * 2018-11-21 2019-01-29 山东奥科自控设备有限公司 A kind of high temperature, high-pressure anti-wear temperature measurer

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115555U (en) * 1989-03-02 1990-09-17
JPH0482523U (en) * 1990-11-15 1992-07-17
JPH06229838A (en) * 1993-01-29 1994-08-19 Tokyo Yogyo Co Ltd Immersion thermocouple for measuring temperature of molten metal
DE19840198A1 (en) * 1998-04-20 1999-10-21 Rosemount Inc Temperature probe in fluid with sapphire sensor for processing fluids, especially oil evaporation installations
US6059453A (en) * 1998-04-20 2000-05-09 Rosemount Inc. Temperature probe with sapphire thermowell
DE19840198B4 (en) * 1998-04-20 2007-09-13 Rosemount Inc., Eden Prairie Temperature probe with sapphire temperature gauge
JP2012197478A (en) * 2011-03-22 2012-10-18 Nisshin Steel Co Ltd Tuyere unit and method for replacing thermocouple
CN106568519A (en) * 2016-11-07 2017-04-19 宁波精丰测控技术有限公司 Heat-resisting ceramic-armored high-temperature thermocouple and manufacturing method thereof
CN106568519B (en) * 2016-11-07 2019-05-24 宁波精丰测控技术有限公司 Heat resistant type ceramic armor pyrometer couple and its manufacturing method
CN109282909A (en) * 2018-11-21 2019-01-29 山东奥科自控设备有限公司 A kind of high temperature, high-pressure anti-wear temperature measurer

Similar Documents

Publication Publication Date Title
KR950006015B1 (en) Temperature sensing device
US4721534A (en) Immersion pyrometer
US4216028A (en) Thermocouple protecting tube
WO1995011870A1 (en) Coating compositions for articles of graphite-alumina refractory material
CA2807856A1 (en) Device for measuring the temperature in molten metal
JPH01321326A (en) Use of thermocouple protective pipe
JP5110539B2 (en) FeO resistant coating material
JPH0365847B2 (en)
SI9720014A (en) Formation of a refractory repair mass
US6050723A (en) High temperature thermocouple assembly for measuring molten metal temperatures
JP2017122531A (en) Heat insulation structure of refractory
JPH01288740A (en) Thermocouple protective tube and manufacture thereof
JP2613086B2 (en) Thermocouple protection tube and its manufacturing method
JP2596789B2 (en) Protection tube type thermometer
JPH0629789B2 (en) Thermocouple protection tube
JP3250763B2 (en) Nozzle for casting containing carbon
JPH10197353A (en) Sensor for measurement of temperature of molten metal
JPH10197352A (en) Sensor for molten-metal temperature measurement
JP2627473B2 (en) Long stopper for continuous casting
JP3597641B2 (en) Refractories for metal refining and casting
JP6675916B2 (en) Refractory insulation structure
JP2001096344A (en) Immersion nozzle
JP2987228B2 (en) Protection tube type continuous thermometer
JPS6136179A (en) Heat resistant protecting pipe
JPH02663Y2 (en)