JPH01321040A - Forging machine - Google Patents

Forging machine

Info

Publication number
JPH01321040A
JPH01321040A JP15212588A JP15212588A JPH01321040A JP H01321040 A JPH01321040 A JP H01321040A JP 15212588 A JP15212588 A JP 15212588A JP 15212588 A JP15212588 A JP 15212588A JP H01321040 A JPH01321040 A JP H01321040A
Authority
JP
Japan
Prior art keywords
forged
forging
rotation angle
angle
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15212588A
Other languages
Japanese (ja)
Other versions
JP2570818B2 (en
Inventor
Hiroshi Takahashi
宏 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP63152125A priority Critical patent/JP2570818B2/en
Publication of JPH01321040A publication Critical patent/JPH01321040A/en
Application granted granted Critical
Publication of JP2570818B2 publication Critical patent/JP2570818B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PURPOSE:To set a large feed rate and to improve productivity by setting a prescribed angle of rotation to rotate a material to be forged by a manipulator every draft to a value according to a radial forging condition. CONSTITUTION:A control panel 30 is connected with a control circuit 29 and switches, etc., of the control panel 30 are operated to set an angle of rotation to a desired value. The control circuit 29 outputs a driving signal corresponding to the set angle and supplies it to a driving motor 25. The driving motor 25 rotates according to an inputted driving signal, this rotation is transmitted to a driving shaft 20 and the driving shaft 20 is rotated by a set angle. Every time one draft is completed, the material to be forged is sent by a transfer device in its axial direction at a specified feed rate to a forging machine side and at the same time the material to be forged is rotated by the driving motor 25 round its axis by a set angle.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、鍛造装置に関し、特に、被鍛造材の周方向
均等位置に配設された例えば4つの金敷を同時に圧下し
て被鍛造材を鍛伸する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a forging device, and particularly to a forging device that simultaneously presses down, for example, four anvils arranged at equal positions in the circumferential direction of a to-be-forged material. Related to forging and stretching equipment.

(従来の技術) マニピュレータ装置に把持された被鍛造材をその軸方向
に対し直交する複数の方向から金敷により同時に圧下し
、当該被鍛造材をスェージングにより鍛伸(細径化、テ
ーパ化等)する鍛造装置は公知である。第1図乃至第3
図は斯かる鍛造装置を示し、図示しない加熱炉で鍛造温
度に加熱された被鍛造材10は、鍛造装置1の前部マニ
ピュレータ装置3及び後部マニピュレータ装置5に交互
に把持され、片持ち状態で鍛造機4に送り込まれる。鍛
造機4は被鍛造材10の外周均等位置、即ち、90″間
隔で配設される4つの金敷4a〜4dを備え、これらの
金敷4a〜4dは被鍛造材10の軸方向に対して直角方
向に同時に移動し、被鍛造材10を圧下する。そして、
金敷4a〜4dによる一回の圧下毎にマニピュレータ装
置3又は5は鍛造機4側に前進して被鍛造材10を所定
距離だけ軸方向に、即ち、第3図の矢印Yで示す方向に
移動させると共に、第2図の矢印Xで示す方向に所定角
度θだけ回転させた後、再び金敷4a〜4dによる圧下
が繰り返される。斯くして、被鍛造材10は鍛造機4に
所定回数バスすることによって所望の外径に鍛伸される
(Prior art) A forged material held by a manipulator device is simultaneously rolled down by an anvil from multiple directions orthogonal to its axial direction, and the forged material is forged (reduced in diameter, tapered, etc.) by swaging. Forging equipment for this purpose is well known. Figures 1 to 3
The figure shows such a forging device, and a forged material 10 heated to a forging temperature in a heating furnace (not shown) is held alternately by the front manipulator device 3 and the rear manipulator device 5 of the forging device 1, and is held in a cantilevered state. It is sent to the forging machine 4. The forging machine 4 includes four anvils 4a to 4d arranged at equal positions on the outer circumference of the material to be forged 10, that is, at intervals of 90'', and these anvils 4a to 4d are perpendicular to the axial direction of the material to be forged 10. simultaneously move in the direction and roll down the forged material 10. Then,
Each time the anvils 4a to 4d are pressed down once, the manipulator device 3 or 5 advances toward the forging machine 4 and moves the forged material 10 by a predetermined distance in the axial direction, that is, in the direction indicated by arrow Y in FIG. At the same time, after rotating by a predetermined angle θ in the direction indicated by the arrow X in FIG. 2, the rolling down by the anvils 4a to 4d is repeated again. In this way, the material 10 to be forged is passed through the forging machine 4 a predetermined number of times to be forged and elongated to a desired outer diameter.

(発明が解決しようとする課題) 斯かる鍛造装置1の鍛造速度を増加させ生産効率を向上
させるには被鍛造材10の1パス当たりの圧下量(鍛伸
率5減面率)及び/又は送り速度を増加させると良い。
(Problems to be Solved by the Invention) In order to increase the forging speed of such forging device 1 and improve production efficiency, the reduction amount per pass of the forged material 10 (forging elongation rate 5 area reduction rate) and/or It is better to increase the feed rate.

しかしながら、例えば、マニピュレータ装置による被鍛
造材の回転角度を一定にして単に被鍛造材の送り速度を
増加させると、送り速度を増加させるに従ってマニピュ
レータ装置のチャック装置と被鍛造材間で滑りが生じ、
被鍛造材の同じ位置が繰り返し圧下される結果、被鍛造
材の凸形状が大きくなり、送り速度を無闇に増加させる
ことが出来なかった。
However, for example, if the rotation angle of the material to be forged by the manipulator device is kept constant and the feed rate of the material to be forged is simply increased, as the feed rate increases, slipping occurs between the chuck device of the manipulator device and the material to be forged.
As a result of the same position of the forged material being repeatedly rolled down, the convex shape of the forged material becomes large, making it impossible to increase the feed rate arbitrarily.

又、初期のパスでは被鍛造材の回転角度を大きく設定し
て圧下量を大きし、被鍛造材の鍛伸を効率よく行い、仕
上げパスでは回転角度を小さく設定して被鍛造材の仕上
げ表面の凹凸を小さくすることが望ましい。しかしなが
ら、マニピュレータ装置による被鍛造材の、−圧下毎の
回転角度が常に一定値でこれを変更することが出来ない
場合には、上述のように生産性の向上と同時に仕上がり
凸形状が良好な鍛伸が実現できない。
In addition, in the initial pass, the rotation angle of the forged material is set large to increase the reduction amount to efficiently forge and elongate the forged material, and in the finishing pass, the rotation angle is set small to improve the finished surface of the forged material. It is desirable to reduce the unevenness of the surface. However, if the rotation angle for each reduction of the material to be forged by the manipulator device is always a constant value and cannot be changed, it is possible to improve productivity and improve the finished convex shape as described above. Growth cannot be achieved.

本発明は斯かる課題を解決するためになされたものであ
り、被鍛造材の送り速度を大きく設定してもマニピュレ
ータ装置のチャック装置と被鍛造材間に滑りが生じるこ
となく、従って、生産性の向上が図れ、又、同じ送り速
度であっても1パス毎の圧下数(ハンマープロー数)を
可変にすることが出来る鍛造装置を提供することを目的
とする。
The present invention has been made to solve such problems, and even if the feed rate of the material to be forged is set high, slippage does not occur between the chuck device of the manipulator device and the material to be forged, and therefore productivity is improved. It is an object of the present invention to provide a forging device that can improve the forging speed and make the number of reductions per pass (the number of hammer pulls) variable even at the same feed rate.

(課題を解決するための手段) 上述の目的を達成するために本発明に依れば、マニピュ
レータ装置に把持された被鍛造材をその軸方向に対し直
交する複数の方向から金敷により同時に圧下し、1回の
圧下毎に被鍛造材をその軸方向に所定量宛移動させると
共にその軸周りに所定回転角度宛回転させて被鍛造材を
鍛伸する鍛造装置において、前記マニピュレータ装置は
、前記所定回転角度を鍛伸条件に応じた値に設定可能に
構成されていることを特徴とする鍛造装置が提供される
(Means for Solving the Problems) In order to achieve the above-mentioned object, according to the present invention, a forged material held by a manipulator device is simultaneously rolled down by an anvil from a plurality of directions perpendicular to its axial direction. , a forging device that forges and stretches a forged material by moving the material to be forged by a predetermined amount in the axial direction and rotating the material by a predetermined rotation angle around the axis each time the manipulator device A forging device is provided, characterized in that the rotation angle can be set to a value depending on forging and stretching conditions.

(作用) 発明者が種々研究した結果、被鍛造材の鋼種、加熱温度
、金敷の当接面の傾き角度等により変化するが、被鍛造
材の最大可能な送り速度と回転角度との間には密接な関
係があることが判明し、被鍛造材の鍛伸条件に応じて被
鍛造材の回転角度を最適値に設定すれば、被鍛造材の送
り速度を最大値に設定することができる6本発明は斯か
る知見に基づくものであり、マニピュレータ装置により
被鍛造材を1回の圧下毎に所定の回転角度宛回転させる
その回転角度を被鍛造材の鍛伸条件に応じた値に設定す
ることにより、被鍛造材の送り速度、従って圧下量を最
大値に設定することを可能にする。
(Function) As a result of various studies conducted by the inventor, the difference between the maximum possible feed rate and rotation angle of the forged material varies depending on the steel type of the forged material, heating temperature, inclination angle of the contact surface of the anvil, etc. It has been found that there is a close relationship between the two, and if the rotation angle of the forged material is set to the optimum value according to the forging and elongation conditions of the forged material, the feed rate of the forged material can be set to the maximum value. 6 The present invention is based on such knowledge, and includes a manipulator device that rotates the material to be forged to a predetermined rotation angle for each reduction, and sets the rotation angle to a value that corresponds to the forging and stretching conditions of the material to be forged. By doing so, it is possible to set the feed rate of the material to be forged, and therefore the reduction amount, to the maximum value.

以下本発明の一実施例を図面に基づいて詳細に説明する
An embodiment of the present invention will be described in detail below based on the drawings.

本発明に係る鍛造装置は、被鍛造材の回転角度を鍛伸条
件に応じた値に設定可能であることを除いて従来のこの
種の鍛造装置と何ら変わりがない。
The forging device according to the present invention is no different from conventional forging devices of this type, except that the rotation angle of the material to be forged can be set to a value depending on the forging and stretching conditions.

従って、第1図乃至第3図において説明した従来の鍛造
装置と同じ構成要素については、これらの図面を参照し
て説明する。
Therefore, the same components as those of the conventional forging apparatus described in FIGS. 1 to 3 will be described with reference to these drawings.

第4図は、マニピュレータ装置3及び5の概略構成を示
し、被鍛造材10を回転させる機構部分のみを示す、マ
ニピュレータ装置3(5)の駆動軸20の一端に、被鍛
造材10を把持するチャック装置21が取り付けられて
おり、図示しない油圧装置により油圧制御される。駆動
軸2oの中間位置にはウオームギア23が固設され、こ
のウオームギア23にウオーム22が噛合している。ウ
オーム22には■プーリー24aが取り付けられており
、このVブー’J −24aと、駆動軸20を回転駆動
する駆動モータ25のVプーリー25aとの間にVベル
ト26が掛回されている。駆動モータ25は制御回路2
9に電気的に接続され、入力する駆動信号に応じて回転
し、この回転はVベルト26、ウオーム24、ウオーム
ギア23等を介して駆動軸20に伝達され、駆動軸20
を設定角度θだけ回転させる。駆動軸20の他端にはブ
レーキドラム28a及びブレーキシュー装置28bを備
えて成るブレーキ装置28が取り付けられ、このブレー
キ装置28は駆動モータ25により回転駆動された駆動
軸20を所定位置で停止させる。
FIG. 4 shows a schematic configuration of the manipulator devices 3 and 5, showing only the mechanical part for rotating the material to be forged 10. The material to be forged 10 is gripped at one end of the drive shaft 20 of the manipulator device 3 (5). A chuck device 21 is attached and is hydraulically controlled by a hydraulic device (not shown). A worm gear 23 is fixed at an intermediate position of the drive shaft 2o, and the worm 22 meshes with the worm gear 23. A pulley 24a is attached to the worm 22, and a V-belt 26 is wound between this V-boo'J-24a and a V-pulley 25a of a drive motor 25 that rotationally drives the drive shaft 20. The drive motor 25 is the control circuit 2
9 and rotates according to the input drive signal, and this rotation is transmitted to the drive shaft 20 via the V-belt 26, the worm 24, the worm gear 23, etc.
is rotated by a set angle θ. A brake device 28 comprising a brake drum 28a and a brake shoe device 28b is attached to the other end of the drive shaft 20, and this brake device 28 stops the drive shaft 20 rotated by the drive motor 25 at a predetermined position.

制御回路29には操作盤30が接続されており、この操
作盤30の図示しないスイッチ等を操作することにより
前述の回転角度θを所望値に設定可能であり、制御回路
29は設定角度θに対応する上述の駆動信号を出力して
駆動モータ25に供給するように構成されている。
An operation panel 30 is connected to the control circuit 29, and by operating switches (not shown) on the operation panel 30, the rotation angle θ can be set to a desired value. It is configured to output the corresponding above-mentioned drive signal and supply it to the drive motor 25.

第5図は被鍛造材10が鍛造機4の金敷4a〜4dの一
つにより順次圧下されていく様子を、当該金敷の特定の
軸方向位置での被鍛造材lOの断面を示したものであり
、被鍛造材10は、1回の圧下が終了する毎にその軸方
向に図示しない送り装置により所定の送り速度で鍛造機
4側に送られると同時に、駆動モーフ25によりその軸
周りに設定角度θだけ回転させられる。第5図中外周円
弧は鍛造開始前の被鍛造材10の外周面を示し、内周円
弧は1パスで鍛伸された被鍛造材lOの鍛造後の外周面
を示す、そして、斜線A jl域は1回目の圧下による
圧下量を示し、この場合の金敷の鍛造力Fは作用点1に
作用する。同様に斜線BfiJf域は2回目、・・・・
・・、斜線DSi域は4回目の各圧下による圧下量を示
す、金敷による圧下が進むと、圧下時に金敷4a〜4d
が被鍛造材10に最初に接触する場所が移動し、2回目
では2°点に、3回目は3゛点に、4回目は4゛点に夫
々移動する。
FIG. 5 shows how the forged material 10 is successively rolled down by one of the anvils 4a to 4d of the forging machine 4, and shows a cross section of the forged material 10 at a specific axial position of the anvil. The forged material 10 is sent in the axial direction to the forging machine 4 at a predetermined feeding speed by a feeding device (not shown) each time one round of rolling is completed, and at the same time, the material 10 is set around the axis by the drive morph 25. It can be rotated by an angle θ. In FIG. 5, the outer circumferential arc indicates the outer circumferential surface of the forged material 10 before the start of forging, and the inner circumferential arc indicates the outer circumferential surface of the forged material 10 that has been forged and elongated in one pass after forging, and the diagonal line A jl The area indicates the amount of reduction due to the first reduction, and the forging force F of the anvil in this case acts on point 1 of application. Similarly, the shaded BfiJf area is the second time...
..., the diagonal line DSi area indicates the amount of reduction due to each fourth reduction.As the reduction by the anvil progresses, the anvils 4a to 4d
The place where the forged material 10 first contacts moves, and the second time it moves to the 2° point, the third time it moves to the 3° point, and the fourth time it moves to the 4° point.

例えば、4回目の鍛造力Fが最初に作用する作用点4°
は被鍛造材10の中心Oを通る鍛造中心CLから距離(
偏倚量)lだけ離れており、第5図に示すように鍛造力
の作用点が鍛造中心CLから被鍛造材の回転方向(第5
図矢印Xで示す方向)と逆方向に偏倚すると、圧下時に
被鍛造材10の回転方向と逆方向に被鍛造材10を回動
させるモーメントが作用することになる。
For example, the point of action 4° where the fourth forging force F first acts
is the distance from the forging center CL passing through the center O of the forged material 10 (
As shown in Fig. 5, the point of application of the forging force is away from the forging center CL in the direction of rotation of the forged material
If the forged material 10 is deflected in a direction opposite to the direction shown by the arrow X in the drawing, a moment will be applied that rotates the forged material 10 in a direction opposite to the rotational direction of the forged material 10 during rolling.

このような鍛造力Fの作用点は金敷の軸方向位置により
異なる。第6図は金敷の軸方向位置に沿う上述の鍛造力
の作用点の偏倚量2の変化を、回転角度θをパラメータ
(θ1〜θ1、θ1〈θ2〈θ、)として示しである。
The point of application of such forging force F differs depending on the axial position of the anvil. FIG. 6 shows the change in the deviation amount 2 of the point of application of the forging force along the axial position of the anvil, using the rotation angle θ as a parameter (θ1 to θ1, θ1<θ2<θ,).

第6図から明らかなように、偏倚量2は回転角θが小さ
いと(回転角度が01の場合)各位置での偏倚Mlが大
きくなり被鍛造材10を逆方向に回転させる大きなモー
メントが作用することになる。被鍛造材10の送り速度
が小さい間は圧下量が小さいためにこのような大きなモ
ーメントが作用しても鍛伸が可能である。しかしながら
、送り速度の増加と共に圧下量が増加すると、第4図に
示すブレーキ装置28により、駆動軸20を停止位置に
保持しようとしても駆動軸20とチャック装置21との
間に滑りが生じて圧下中に逆方向に回動されて元の位置
に戻り、同じ位置を繰り返し鍛錬することになる。
As is clear from FIG. 6, when the rotation angle θ is small (when the rotation angle is 01), the deviation Ml at each position becomes large, and a large moment acts to rotate the forged material 10 in the opposite direction. I will do it. While the feed rate of the forged material 10 is low, the reduction amount is small, so forging and elongation is possible even when such a large moment acts. However, when the amount of reduction increases with the increase in feed rate, even if the brake device 28 shown in FIG. Inside, you will be rotated in the opposite direction and returned to the original position, and you will have to train in the same position repeatedly.

その結果、鍛伸された被鍛造材10の表面形状は多角面
となり、表面の凸形状が大きくなる。
As a result, the surface shape of the forged material 10 that has been forged and elongated becomes a polygonal surface, and the convex shape of the surface becomes large.

一方、回転角度θが大き過ぎると(回転角度がθ、の場
合)、逆に被鍛造材10を回動方向Xに回動させようと
するモーメントが作用することになり、この場合にも送
り速度に依っては鍛伸された被鍛造材の外表面凸形状が
大きくなり、好ましくない。
On the other hand, if the rotation angle θ is too large (when the rotation angle is θ), a moment will act to rotate the forged material 10 in the rotation direction X, and in this case as well, the feed Depending on the speed, the convex shape on the outer surface of the forged material becomes large, which is not preferable.

回転角度θ□で被鍛造材lOを回動する場合には、第6
図に示すように、図中金敷の左半部でプラスのモーメン
ト、即ち、被鍛造材10を回動力向Xと逆の方向に回動
させるモーメントが生じ、右半部でマイナスのモーメン
ト、即ち、同じ方向に回動させるモーメントが生じ、こ
れらのモーメントが相殺され、鍛造力Fによるモーメン
トが小さくなる。このため、被鍛造材10とチャック装
置21との間の回転滑りが少なくなり、被鍛造材10の
送り速度を増加させることができる。
When rotating the forged material lO at the rotation angle θ□, the sixth
As shown in the figure, a positive moment, that is, a moment that rotates the forged material 10 in the direction opposite to the rotational force direction X, is generated in the left half of the anvil, and a negative moment, that is, is generated in the right half of the anvil. , moments for rotation in the same direction are generated, these moments cancel each other out, and the moment due to the forging force F becomes smaller. Therefore, rotational slippage between the material to be forged 10 and the chuck device 21 is reduced, and the feeding speed of the material to be forged 10 can be increased.

最適回転角度θは種々の鍛伸条件によって設定される。The optimum rotation angle θ is set according to various forging and stretching conditions.

このa諌条件には、被鍛造材の鋼種、鍛造部外径、鍛錬
比(圧下量)、送り速度、鍛造温度、金敷による一回の
圧下量及び圧下回数(ハンマープロー数)、金敷形状等
が含まれる。
These conditions include the steel type of the material to be forged, the outer diameter of the forged part, the forging ratio (reduction amount), the feed rate, the forging temperature, the amount of reduction and the number of reductions per time by the anvil (the number of hammer blows), the shape of the anvil, etc. is included.

又、回転角度θを大きい値に設定すると、lパス当たり
の圧下回数(ハンマーブロー数)が少なくなり、局部発
生熱(加工発熱)は早期に分散され、恒温鍛造を行う上
で有利である。一方、回転角度θを小さくすると、被鍛
造材10の送り速度と回転角度との関係から被鍛造材1
0に生じる歪深さが深くなり、内部歪浸透度が大きくな
ると共に1パス当たりのハンマーブロー数が多くなり、
1パス当たりの歪の掛かる比率が高まる。しかしながら
、回転角度θを小さくすればするほど鍛伸された被鍛造
材の外表面は多角面となり、表面凸形状が小さくなるの
で仕上げバスでは回転角度θを小さく設定すると有利で
ある。
Further, when the rotation angle θ is set to a large value, the number of rolling reductions per pass (hammer blow number) is reduced, and locally generated heat (processing heat generation) is quickly dispersed, which is advantageous in performing isothermal forging. On the other hand, if the rotation angle θ is made smaller, the relationship between the feed rate of the forged material 10 and the rotation angle indicates that the forged material 10 is
The strain depth generated at 0 becomes deeper, the internal strain penetration becomes larger, and the number of hammer blows per pass increases.
The ratio of distortion per pass increases. However, the smaller the rotation angle θ is, the more the outer surface of the forged material becomes polygonal and the surface convexity becomes smaller, so it is advantageous to set the rotation angle θ smaller in the finishing bath.

(実施例) 外径16Qmmの超硬合金5KD61材料を鍛造温度1
150°Cに加熱し、第1表に示す種々の送り速度及び
回転角度で鍛錬し、1パスでいずれも外径110mmに
細径化した。このとき当接面が被鍛造材に対して4°傾
斜した金敷を使用し、ハンマーブロー数200回/分、
回転角度13°。
(Example) Cemented carbide 5KD61 material with an outer diameter of 16Qmm was forged at a temperature of 1.
It was heated to 150°C and forged at various feed speeds and rotation angles shown in Table 1, and the outer diameter was reduced to 110 mm in one pass. At this time, an anvil with a contact surface inclined at 4 degrees with respect to the material to be forged was used, and the number of hammer blows was 200 times/min.
Rotation angle 13°.

19@、26°、送り速度6m/s+in  ・8w/
sinに夫々に設定した。12造後の被鍛造材の仕上り
形状、内部品質から鍛伸条件の良否を評価した0表1中
、◎は生産性が高く、表面キズ、真円度、マクロ組織(
内部鍛練効果)等の鋼材の品質が良好なもの、○は生産
性が低いものの鋼材の品質が良好なもの、×は鋼材の表
面凸形状が大きく、品質上古るものを示す。
19@, 26°, feed speed 6m/s+in ・8w/
sin respectively. 12 In Table 1, which evaluates the quality of forging conditions from the finished shape and internal quality of the forged material after forging, ◎ indicates high productivity, and there are no surface scratches, roundness, macrostructure (
○ indicates that the quality of the steel material is good, such as internal training effect), ○ indicates that the productivity is low but the quality of the steel material is good, and × indicates that the steel material has large surface convexities and is old in terms of quality.

注1)単位m/win (発明の効果) 以上詳述したように本発明の鍛造装置に依れば、マニピ
ュレータ装置により被鍛造材を1回の圧下毎に所定の回
転角度宛回転させるその回転角度を被鍛造材の鍛伸条件
に応じた値に設定することにより、被鍛造材の送り速度
を可能な限り大きく設定することができ、生産性が向上
すると共に被鍛造材の品質が向上する。又、同じ送り速
度であっても1パス当たりのハンマーブロー数を可変に
することが出来、パス毎に鍛錬度を変えて最適な圧下量
が選択できる。
Note 1) Unit: m/win (Effect of the invention) As detailed above, according to the forging apparatus of the present invention, the rotation of the forged material by the manipulator device to a predetermined rotation angle for each reduction. By setting the angle to a value that corresponds to the forging conditions of the material to be forged, the feed rate of the material to be forged can be set as high as possible, which improves productivity and the quality of the material to be forged. . Furthermore, even at the same feed speed, the number of hammer blows per pass can be varied, and the degree of forging can be changed for each pass to select the optimal rolling reduction amount.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は鍛造装置の全体構成を示す概略側面図、第2図
は、第1図に示す鍛造機4の金敷4a〜4dのレイアウ
トを示す断面図、第3図は同軸方向断面図、第4図は、
第1図に示すマニピュレータ装置5の構成を示す概略斜
視図、第5図は被鍛造材10の回転に伴って変化する、
鍛造力Fの作用点位置を説明するための図、第6図は金
敷のそれぞれの軸方向位置における鍛造力の作用点の偏
倚量を示すグラフである。 1・・・鍛造装置、2,5・・・マニピュレータ装置、
4・・・鍛造機、4a〜4d・・・金敷、10・・・被
鍛造材、20・・・駆動軸、21・・・チッヤク装置、
23・・・ウオームギア、24・・・ウオーム、25・
・・駆動モータ、28・・・ブレーキ装置、29・・・
制御装置、30・・・操作盤。
FIG. 1 is a schematic side view showing the overall configuration of the forging device, FIG. 2 is a sectional view showing the layout of the anvils 4a to 4d of the forging machine 4 shown in FIG. 1, FIG. 3 is a coaxial sectional view, and FIG. Figure 4 is
A schematic perspective view showing the configuration of the manipulator device 5 shown in FIG. 1, and FIG.
FIG. 6, which is a diagram for explaining the position of the point of application of the forging force F, is a graph showing the amount of deviation of the point of application of the forging force at each axial position of the anvil. 1... Forging device, 2, 5... Manipulator device,
4... Forging machine, 4a to 4d... Anvil, 10... Forged material, 20... Drive shaft, 21... Check device,
23... Worm gear, 24... Worm, 25.
... Drive motor, 28... Brake device, 29...
Control device, 30... operation panel.

Claims (1)

【特許請求の範囲】[Claims] マニピュレータ装置に把持された被鍛造材をその軸方向
に対し直交する複数の方向から金敷により同時に圧下し
、1回の圧下毎に被鍛造材をその軸方向に所定量宛移動
させると共にその軸周りに所定回転角度宛回転させて被
鍛造材を鍛伸する鍛造装置において、前記マニピュレー
タ装置は、前記所定回転角度を鍛伸条件に応じた値に設
定可能に構成されていることを特徴とする鍛造装置。
The material to be forged held by the manipulator device is simultaneously rolled down by an anvil from multiple directions orthogonal to the axial direction of the material, and the material to be forged is moved a predetermined amount in the axial direction and around the axis for each reduction. A forging device for forging and stretching a forged material by rotating it to a predetermined rotation angle, wherein the manipulator device is configured to be able to set the predetermined rotation angle to a value according to forging and stretching conditions. Device.
JP63152125A 1988-06-22 1988-06-22 Forging equipment Expired - Lifetime JP2570818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63152125A JP2570818B2 (en) 1988-06-22 1988-06-22 Forging equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63152125A JP2570818B2 (en) 1988-06-22 1988-06-22 Forging equipment

Publications (2)

Publication Number Publication Date
JPH01321040A true JPH01321040A (en) 1989-12-27
JP2570818B2 JP2570818B2 (en) 1997-01-16

Family

ID=15533610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63152125A Expired - Lifetime JP2570818B2 (en) 1988-06-22 1988-06-22 Forging equipment

Country Status (1)

Country Link
JP (1) JP2570818B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100322645B1 (en) * 1997-07-15 2002-07-03 피터 왕 Cold Forging Machine and Gearing Device for Gear Rolling
WO2015052826A1 (en) * 2013-10-11 2015-04-16 株式会社日立製作所 Forging method
CN112893725A (en) * 2020-12-29 2021-06-04 常州中钢精密锻材有限公司 Method for improving surface quality of titanium alloy forging
CN113102672A (en) * 2021-05-20 2021-07-13 山西太钢不锈钢股份有限公司 Method for forging five-ton octagonal ingot by using radial forging machine
CN114850371A (en) * 2022-04-21 2022-08-05 山东亿盛铝业股份有限公司 Automobile-used running-board forming device of high rigidity stand wear and tear's SUV

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100322645B1 (en) * 1997-07-15 2002-07-03 피터 왕 Cold Forging Machine and Gearing Device for Gear Rolling
WO2015052826A1 (en) * 2013-10-11 2015-04-16 株式会社日立製作所 Forging method
CN112893725A (en) * 2020-12-29 2021-06-04 常州中钢精密锻材有限公司 Method for improving surface quality of titanium alloy forging
CN113102672A (en) * 2021-05-20 2021-07-13 山西太钢不锈钢股份有限公司 Method for forging five-ton octagonal ingot by using radial forging machine
CN114850371A (en) * 2022-04-21 2022-08-05 山东亿盛铝业股份有限公司 Automobile-used running-board forming device of high rigidity stand wear and tear's SUV

Also Published As

Publication number Publication date
JP2570818B2 (en) 1997-01-16

Similar Documents

Publication Publication Date Title
US3422518A (en) Method of reforming tubular metal blanks into inner-fin tubes
JPH01321040A (en) Forging machine
EP0610510A1 (en) Method of radial forging of blank
US6135343A (en) Method for roll forming and machine and blank for this
JPH0679390A (en) Forging method of bar stock
US3379047A (en) Forging process and machine
US3568288A (en) Apparatus and method for making finned tubing
JPH03275213A (en) Continuously drawing device for metallic wire or metallic pipe
US3742747A (en) Method for shaping indented steel wire and apparatus therefor
JP5036266B2 (en) Rolled flat die and method for producing the rolled flat die
KR20080018627A (en) Straightening machine for polygonal metal rod and tube
US315349A (en) Machine foe bollina screws
JPH01127132A (en) Method and device for hot forging
TW201446354A (en) Metal tube-twisting method and device
KR101758784B1 (en) Plastic deforming device and method using the repeated torsion
CN216881043U (en) Precise three-roller inclined longitudinal hollow shaft rolling mill with core anvil
JPS6343162B2 (en)
CN2426772Y (en) Balanced four-gear groove mill head
JP2000051983A (en) Method for form rolling
US361954A (en) mannesmann
JPH02235506A (en) Molding method of conical or taper material for metal tube and apparatus
JPS60118347A (en) Formation of stepped shaft and its similar shape
US3203214A (en) Device for forming corrugations in metallic sheet or plate
KR20170041353A (en) Plastic deforming device and method using the repeated torsion
JPH0459056B2 (en)