JPH0132081B2 - - Google Patents
Info
- Publication number
- JPH0132081B2 JPH0132081B2 JP55100516A JP10051680A JPH0132081B2 JP H0132081 B2 JPH0132081 B2 JP H0132081B2 JP 55100516 A JP55100516 A JP 55100516A JP 10051680 A JP10051680 A JP 10051680A JP H0132081 B2 JPH0132081 B2 JP H0132081B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- container
- filling
- specific gravity
- bulk specific
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000843 powder Substances 0.000 claims description 93
- 230000005484 gravity Effects 0.000 claims description 29
- 238000007872 degassing Methods 0.000 claims description 16
- 230000035939 shock Effects 0.000 claims description 7
- 239000002245 particle Substances 0.000 claims description 6
- 238000000034 method Methods 0.000 description 25
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 11
- 235000012239 silicon dioxide Nutrition 0.000 description 11
- 239000002655 kraft paper Substances 0.000 description 7
- 238000013016 damping Methods 0.000 description 5
- 238000012856 packing Methods 0.000 description 5
- 230000035699 permeability Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 2
- 239000001095 magnesium carbonate Substances 0.000 description 2
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Landscapes
- Basic Packing Technique (AREA)
- Air Transport Of Granular Materials (AREA)
Description
本発明は嵩高な粉体を高密度で且つ迅速に容器
内に充填するための方法に関する。
一般に、粉体製品はその嵩が大きく、物流経費
の増大を招くという問題を有する。特に嵩大な粉
体製品において上記問題は深刻である。
従来、上記問題を解消するため、粉体を充填す
る容器内を減圧すること及び容器内粉体に気体衡
撃を加えることを交互に繰返しながら粉体の充填
を行なう方法が提案されている。例えば、粉体の
袋への充填は第1図に示されるような装置を用い
て行なう方法がある。第1図の装置は粉体供給ノ
ズル2の開口部を内部に有する密閉式チヤンバー
1及び減圧装置7により、該減圧装置7は真空・
大気切換弁5を介して密閉式チヤンバー1と接続
している。該密閉式チヤンバー内には袋を保持す
るための多孔性枠1′が設けられる。上記装置を
用いた粉体の充填は、粉体充填口4を有する通気
性袋3を、該粉体充填口4に前記粉体供給ノズル
2の開口部が挿入する如く密閉式チヤンバー1の
多孔性枠1′内に装填し、前記真空・大気切換弁
5を作動させて該チヤンバー内の袋内を減圧する
こと及び大気開放状態として袋内粉体に気体衝撃
を加えることを交互に繰返し、袋内にホツパー8
から粉体を導入すると共に該粉体の脱気及び衝撃
圧縮を交互に繰返しながら行なわれる。また、前
記問題を解消する他の方法として粉体の粒子間に
存在する気体を脱気した後、スクリユーパツカー
等により容器に充填する方法が考えられる。
しかしながら、上述した方法は微粉水和珪酸、
微粉珪酸カルシウム、微粉炭酸マグネシウム、カ
ーボンブラツク等の嵩高な粉体に対して適用した
場合、粉体の充填密度、充填速度の向上効果がほ
とんど現れないのが現状である。
本発明者等は嵩高な粉体を高密度で且つ迅速に
容器に充填する方法について研究を重ねた。その
結果、嵩高な粉体の粒子間に存在する気体を予め
脱気して該粉体の嵩比重を増大させた後、該嵩比
重が増大した粉体を通気性を有する容器に、該容
器の外部空間を減圧状態及び大気開放状態に交互
に切換えることにより、該容器内を減圧すること
及び容器内粉体に気体衝撃を加えることを交互に
繰返しながら充填すると予想以上に効果があるこ
とを見い出し本発明を提案するに至つた。
即ち、本発明は嵩高な粉体を該粉体の粒子間に
存在する気体を圧縮脱気または減圧脱気して嵩比
重を増大させた後、上記嵩比重が増大した粉体を
通気性を有する容器に、該容器の外部空間を減圧
状態及び大気開放状態に交互に切換えることによ
り、容器内を減圧すること及び容器内粉体に気体
衝撃を加えることを交互に繰返しながら粉体を充
填することを特徴とする嵩高な粉体の充填方法で
ある。
本発明の充填方法は嵩高な粉体に対して効果的
である。特に嵩比重が0.07未満の粉体、例えば微
粉水和珪酸、微粉炭酸マグネシウム、超微粉珪
酸、微粉珪酸アルシウム、カーボンブラツク、デ
ンプン等の無機及び有機微粉体の充填に優れた効
果を有する。また、本発明に用いる容器は通気性
を有する容器であれば特に限定なく使用される。
尚、本発明において通気性を有する容器とは容器
の材質がクラフト紙程度以上の通気性を有する態
様、及び容器の材質は通気性を有していないが該
容器に通気穴が設けられている態様を含むもので
ある。具体的には、例えばクラフト袋、その他の
通気性袋、ドラム缶、フレキシプルコンテナバツ
ク等が一般に使用される。
本発明において、粉体の粒子間に存在する気体
の脱気方法は公知の方法が特に制限なく実施され
る。例えば表面を通気性シートで覆われた真空ド
ラムをロール形式に組合せ、該ロールの間隙に粉
体を通過させて圧縮脱気を行なう方法、或いは第
2図に示すような減圧脱気装置を用いて脱気すれ
ばよい。第2図の装置はケーシング8内に、粉体
出口9に向つてピツチが減衰した減衰型スクユユ
ーを有し、該減衰型スクリユーとケーシングとの
間にフイルターを取り付けた多孔体よりなる脱気
筒11が設けられ、該脱気筒が位置するケーシン
グに気体の吸引口12を設けたものである。上記
装置において、粉体は投入口13から供給され、
減衰型スクリユー10によつてケーシング内を圧
縮されながら輪送される。その間に脱気筒11外
側の雰囲気の気体を吸引口12から吸引すること
により該粉体の粒子間の気体が脱気されて嵩比重
が増大する。上記脱気方法による粉体の嵩比重の
増加率は大きい程度述する容器への充填に有利で
ある。特に前記嵩比重が0.07未満の粉体の場合
は、該容器への充填時の嵩比重が0.08以上、好ま
しくは0.10以上となるように脱気することが容器
への粉体の充填密度、及び充填速度を更に向上す
ることができ好ましい。尚、上記容器への充填時
の嵩比重は前記脱気方法を実施した直後の嵩比重
と必ずしも一致するものではなく、通常該嵩比重
は脱気直後の粉体の嵩比重より若干少さくなる。
従つて、前記脱気方法による粉体の嵩比重の増加
率は脱気した粉体を容器に充填するまでのその嵩
比重の減少分を勘案して決定すればよい。
前記脱気方法により嵩比重が増大した粉体は、
前記した通気性を有する容器の外部空間を減圧状
態及び大気開放状態に交互に切換えることによ
り、容器内を減圧すること及び容器内粉体に気体
衝撃を加えることを交互に繰返しながら該容器に
充填される。本発明において、前記脱気方法と上
記容器への充填方法とを組合せて行なうことが極
めて重要である。即ち、該脱気方法を実施せずに
該容器への充填を行なうと粉体を充分な充填密度
で容器に充填することが困難となり、また、仮り
に充分な充填密度で充填できたとしても充填速度
が著しく遅くなる。また、脱気方法と他の充填方
法、例えばスクリユー式パツカーによる容器への
充填方法とを組合せても、粉体の充填密度を充分
上げることができない。即ち、前記2つの方法を
組合せて行なうことにより、粉体の容器への充填
密度、及び充填速度の著しい向上効果を発揮する
ことができる。
前記嵩比重が増大した粉体を通気性を有する容
器に充填する方法は該容器の外部空間を減圧状態
及び大気開放状態に交互に切換えて、容器内を減
圧すること及び容器内粉体に気体衝撃を加えるこ
とを交互に繰返すことにより、容器内への粉体の
導入と粉体の減圧脱気及び衝撃圧縮を繰返しなが
ら粉体を充填する方法であれば特に制限されな
い。例えば、粉体を通気性袋に充填する場合は前
記第1図に示すような装置及び第3図に示す如く
第1図の装置にスクリユーフイーダー18を供給
装置として取付けた装置を用いた方法が好適であ
る。上記方法において、容器内を減圧状態にする
際の減圧速度、真空度及び大気開放状態として容
器内粉体に気体衝撃を加えるための切換周期等の
運転条件は充填時の粉体の嵩比重、使用する容器
の強度、大きさ等に応じて適宜決定すればよい。
例えば、前記第1図に示すような装置を用いた方
法においては通気性を有する容器の外部空間を形
成する密閉式チヤンバーが内容積300程度の場
合該チヤンバー内を減圧速度15〜50mmHg/secで
200〜300mmHgの真空度まで減圧し、その状態を
約25〜30秒間保つた後、大気開放状態に切り換え
て、その状態を約3〜5秒保つ操作を繰返して一
般に行なわれる。
本発明の方法において、粉体を袋に充填する場
合の好適な装置の一態様を第4図に示す。第4図
の装置は第2図に示した粉体の脱気装置15と第
1図に示した密閉式チヤンバー1を用いた充填装
置とを組合せたものである。尚、第4図に示され
る充填装置は粉体供給ノズルの粉体の供給を密閉
式チヤンバー内が減圧状態となつたときに作動す
るスクリユーフイーダー18が設けられている。
第4図において粉体はホツパー16から脱気装置
15に供給されて減圧脱気され嵩比重が増大す
る。該嵩比重が増大した粉体はホツパー17を経
由してスクリユーフイーダー18から粉体供給ノ
ズル2に至る。該ホツパー17は脱気装置15と
スクリユーフイーダー18を連結し、且つ粉体の
貯蔵機能を有するものであればよい。密閉式チヤ
ンバー1内では前述した減圧及び大気開放状態に
交互に保つ操作によつて粉体が袋に充填される。
以上の説明される如く、本発明の充填方法は嵩
高な粉体を迅速に且つ高密度で容器に充填するこ
とができ、粉体の包装能力及び物流経費の軽減を
図ることができる。
以下、本発明を具体的に説明するため実施例及
び比較例を示すが、本発明はこれらの実施例に限
定されるものではない。
尚、実施例及び比較例において、粉体の嵩比
重、減圧速度は次の方法によつて測定した。
測定方法
1 粉体の嵩比重
内容積100ml(50φm/m×50m/m)の容
器へ高さ20cmの位置より粉体を落下させ、安息
角まで入れ、粉体の表面をすり切つて、上皿天
秤で秤量し、嵩比重を求める。
2 密閉式チヤンバー昇圧速度VB
昇圧速度VBは下記式によつて求めた。
VB=△P/△T〔mmHg/sec〕
担し、△Pはプルドン管型圧力検出器の到達
圧力を表わし、△Tは到達圧力に達するまでの
時間を表わす。
実施例
第1表に示す嵩比重の微粉水和珪酸を第4図に
示す装置を用いて通気性袋に充填した。尚、脱気
装置15は脱気筒内径20cm、長さ120cm、減衰ス
クリユーのピツチ減衰比7/10のものを用い、密
閉式チヤンバー1は内容積300、多孔枠容積200
のものを用いた。上記装置において、前記微粉
水和珪酸をホツパー16から脱気装置15に供給
し、第1表に示す真空度、及びスクリユー回転数
の条件で減圧脱気した。減圧脱気後の嵩比重を第
1表に示す。一方、密閉式チヤンバー1内の多孔
枠1′内に粉体充填口を有する内容積98の3層
クラフト袋を装填した。次いで、真空・大気切換
弁5を作動させて密閉式チヤンバー内を第1表に
示す減圧速度で第1表に示す真空度まで減圧し、
この状態を25秒間保つた後大気開放状態とし3秒
間保つ操作を繰り返した。
その間、密閉式チヤンバー内が減圧状態となつ
たときにスクリユーフイーダー18を一定回転数
で駆動させて粉体供給ノズル2から前記微粉水和
珪酸を供給して充填を行なつた。該粉体供給ノズ
ル出口における微粉水和珪酸の嵩比重を第1表に
示す。上記方法によつてクラフト袋に20Kgの微粉
水和珪酸が充填されるまでの時間を測定した。そ
の結果を第1表に併せて示す。
The present invention relates to a method for rapidly filling containers with bulky powder at high density. Powder products generally have a problem in that they are bulky, leading to an increase in logistics costs. The above problem is particularly serious in bulky powder products. Conventionally, in order to solve the above-mentioned problems, a method has been proposed in which the powder is filled while alternately reducing the pressure inside the container and applying gas shock to the powder in the container. For example, there is a method of filling powder into bags using an apparatus as shown in FIG. The apparatus shown in FIG. 1 includes a closed chamber 1 having an opening for a powder supply nozzle 2 inside and a pressure reducing device 7.
It is connected to the closed chamber 1 via an atmospheric switching valve 5. A porous frame 1' is provided within the closed chamber for holding the bag. Powder filling using the above device is carried out by inserting a breathable bag 3 having a powder filling port 4 into the porous chamber 1 such that the opening of the powder supply nozzle 2 is inserted into the powder filling port 4. The powder is loaded into the powder chamber 1', and the vacuum/atmosphere switching valve 5 is operated to reduce the pressure inside the bag in the chamber, and the powder is exposed to the atmosphere by applying a gas shock to the powder inside the bag, which are alternately repeated. Hopper 8 in the bag
Powder is introduced from the inside, and degassing and impact compression of the powder are alternately repeated. Another method for solving the above problem is to deaerate the gas present between the powder particles and then fill the powder into a container using a screw packer or the like. However, the above-mentioned method uses fine powder hydrated silicic acid,
Currently, when applied to bulky powders such as finely divided calcium silicate, finely divided magnesium carbonate, and carbon black, the effect of improving the packing density and filling speed of the powder is hardly apparent. The inventors of the present invention have conducted extensive research on a method for rapidly filling containers with bulky powder at high density. As a result, after deaerating the gas existing between particles of bulky powder in advance to increase the bulk specific gravity of the powder, the powder with increased bulk specific gravity is placed in a breathable container. We found that filling the container while alternately reducing the pressure inside the container and applying gas shock to the powder in the container by alternately switching the external space between a reduced pressure state and an open state to the atmosphere was more effective than expected. Heading This has led us to propose the present invention. That is, the present invention increases the bulk specific gravity of a bulky powder by compressing or degassing the gas existing between the particles of the powder, and then increases the air permeability of the powder with the increased bulk specific gravity. Filling a container with powder by alternately switching the external space of the container between a reduced pressure state and an atmosphere open state, thereby alternately reducing the pressure inside the container and applying gas shock to the powder in the container. This is a method for filling bulky powder. The filling method of the present invention is effective for bulky powders. It is particularly effective in filling powders with a bulk specific gravity of less than 0.07, such as inorganic and organic fine powders such as fine hydrated silicic acid, fine magnesium carbonate, ultrafine silicic acid, fine aluminum silicate, carbon black, and starch. Further, the container used in the present invention is not particularly limited as long as it has air permeability.
In addition, in the present invention, a container having air permeability refers to a form in which the material of the container has air permeability equal to or higher than that of kraft paper, and a form in which the material of the container does not have air permeability but a ventilation hole is provided in the container. This includes aspects. Specifically, for example, kraft bags, other breathable bags, drums, flexible container bags, etc. are commonly used. In the present invention, the method for degassing the gas existing between the particles of the powder may be any known method without particular limitation. For example, a vacuum drum whose surface is covered with an air-permeable sheet is combined into a roll format, and the powder is passed through the gap between the rolls to perform compression deaeration, or a vacuum deaeration device as shown in Figure 2 is used. All you have to do is degas it. The apparatus shown in FIG. 2 has a damping type screw whose pitch is attenuated toward the powder outlet 9 in a casing 8, and a decylinder 11 made of a porous body with a filter attached between the damping type screw and the casing. is provided, and a gas suction port 12 is provided in the casing where the desorption cylinder is located. In the above device, powder is supplied from the input port 13,
The damping screw 10 compresses the inside of the casing and transports it. During this time, by sucking the gas in the atmosphere outside the desorption cylinder 11 through the suction port 12, the gas between the particles of the powder is degassed, and the bulk specific gravity increases. The rate of increase in the bulk specific gravity of the powder by the above degassing method is advantageous to a large extent in filling the powder into the container described above. In particular, in the case of powder having a bulk specific gravity of less than 0.07, it is necessary to deaerate the powder so that the bulk specific gravity at the time of filling into the container is 0.08 or more, preferably 0.10 or more. This is preferable because the filling speed can be further improved. Incidentally, the bulk specific gravity at the time of filling into the container does not necessarily match the bulk specific gravity immediately after performing the above degassing method, and the bulk specific gravity is usually slightly lower than the bulk specific gravity of the powder immediately after degassing. .
Therefore, the rate of increase in the bulk specific gravity of the powder due to the degassing method may be determined by taking into account the decrease in the bulk specific gravity of the degassed powder until it is filled into a container. The powder whose bulk specific gravity has been increased by the deaeration method is
By alternately switching the external space of the air-permeable container to a reduced pressure state and an open state to the atmosphere, the container is filled while alternately reducing the pressure inside the container and applying gas shock to the powder inside the container. be done. In the present invention, it is extremely important to perform the deaeration method and the container filling method in combination. In other words, if the container is filled without performing the degassing method, it will be difficult to fill the container with powder at a sufficient packing density, and even if it is possible to fill the container with a sufficient packing density. Filling speed will be significantly slower. Furthermore, even if the degassing method is combined with other filling methods, such as filling a container with a screw packer, the packing density of the powder cannot be sufficiently increased. That is, by performing the above two methods in combination, it is possible to significantly improve the packing density and filling speed of the powder into the container. The method of filling the powder with increased bulk specific gravity into a breathable container is to alternately switch the external space of the container to a reduced pressure state and an open state to the atmosphere to reduce the pressure inside the container and to inject gas into the powder in the container. The method is not particularly limited as long as it is a method of filling the powder while repeating the introduction of the powder into the container, the vacuum degassing of the powder, and the impact compression by alternately repeating the application of impact. For example, when filling powder into a breathable bag, a device as shown in FIG. 1 and a device as shown in FIG. 3 in which a screw feeder 18 is attached to the device in FIG. 1 as a feeding device are used. The method is preferred. In the above method, the operating conditions such as the depressurization rate and degree of vacuum when reducing the pressure inside the container, and the switching cycle for applying gas shock to the powder inside the container when the container is opened to the atmosphere are determined by the bulk specific gravity of the powder at the time of filling, It may be determined as appropriate depending on the strength, size, etc. of the container used.
For example, in a method using the apparatus shown in Fig. 1 above, when a closed chamber forming the external space of a breathable container has an internal volume of about 300, the pressure inside the chamber is reduced at a rate of 15 to 50 mmHg/sec.
Generally, the operation is repeated by reducing the pressure to a degree of vacuum of 200 to 300 mmHg, maintaining that state for about 25 to 30 seconds, then switching to the open state to the atmosphere, and maintaining that state for about 3 to 5 seconds. FIG. 4 shows a preferred embodiment of an apparatus for filling bags with powder in the method of the present invention. The apparatus shown in FIG. 4 is a combination of the powder degassing device 15 shown in FIG. 2 and the filling device using the closed chamber 1 shown in FIG. The filling apparatus shown in FIG. 4 is provided with a screw feeder 18 that operates to supply powder from the powder supply nozzle when the pressure inside the closed chamber is reduced.
In FIG. 4, the powder is supplied from the hopper 16 to the deaerator 15, where it is degassed under reduced pressure and its bulk specific gravity increases. The powder whose bulk specific gravity has increased reaches the powder supply nozzle 2 from the screw feeder 18 via the hopper 17. The hopper 17 may be of any type as long as it connects the deaerator 15 and the screw feeder 18 and has the function of storing powder. Inside the closed chamber 1, the bag is filled with powder by the above-described operation of alternately maintaining the vacuum state and the atmosphere open state. As explained above, the filling method of the present invention can quickly and densely fill a container with bulky powder, and can reduce packaging capacity and logistics costs for the powder. EXAMPLES Below, Examples and Comparative Examples will be shown to specifically explain the present invention, but the present invention is not limited to these Examples. In the Examples and Comparative Examples, the bulk specific gravity and pressure reduction rate of the powder were measured by the following method. Measurement method 1 Bulk specific gravity of powder Powder is dropped from a height of 20 cm into a container with an internal volume of 100 ml (50φm/m x 50 m/m), filled to the angle of repose, the surface of the powder is scraped, and the Weigh it using a dish balance to find the bulk specific gravity. 2 Pressure increase rate V B of closed chamber Pressure increase rate V B was determined by the following formula. V B =△P/△T [mmHg/sec], △P represents the ultimate pressure of the Prudhon tube type pressure detector, and △T represents the time until the ultimate pressure is reached. Example Fine powder hydrated silicic acid having the bulk specific gravity shown in Table 1 was filled into a breathable bag using the apparatus shown in FIG. The degassing device 15 has a degassing cylinder with an inner diameter of 20 cm, a length of 120 cm, and a pitch damping ratio of 7/10, and the closed chamber 1 has an internal volume of 300 and a perforated frame volume of 200.
I used the one from In the above apparatus, the fine powder hydrated silicic acid was supplied from the hopper 16 to the deaerator 15, and degassed under reduced pressure under the vacuum degree and screw rotation speed conditions shown in Table 1. Table 1 shows the bulk specific gravity after degassing under reduced pressure. On the other hand, a three-layer kraft bag having an internal volume of 98 and having a powder filling port was loaded into the porous frame 1' in the closed chamber 1. Next, the vacuum/atmosphere switching valve 5 is operated to reduce the pressure inside the closed chamber at the pressure reduction rate shown in Table 1 to the degree of vacuum shown in Table 1,
This state was maintained for 25 seconds, then opened to the atmosphere and held for 3 seconds, which was repeated. During this time, when the inside of the closed chamber was in a reduced pressure state, the screw feeder 18 was driven at a constant rotation speed, and the fine powder hydrated silicic acid was supplied from the powder supply nozzle 2 to perform filling. Table 1 shows the bulk specific gravity of the fine powder hydrated silicic acid at the outlet of the powder supply nozzle. Using the above method, the time required to fill a kraft bag with 20 kg of finely powdered hydrated silicic acid was measured. The results are also shown in Table 1.
【表】
比較例 1
実施例のNo.1の方法において、微粉水和珪酸と
して嵩比重0.04のものを用い、脱気装置による減
圧脱気を行なわなかつた以外は同様にしてクラフ
ト袋への充填時間を測定した。その結果、20Kgの
微粉水和珪酸を充填するのに400秒かかつた。
比較例 2
実施例のNo.1において脱気装置から取り出され
た微粉水和珪酸を実施例で用いたスクリユーフイ
ーダーと同性能のスクリユーを有するスクリユー
式パツカーによつて内容積98の3層クラフト袋
に、実施例と同じ回転数で充填した。その結果ク
ラフト袋への充填時間は600秒であつた。[Table] Comparative Example 1 Filling into a kraft bag was carried out in the same manner as in Example No. 1, except that fine hydrated silicic acid with a bulk specific gravity of 0.04 was used and deaeration under reduced pressure using a deaerator was not performed. The time was measured. As a result, it took 400 seconds to fill 20 kg of finely powdered hydrated silicic acid. Comparative Example 2 The fine hydrated silicic acid taken out from the deaerator in Example No. 1 was made into three layers with an internal volume of 98 using a screw-type packer having the same performance as the screw feeder used in Example. A kraft bag was filled at the same rotation speed as in the example. As a result, the time required to fill the kraft bag was 600 seconds.
第1図及び第3図は粉体の充填装置の概略図、
第2図は脱気装置、第4図は本発明の実施に用い
る装置の一態様の概略図である。また、図におい
て1は密閉式チヤンバー、1′は多孔性枠、2は
粉体供給ノズル、3は多孔性袋、4は粉体充填
口、5は真空・大気切換弁、6はホツパー、7は
減圧装置、8はケーシング、9は粉体出口、10
は減衰型スクリユー、11は脱気筒、12は吸引
口、13は投入口、15は脱気装置、16,17
はホツパー、18はスクリユーフイーダーを夫々
示す。
Figures 1 and 3 are schematic diagrams of a powder filling device;
FIG. 2 is a schematic diagram of a degassing device, and FIG. 4 is a schematic diagram of one embodiment of the device used to carry out the present invention. In the figure, 1 is a closed chamber, 1' is a porous frame, 2 is a powder supply nozzle, 3 is a porous bag, 4 is a powder filling port, 5 is a vacuum/atmosphere switching valve, 6 is a hopper, and 7 is a pressure reducing device, 8 is a casing, 9 is a powder outlet, 10
11 is a damping screw, 11 is a decylinder, 12 is a suction port, 13 is an inlet port, 15 is a deaerator, 16, 17
18 indicates a hopper, and 18 indicates a screw feeder.
Claims (1)
を圧縮脱気または減圧脱気して嵩比重を増大させ
た後、上記嵩比重が増大した粉体を通気性を有す
る容器に、該容器の外部空間を減圧状態及び大気
開放状態に交互に切換えることにより、容器内を
減圧にすること及び容器内の粉体に気体衝撃を加
えることを交互に繰返しながら充填することを特
徴とする嵩高な粉体の充填方法。1. After increasing the bulk specific gravity of a bulky powder by compressing and degassing the gas present between the particles of the powder or degassing under reduced pressure, the powder with the increased bulk specific gravity is placed in a breathable container, The powder is filled while alternately reducing the pressure inside the container and applying gas shock to the powder in the container by alternately switching the external space of the container between a reduced pressure state and an atmosphere open state. How to fill bulky powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10051680A JPS5728701A (en) | 1980-07-24 | 1980-07-24 | Method of filling bulky powdered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10051680A JPS5728701A (en) | 1980-07-24 | 1980-07-24 | Method of filling bulky powdered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5728701A JPS5728701A (en) | 1982-02-16 |
JPH0132081B2 true JPH0132081B2 (en) | 1989-06-29 |
Family
ID=14276108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10051680A Granted JPS5728701A (en) | 1980-07-24 | 1980-07-24 | Method of filling bulky powdered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5728701A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5968225U (en) * | 1982-10-29 | 1984-05-09 | ホソカワミクロン株式会社 | Powder quantitative supply device |
JPS6068201A (en) * | 1983-09-22 | 1985-04-18 | ホソカワミクロン株式会社 | Filler for powdered and granular body |
JPS63208429A (en) * | 1987-02-23 | 1988-08-29 | Hosokawa Micron Kk | Deaerating and reducing device for bulk material |
JP4566147B2 (en) * | 2006-03-06 | 2010-10-20 | シャープ株式会社 | Toner container and toner filling method |
GB2436075B (en) | 2006-03-17 | 2009-04-15 | Genevac Ltd | Evaporator and method of operation thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS539696A (en) * | 1976-07-13 | 1978-01-28 | Kamacho Seiko Kk | Apparatus for removing gas from powder in packer |
JPS551819A (en) * | 1978-06-19 | 1980-01-09 | Mizusawa Industrial Chem | Preparation of dense pulverulent body |
-
1980
- 1980-07-24 JP JP10051680A patent/JPS5728701A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS539696A (en) * | 1976-07-13 | 1978-01-28 | Kamacho Seiko Kk | Apparatus for removing gas from powder in packer |
JPS551819A (en) * | 1978-06-19 | 1980-01-09 | Mizusawa Industrial Chem | Preparation of dense pulverulent body |
Also Published As
Publication number | Publication date |
---|---|
JPS5728701A (en) | 1982-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2881703B2 (en) | Vacuum filling system | |
US5275215A (en) | Vacuum fill system | |
US2964070A (en) | Method of filling porous receptacles with powdered materials | |
KR0167807B1 (en) | Process and device for the compression of powdered substances | |
JPS6118630A (en) | Device for removing air from powdered substance | |
US2780247A (en) | Vacuum packing of loose carbon black | |
US5234037A (en) | Vacuum fill system | |
CN100372745C (en) | Arrangement for transporting highly dispersed powders, and method of filling and emptying the same | |
JPH0132081B2 (en) | ||
CN106144011A (en) | Vacuum pumping method, vacuum extractor and activated carbon packer in a kind of powdered activated carbon packaging process | |
JP2010501429A (en) | Method and apparatus for packing fluid solids | |
JP3325862B2 (en) | Flexible large container for highly dispersible and highly aerated solids and its filling method | |
JPH025647B2 (en) | ||
JPH11348903A (en) | Method and device for filling powdery/granular body | |
JP2549273B2 (en) | Deaeration device for powder filling machine | |
JP3078730B2 (en) | Volume reduction machine | |
US5501254A (en) | Apparatus for filling a sack with a flowable material | |
JP3448385B2 (en) | Operating method of powder filling device with deaeration mechanism | |
JP2002337801A (en) | Method and apparatus of filling extra-fine powder | |
JPS5830902A (en) | Vacuum deairing type filler | |
JPH06199324A (en) | Packing method for reducing bulky material | |
JP2007261687A5 (en) | ||
JPS63279081A (en) | Manufacture of vacuum powder heat insulator | |
CN220996847U (en) | Material packing apparatus that breathes in | |
JPS63208429A (en) | Deaerating and reducing device for bulk material |