JPH01320495A - Method and device for induction heating of nuclear fusion device - Google Patents

Method and device for induction heating of nuclear fusion device

Info

Publication number
JPH01320495A
JPH01320495A JP63152324A JP15232488A JPH01320495A JP H01320495 A JPH01320495 A JP H01320495A JP 63152324 A JP63152324 A JP 63152324A JP 15232488 A JP15232488 A JP 15232488A JP H01320495 A JPH01320495 A JP H01320495A
Authority
JP
Japan
Prior art keywords
vacuum vessel
distribution
poloidal
heat generation
induction heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63152324A
Other languages
Japanese (ja)
Inventor
Eiji Fukumoto
英士 福本
Mitsuji Abe
充志 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63152324A priority Critical patent/JPH01320495A/en
Publication of JPH01320495A publication Critical patent/JPH01320495A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • General Induction Heating (AREA)
  • Plasma Technology (AREA)

Abstract

PURPOSE:To approximate the heat generation distribution of a vacuum vessel to a desired distribution by determining the currents of the sets of respective poloidal coils in such a manner that the currents of plural sets of the poloidal coils attain the distribution nearest the target heat generation distribution. CONSTITUTION:Ohmic heating coils 3a-3e are successively connected in the same manner as in the prior art and are connected to one power source 5a for induction heating. The other poloidal coils 4a-4h are also connected as one set to another power source 5b for induction heating. The eddy current density distribution and heat generation distribution above the vacuum vessel in case of using only the power source 5b are so distributed that the much eddy current flows on the outer side and the heat generation density is highly distributed at the center thereof. The heat generation densities superposed according to the current ratios of the poloidal coils 3a-3e and 4a-4h are attained when two sets of the coils 3a-3e and 4a-4h are simultaneously energized by using the power sources 5a and 5b. The heat generation distribution of the vacuum vessel 1 is approximated to a desired distribution in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はトーラス型核融合装置に係り、特に、真空容器
を加熱するのに好適な誘導加熱方法及びその装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a torus-type nuclear fusion device, and particularly to an induction heating method and device suitable for heating a vacuum vessel.

〔従来の技術〕[Conventional technology]

従来より核融合装置ではプラズマを閉じ込める真空容器
内の清浄を保ち高真空度を得るために、真空容器を20
0’C〜400℃程度に加熱(ベーキング)することが
必要とされている。真空容器を加熱するための方法は大
別して二種類ある。一つは真空容器の外側にヒータなど
の発熱体を直接取り付ける方法で、既に多くの装置で用
いられているが、ヒータ取り付けのためのスペースを確
保する必要がある他、真空容器の表面積に応じて大型装
置では大量のヒータとそれに通電加熱するための大規模
な付帯設備が必要であるという欠点がある。もう一つの
真空容器加熱の方法として、プラズマ電流の生成維持の
ためのオーム加熱コイル(以下OHコイルと呼ぶ)に通
電して真空容器に誘導電流を発生させ、そのジュール発
熱を利用する誘導加熱法が知られており、例えば、フュ
ージヨン テクノロジー1986 第1巻347頁から
352頁(Fusion Technology 19
86. Vol。
Conventionally, in nuclear fusion devices, in order to keep the vacuum chamber that confines the plasma clean and obtain a high degree of vacuum, the vacuum chamber is
It is necessary to heat (baking) to about 0'C to 400C. There are roughly two types of methods for heating a vacuum container. One method is to directly attach a heating element such as a heater to the outside of the vacuum container, and this method is already used in many devices, but in addition to the need to secure space for installing the heater, the However, large-scale equipment has the disadvantage that it requires a large number of heaters and large-scale auxiliary equipment for heating them with electricity. Another method for heating a vacuum container is the induction heating method, which uses Joule heat generated by energizing an ohmic heating coil (hereinafter referred to as an OH coil) to generate and maintain plasma current to generate an induced current in the vacuum container. For example, Fusion Technology 1986, Vol. 1, pages 347 to 352 (Fusion Technology 19
86. Vol.

pp347−352. Pergamon Press
)において論じられている。この方法は先に挙げたヒー
タを用いる方法に比べて真空容器に発熱させるために既
設のOHコイルを利用するだけでよく付帯設備が少なく
て済むという特徴がある。以下、この従来技術である真
空容器の誘導加熱方法について、第2図及び第3図を用
いて詳しく説明する。
pp347-352. Pergamon Press
) is discussed in Compared to the above-mentioned method using a heater, this method is characterized in that it only requires the use of an existing OH coil to generate heat in the vacuum container, and requires less incidental equipment. Hereinafter, this conventional induction heating method for a vacuum container will be explained in detail with reference to FIGS. 2 and 3.

第2図は従来技術である真空容器の誘導加熱方法を説明
するための核融合装置のポロイダル断面図である。図に
おいて1は真空容器、2はトロイダルコイル、3,4は
ポロイダルコイル、5は誘導加熱用電源である。ポロイ
ダルコイルのうち3は特にプラズマ電流を生成、維持す
る目的をもって設置されたものでOHコイルと呼ばれる
。OHコイルは、通常、3a〜3eのように複数のコイ
ルが一組となって電流につながっている。一方、ポロイ
ダルコイル4はプラズマの位置・形状を制御するために
設置されたもので、この図には示されていないがOHコ
イル3と同じように複数のコイルが一組になって電源に
つながっていたり、単独のコイルが一つの電源につなが
っていたりするようになっている。この構成の装置にお
いて、OHコイル3の電流を変化させると、真空容器1
の中に燃料ガスが供給されトロイダルコイル2に通電さ
れている場合、トロイダルコイルの作る磁場に沿ってプ
ラズマが発生し、電磁誘導の原理でプラズマ電流が流れ
る。しかし、真空容器中に燃料ガスがない場合やトロイ
ダルコイル2に通電されていない場合には真空容器に渦
電流が発生する。
FIG. 2 is a poloidal cross-sectional view of a nuclear fusion device for explaining a conventional induction heating method for a vacuum vessel. In the figure, 1 is a vacuum vessel, 2 is a toroidal coil, 3 and 4 are poloidal coils, and 5 is an induction heating power source. Three of the poloidal coils are installed specifically for the purpose of generating and maintaining plasma current, and are called OH coils. The OH coil usually has a plurality of coils connected to the current as a set, such as 3a to 3e. On the other hand, the poloidal coil 4 is installed to control the position and shape of the plasma, and although it is not shown in this figure, like the OH coil 3, it is a set of multiple coils connected to the power source. In some cases, individual coils are connected to a single power source. In the device with this configuration, when the current of the OH coil 3 is changed, the vacuum vessel 1
When fuel gas is supplied into the toroidal coil 2 and the toroidal coil 2 is energized, plasma is generated along the magnetic field created by the toroidal coil, and a plasma current flows based on the principle of electromagnetic induction. However, when there is no fuel gas in the vacuum vessel or when the toroidal coil 2 is not energized, eddy currents occur in the vacuum vessel.

従来技術の真空容器の誘導加熱方法は後者の現象を利用
したものである。第3図は従来技術による誘導加熱の波
形を示したものである。この図においてOHコイル3の
電流を第3図(a)のように50Hzで正弦波状に変化
させると真空容器上には第3図(b)のような渦電流が
流れ、その結果、ジュール熱により第3図(c)のよう
な熱が発生する。
The prior art induction heating method for vacuum containers utilizes the latter phenomenon. FIG. 3 shows waveforms of induction heating according to the prior art. In this figure, when the current in the OH coil 3 is changed sinusoidally at 50Hz as shown in Fig. 3(a), an eddy current flows on the vacuum vessel as shown in Fig. 3(b), and as a result, Joule heat is generated. As a result, heat as shown in FIG. 3(c) is generated.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術はヒーター等の取り付けを必要とせずに真
空容器を加熱できるという利点があるが。
The above-mentioned conventional technology has the advantage that the vacuum container can be heated without requiring the installation of a heater or the like.

真空容器を一様に加熱できないという問題点があった。There was a problem in that the vacuum container could not be heated uniformly.

これはOHコイルの電流変化により真空容器上に流れる
渦電流がトーラス内側に集中することに起因している。
This is because the eddy current flowing on the vacuum vessel is concentrated inside the torus due to current changes in the OH coil.

第4図はそれを説明するための模式図で、真空容器1の
ポロイダル断面図の上に渦電流密度分布をその半径が渦
電流密度に比例する円6を用いて表わしたものである。
FIG. 4 is a schematic diagram for explaining this, in which the eddy current density distribution is represented using a circle 6 whose radius is proportional to the eddy current density on a poloidal cross-sectional view of the vacuum vessel 1.

電流による発熱密度は抵抗が等しい場合、電流密度の二
乗に比例するから、第4図の円6の面積は発熱密度を表
わしており、トーラス内側で集中的に発熱していること
がわかる。渦電流密度分布、及び、発熱密度分布をさら
に詳しく調べるために、第5図に示すようにトーラス外
側赤道面を出発して真空容器ポロイダル断面上を左回り
に周回する座標Qをとって展開すると、第6図、及び、
第7図のようになる。これらの図において、横軸は座標
Qであり、横軸上のA、B、C,D、Eは第5図のA。
Since the heat generation density due to current is proportional to the square of the current density when the resistances are equal, the area of circle 6 in FIG. 4 represents the heat generation density, and it can be seen that heat is generated intensively inside the torus. In order to investigate the eddy current density distribution and the heat generation density distribution in more detail, we take and expand the coordinate Q that starts from the outer equatorial plane of the torus and circles counterclockwise on the poloidal cross section of the vacuum vessel, as shown in Figure 5. , FIG. 6, and
It will look like Figure 7. In these figures, the horizontal axis is the coordinate Q, and A, B, C, D, and E on the horizontal axis are A in FIG.

B、C,D、Eにそれぞれ対応する。第6図からわかる
ように、渦電流密度はトーラス内側赤道面Cで大きなピ
ークをもっており、その結果、第7図に示すように発熱
密度はトーラス内側と外側で大きく異なっている。
They correspond to B, C, D, and E, respectively. As can be seen from FIG. 6, the eddy current density has a large peak at the equatorial plane C inside the torus, and as a result, as shown in FIG. 7, the heat generation density differs greatly between the inside and outside of the torus.

このように、発熱分布にかたよりがあると、真空容器上
に大きな温度差が生じ、熱応力が発生してしまう。この
問題を避けるために公知例では○Hコイルによる誘導加
熱を行うと同時に真空容器に沿って空気の流路を設け、
圧縮空気の循環によって真空容器温度の均一化を図って
いる。しかし、この方法では圧縮空気@環のための付加
設備が必要となり、ヒータを用いる方法と同様に真空容
器への取り付はスペースの確保が必要となる上。
If the heat generation distribution is uneven in this way, a large temperature difference will occur on the vacuum container, and thermal stress will occur. In order to avoid this problem, in a known example, an air flow path is provided along the vacuum container at the same time as induction heating is performed using an ○H coil.
The temperature of the vacuum chamber is made uniform by circulating compressed air. However, this method requires additional equipment for the compressed air @ ring, and like the method using a heater, it is necessary to secure space for installation in a vacuum container.

高価になるという問題点があった。The problem was that it was expensive.

本発明の目的は誘導加熱による発熱分布を一様化し、真
空容器温度分布−様化のための付加設備をほとんど必要
としない安価な核融合装置の誘導加熱方法を提供するこ
とにある。
An object of the present invention is to provide an inexpensive induction heating method for a nuclear fusion device that uniformizes the distribution of heat generated by induction heating and requires almost no additional equipment for varying the temperature distribution of a vacuum vessel.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、真空容器の誘導加熱を行う場合に、OHコ
イル3の他に、他のポロイダルコイル4にも同時に通電
し、これら複数組のポロイダルコイルの電流によって発
生する真空容器上の渦電流分布がそれぞれのポロイダル
コイルの組によって異なることを利用し、目標とする発
熱分布に最も近くなるように、各ポロイダルコイルの組
の電流を決めることにより達成される。
The above purpose is to simultaneously energize other poloidal coils 4 in addition to the OH coil 3 when performing induction heating of a vacuum container, so that the eddy current distribution on the vacuum container generated by the currents of these multiple sets of poloidal coils is This is achieved by determining the current for each poloidal coil set so that it is closest to the target heat generation distribution, taking advantage of the fact that the current distribution differs depending on the set of poloidal coils.

〔作用〕[Effect]

ある特定のポロイダルコイルの組に通電し、電流を時間
的に変化させると必ず真空容器を鎖交する磁束も変化し
真空容器上に渦電流が流れる。このときの真空容器上の
渦電流分布はポロイダルコイルの組と真空容器との位置
関係によって一意に決まる。従って、複数のポロイダル
コイルの組に同時に通電した場合の真空容器上の渦電流
分布は、それぞれのポロイダルコイルの組が作る渦電流
分布の重ね合せによって決まる。これは真空容器上の渦
電流分布を決めるのに、複数組のポロイダルコイルを用
いるとその組数だけの自由度があることを意味している
。−組のポロイダルコイルしか使わない従来技術では発
熱分布を変えるのは不可能なのに対し、複数組のポロイ
ダルコイルを用いる本発明では、それぞれのポロイダル
コイルの組の電流比を変えることによって、真空容器の
発熱分布を目標とする分布に近づけることができる。
When a particular set of poloidal coils is energized and the current changes over time, the magnetic flux interlinking the vacuum vessel always changes, causing eddy currents to flow on the vacuum vessel. The eddy current distribution on the vacuum vessel at this time is uniquely determined by the positional relationship between the poloidal coil set and the vacuum vessel. Therefore, the eddy current distribution on the vacuum vessel when a plurality of poloidal coil sets are energized at the same time is determined by the superposition of the eddy current distributions created by the respective poloidal coil sets. This means that when multiple sets of poloidal coils are used to determine the eddy current distribution on the vacuum vessel, there is a degree of freedom corresponding to the number of sets of poloidal coils. - While it is impossible to change the heat generation distribution in the conventional technology that uses only one set of poloidal coils, in the present invention that uses multiple sets of poloidal coils, the heat generation distribution in the vacuum vessel can be changed by changing the current ratio of each set of poloidal coils. It is possible to get closer to the target distribution.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。この
図においてOHコイル3a〜3eは従来技術と同様、順
次、結線されて一つの誘導加熱用電源5aにつながって
いる。一方、他のポロイダルコイル4a、4b、4d、
4e、4g、4hも一組となって別の誘導加熱用電源5
bに接続されている。この場合、電源5bに接続された
ポロイダルコイル4の組はプラズマの水平方向位置を制
御するための垂直磁場を発生するような接続になってい
る。このような構成の核融合装置において、電源5aの
みを使用した場合には従来技術と同様に真空容器上の渦
電流密度分布及び発熱密度分布はそれぞれ第6図、第7
図のようになる。次に、電源5bのみを用いた場合の真
空容器上の渦電流密度分布、及び1発熱密度分布は第8
図、第9図に示すようになる。これらの図において、横
軸は第5図に示したように、トーラス外側赤道面から真
空容器ポロイダル断面上を左回りに周回するときの長さ
qである。第8図及び第9図から、電源5bを用いて垂
直磁場を印加した場合にはトーラス外側に多くの渦電流
が流れそこでの発熱密度が最も高いことがわかる。電源
5a及び5bを用いて二組のポロイダルコイル3,4に
通電したときの真空容器上の渦電流密度分布及び発熱密
度分布は、それぞれ、第6図及び第8図、第7図及び第
9図を二組のポロイダルコイルの電流比に応じて重ね合
わせることにより得られる。第10図の曲線101.及
び、第11図の曲線111はこのようにして二組のポロ
イダルコイルに通電することにより得られる真空容器上
の渦電流分布、及び。
An embodiment of the present invention will be described below with reference to FIG. In this figure, the OH coils 3a to 3e are connected in sequence and connected to one induction heating power source 5a, as in the prior art. On the other hand, other poloidal coils 4a, 4b, 4d,
4e, 4g, and 4h are also combined into a separate induction heating power source 5.
connected to b. In this case, the set of poloidal coils 4 connected to the power source 5b are connected to generate a vertical magnetic field for controlling the horizontal position of the plasma. In a nuclear fusion device having such a configuration, when only the power source 5a is used, the eddy current density distribution and heat generation density distribution on the vacuum vessel are as shown in FIGS. 6 and 7, respectively, as in the prior art.
It will look like the figure. Next, the eddy current density distribution on the vacuum vessel when only the power source 5b is used, and the 1 heat generation density distribution are the 8th
It becomes as shown in Fig. 9. In these figures, the horizontal axis is the length q when rotating counterclockwise on the poloidal cross section of the vacuum vessel from the outer equatorial plane of the torus, as shown in FIG. It can be seen from FIGS. 8 and 9 that when a vertical magnetic field is applied using the power source 5b, many eddy currents flow outside the torus and the heat generation density is highest there. The eddy current density distribution and heat generation density distribution on the vacuum vessel when the two sets of poloidal coils 3 and 4 are energized using the power supplies 5a and 5b are shown in FIGS. 6 and 8, and FIGS. 7 and 9, respectively. is obtained by superimposing two sets of poloidal coils according to the current ratio. Curve 101 in FIG. A curve 111 in FIG. 11 represents the eddy current distribution on the vacuum vessel obtained by energizing the two sets of poloidal coils in this manner.

発熱密度分布の例を示したものである。以上、本実施例
によれば、従来技術に比べて真空容器誘導加熱時の真空
容器発熱分布をより均一に近くすることができ、従来必
要であった真空容器温度分布を均一にするための付加設
備に対する負担を大巾に軽減することができる。
This shows an example of heat generation density distribution. As described above, according to this embodiment, it is possible to make the heat generation distribution of the vacuum vessel more uniform during induction heating of the vacuum vessel compared to the conventional technology, and it is possible to make the heat generation distribution of the vacuum vessel more uniform during induction heating of the vacuum vessel than with the conventional technology. The burden on equipment can be greatly reduced.

第12図は本発明の他の実施例である複数組のポロイダ
ルコイルに流す電流を決定する方法のフローチャートで
ある。真空容器の温度分布を均一にするために必要な発
熱分布は一般に真空容器の形状や放熱分布などによって
決まる。本実施例で(よ、まず、121においてこのよ
うな目標とする発熱分布xoを定める。次に122にお
いて、全ての独立なポロイダルコイルの組(N組)につ
いてそれぞれ単独に単位電流を通電したときの真空容器
発熱分布xk、に=1〜Nを計算、又は、実験により求
める。123では全てのXkを列とする行列P、 P:()CIX2・・・・・・xk・・・・・・X N
 )を構成する。このPと、第一組から第N組のポロイ
ダルコイルに流す電流■1〜INを要素とするベクトル ■”(IxI2・・・・・・工、・・・・・・IN)”
  (Tは転置)を用いれば、N組のポロイダルコイル
の組により実現される真空容器の発熱分布は、 x = P I で表わされる。124では上式のXと目標とする発熱分
布xoとの重み付き二乗和、 (x−xo)”W(x−xo) =(PI −xo)”W(PI−xo)W:重み行列 が最小となるように最小二乗法により各ポロイダルコイ
ルの組に流れる電流を決める。以上、本実施例によれば
、複数のポロイダルコイルの組を用いて真空容器の誘導
加熱を行う場合に、目標とする発熱分布に最も近くなる
ように、各ポロイダルコイルの組の電流値を決めること
ができる。
FIG. 12 is a flowchart of a method for determining the current to be passed through a plurality of sets of poloidal coils, which is another embodiment of the present invention. The heat generation distribution necessary to make the temperature distribution of the vacuum container uniform is generally determined by the shape of the vacuum container, the heat radiation distribution, etc. In this example, first, in step 121, such a target heat generation distribution xo is determined.Next, in step 122, the result when a unit current is applied individually to all the independent poloidal coil sets (N sets) is determined. Vacuum vessel heat generation distribution xk, = 1 to N is calculated or determined by experiment. In 123, matrix P with all Xk as columns, P: () CIX2... xk... XN
). A vector whose elements are this P and the current flowing through the poloidal coils from the first set to the Nth set ■1 to IN
(T is transposed), the heat generation distribution of the vacuum container realized by N sets of poloidal coils is expressed as x = P I . In 124, the weighted sum of squares between X in the above equation and the target heat generation distribution xo, (x-xo)"W(x-xo) = (PI-xo)"W(PI-xo)W: the weight matrix is The current flowing through each set of poloidal coils is determined by the least squares method so as to minimize the current. As described above, according to this embodiment, when performing induction heating of a vacuum container using a plurality of poloidal coil sets, it is possible to determine the current value of each poloidal coil set so as to be closest to the target heat generation distribution. can.

第13図は本発明の他の実施例である核融合装置のポロ
イダル断面図である。この図は本発明の第一の実施例を
示す第1図と同等のものであり、ポロイダルコイル4の
組分け、及び、電源との結線方法が異なっている。本実
施例におけるポロイダルコイルの組分けと電源との接続
の様子は次の表のようになっている。
FIG. 13 is a poloidal cross-sectional view of a nuclear fusion device according to another embodiment of the present invention. This figure is equivalent to FIG. 1 showing the first embodiment of the present invention, but the grouping of the poloidal coils 4 and the method of connection to the power source are different. The following table shows how the poloidal coils are grouped and connected to the power supply in this embodiment.

上記五つの電源のうちOHコイルである5aを除<5c
、5d、5e、5fを、それぞれ、単独で使用した場合
の真空容器上渦電流密度分布、及び、発熱密度分布を第
14図及び第15図に示す。
Of the five power supplies above, excluding 5a which is the OH coil <5c
, 5d, 5e, and 5f are shown in FIGS. 14 and 15, respectively.

これらの図において横軸は第5図のようにトーラス外側
赤道面から真空容器ポロイダル断面上を左回りに周回す
るときの長さQである。また、これらの図における曲線
の番号と電源との対応は下表のようである。
In these figures, the horizontal axis is the length Q when rotating counterclockwise on the poloidal cross section of the vacuum vessel from the outer equatorial plane of the torus as shown in FIG. Furthermore, the correspondence between the curve numbers and power supplies in these figures is as shown in the table below.

これらの図より真空容器上渦電流分布、及び、発熱分布
が最大となる真空容器ポロイダル断面上の位置はそれぞ
れの電源によって異なっており、その組み合わせにより
任意の発熱密度分布を得やすいことがわかる。第15図
の発熱密度分布を用いて真空容器ポロイダル断面上の発
熱密度分布が最も一様に近くなるように、第二の実施例
である第10図に示された方法で各ポロイダルコイルの
組の電流を決めた場合の真空容器上渦電流密度分布を第
10図の曲線102で、また、発熱密度分布第11図の
曲線112で示す。本実施例では電源を二つしか使用し
ない第一の実施例に比べてより目標とする発熱分布に近
い発熱分布が得られるという効果がある。
From these figures, it can be seen that the eddy current distribution on the vacuum vessel and the position on the vacuum vessel poloidal cross section where the heat generation distribution is maximum differ depending on each power source, and it is easy to obtain an arbitrary heat generation density distribution by combining them. In order to make the heat generation density distribution on the poloidal cross section of the vacuum vessel as close to uniform as possible using the heat generation density distribution shown in FIG. The eddy current density distribution on the vacuum vessel when the current is determined is shown by the curve 102 in FIG. 10, and the heat generation density distribution is shown by the curve 112 in FIG. 11. This embodiment has the effect that a heat generation distribution closer to the target heat generation distribution can be obtained compared to the first embodiment which uses only two power sources.

本実施例ではポロイダルコイルの配置が同じであっても
その組合けの方法及び電源との接続の方法を限定する必
要はなく、使用する電源の数が多い方がより目標とする
発熱分布に近い発熱分布を得やすいという特徴がある。
In this example, even if the arrangement of the poloidal coils is the same, there is no need to limit the method of combining them and the method of connecting them to the power source, and the more power sources used, the closer the heat generation distribution to the target will be. It has the characteristic that it is easy to obtain the distribution.

本発明の他の実施例である核融合装置のポロイダル断面
図を第16図に示す。この図の装置の構成、ポロイダル
コイル3,4の配置、その組合け、及び、結線方法は本
発明の第三の実施例である第13図と同じであるが、電
源の構成のみが異なる。
FIG. 16 shows a poloidal cross-sectional view of a nuclear fusion device according to another embodiment of the present invention. The configuration of the device in this figure, the arrangement of the poloidal coils 3 and 4, their combination, and the wiring method are the same as in FIG. 13, which is the third embodiment of the present invention, but only the configuration of the power source is different.

すなわち、本実施例では電源は5gのみであり、一つの
電源が抵抗器7a〜7dを介して四つのポロイダルコイ
ルの組に接続されている。本実施例によれば、抵抗器7
a〜7dの抵抗値を調節することによってそれにつなが
る各ポロイダルコイルの組の電流の比率を変化させるこ
とができ、単独の電源で四つの別々の電源を用いた第三
の実施例と同等の効果を挙げることができる。
That is, in this embodiment, the power source is only 5g, and one power source is connected to a set of four poloidal coils via resistors 7a to 7d. According to this embodiment, the resistor 7
By adjusting the resistance values of a to 7d, the ratio of current in each poloidal coil pair connected to it can be changed, and a single power supply can achieve the same effect as the third embodiment using four separate power supplies. can be mentioned.

第17図は本発明の最後の実施例を示す図である。この
図において8は真空容器上の温度分布、又は、発熱分布
を測定するための計測器(例えば熱電対)、9はコイル
電流の測定器である。本実施例では、真空容器上に配列
された計測器からの信号y(t)に対してその目標値y
o(t )を定め、これらの信号の差δy”y−yo 
をもとにコイル電流目標値演算部171において、各ポ
ロイダルコイルの組の電流目標値Ioを求める。このI
FIG. 17 shows a final embodiment of the invention. In this figure, 8 is a measuring device (for example, a thermocouple) for measuring the temperature distribution or heat generation distribution on the vacuum container, and 9 is a coil current measuring device. In this example, the target value y for the signal y(t) from the measuring instruments arranged on the vacuum container is
o(t) and the difference between these signals δy”y−yo
Based on this, the coil current target value calculating section 171 calculates the current target value Io for each poloidal coil set. This I
.

と実際に測定器9により測定されたコイル電流値工とか
らその差δ工=エーエ0を求め、δ■が0となるように
コイル電源電圧演算部172で各ポロイダルコイルの組
に接続された電源5hや51などの電圧■を決めるよう
になっている。このように本実施例では、例えば、’1
0を真空容器上の各測定点における温度分布の目標値と
すると温度分布ばかりでなくその時間変化が目標値に一
致するように、コイル電流、及び、電圧をフィードバッ
ク制御することができる。
and the coil current value actually measured by the measuring device 9 to find the difference δ = 0, and the coil power supply voltage calculation unit 172 calculates the power supply connected to each poloidal coil set so that δ becomes 0. It is designed to determine the voltage ■ such as 5h and 51. In this way, in this embodiment, for example, '1
If 0 is set as the target value of the temperature distribution at each measurement point on the vacuum vessel, the coil current and voltage can be feedback-controlled so that not only the temperature distribution but also its time change coincides with the target value.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ポロイダルコイルの電流変化による誘
導加熱のみによって、真空容器の発熱分布を所望の分布
に近づけることができ、真空容器加熱のために必要とす
る付加設備を大巾に減らすことができる。
According to the present invention, the heat generation distribution of the vacuum container can be brought close to the desired distribution only by induction heating due to current changes in the poloidal coil, and the additional equipment required for heating the vacuum container can be greatly reduced. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の核融合装置のボロイダル断
面図、第2図は従来技術の核融合装置のボロイダル断面
図、第3図は従来技術による真空容器誘導加熱時の波形
図、第4図は従来技術の真空容器渦電流密度分布図、第
5図は真空容器ポロイダル断面上の座標を示す図、第6
図は従来技術の真空容器上の渦電流密度分布図、第7図
は従来技術の真空容器発熱分布図、第8図は第1図を説
明する真空容器上の渦電流分布図、第9図は同じく真空
容器発熱密度分布図、第10図は本発明の第−及び第三
の実施例による真空容器上の渦電流密度分布図、第11
図は同じく真空容器発熱密度分布図、第12図は本発明
の第二の実施例であるポロイダルコイルの組の電流の決
め方を示すフローチャート、第13図は本発明の第三の
実施例である核融合装置のボロイダル断面図、第14図
は本発明の第三の実施例を説明する真空容器上の渦電流
密度分布図、第15図は同じく真空容器発熱密度分布図
、第16図は本発明の第四の実施例を示す核融合装置の
ボロイダル断面図、第17図は本発明の第五の実施例を
示すポロイダルコイル電流のフィードバック制御系統図
である。 1・・・真空容器、2・・・トロイダルコイル、3・・
・ポロイダルコイル(○Hコイル)、4・・・ポロイダ
ルコイル、5・・・誘導加熱用電源、7・・・抵抗器、
8・・・測定器、9・・・コイル電流測定器。 集1図 31 4士  4S   :le 宅2−因 不3日 躬6日 12(iL空、揚物6−az!jTilo、ヒ4さ)(
Tn)第1図 U%%z< 7−1しHi p、1−、)(1)率8日 第9図 Q’J’qgβVatコゼ1し1frikr+7;:月
〕n〕躬10図 杢11図 (1(蔭も一ネリ左ンr0イフー1しおT面上の長さ)
〔m〕高13図 31i4i  48 3e 来14区 第15図 Q通’2喀J1しに′o47’+しmi、ヒ4=)(T
n)素16図 3改  午ヤ  l+3 3e 目ぞ♀僑夕11
FIG. 1 is a boloidal sectional view of a fusion device according to an embodiment of the present invention, FIG. 2 is a boloidal sectional view of a conventional fusion device, and FIG. 3 is a waveform diagram during induction heating of a vacuum vessel according to the prior art. Figure 4 is a diagram of eddy current density distribution in a vacuum vessel of the prior art, Figure 5 is a diagram showing coordinates on the poloidal cross section of the vacuum vessel, and Figure 6 is a diagram showing coordinates on the poloidal cross section of the vacuum vessel.
The figure is a diagram of eddy current density distribution on a vacuum vessel of the prior art, Figure 7 is a heat generation distribution diagram of a vacuum vessel of the prior art, Figure 8 is a diagram of eddy current distribution on a vacuum vessel explaining Figure 1, and Figure 9 is a diagram of eddy current density distribution on a vacuum vessel of the prior art. 10 is a heat generation density distribution diagram of the vacuum container, FIG. 10 is an eddy current density distribution diagram on the vacuum container according to the second and third embodiments of the present invention, and FIG.
The figure is also a vacuum vessel heat generation density distribution diagram, Figure 12 is a flowchart showing how to determine the current of a set of poloidal coils, which is the second embodiment of the present invention, and Figure 13 is the core, which is the third embodiment of the present invention. A boloidal cross-sectional view of the fusion device, FIG. 14 is an eddy current density distribution diagram on a vacuum vessel explaining the third embodiment of the present invention, FIG. 15 is a heat generation density distribution diagram of the vacuum vessel, and FIG. 16 is a diagram of the present invention. FIG. 17 is a poloidal coil current feedback control system diagram showing a fifth embodiment of the present invention. 1... Vacuum container, 2... Toroidal coil, 3...
・Poloidal coil (○H coil), 4... Poloidal coil, 5... Induction heating power source, 7... Resistor,
8... Measuring device, 9... Coil current measuring device. Collection 1 Figure 31 4S: le House 2-Infu 3 day 6th 12 (iL sky, fried food 6-az!jTilo, Hi 4sa) (
Tn) Figure 1U%%z< 7-1Hi p, 1-,) (1) Rate 8 days Figure 9Q'J'qgβVatKose 1 and 1frikr+7; Figure (1 (Length on the left side r0 if 1 side T side)
[m] High school 13th figure 31i4i 48 3e Next 14th ward 15th figure Q street '2 喀J1 ni'o47'+shimi,hi4=)(T
n) Elementary 16 figure 3 revision Goya l+3 3e Mezo♀Kyoto 11

Claims (1)

【特許請求の範囲】 1、プラズマを発生させるための真空容器と、前記真空
容器を取囲むように設置された複数組のポロイダルコイ
ルとを含むトーラス型核融合装置において、 複数の電源を用いて前記複数組のポロイダルコイルに独
立に通電することにより前記真空容器を加熱する核融合
装置の誘導加熱方法。 2、プラズマを閉じ込めるための真空容器と、前記真空
容器を取囲むように設置された複数組のポロイダルコイ
ルとを含むトーラス型核融合装置において、 前記真空容器の発熱分布を複数の電源とそれに接続され
た前記複数組の前記ポロイダルコイルとを用いて決める
ことを特徴とする核融合装置の誘導加熱方法。 3、プラズマを発生させるための真空容器と、前記真空
容器を取囲むように設置された複数組のポロイダルコイ
ルとを含むトーラス型核融合装置において、 前記複数組のポロイダルコイルに特定の比率で通電する
ことを特徴とする核融合装置の誘導加熱方法。 4、真空容器の発熱分布の目標値と実現値との差の最小
二乗和が最小となるように、複数組のポロイダルコイル
の電流値を決めることを特徴とする核融合装置の誘導加
熱装置。 5、真空容器上に計測器を分布して配置し、前記計測器
からの信号と目標値との差が最小となるように複数組の
ポロイダルコイルの電流を制御することを特徴とする核
融合装置の誘導加熱装置。 6、前記計測器は熱電対であることを特徴とする特許請
求の範囲第5項記載の核融合装置の誘導加熱装置。
[Claims] 1. In a torus-type nuclear fusion device including a vacuum vessel for generating plasma and a plurality of sets of poloidal coils installed to surround the vacuum vessel, the An induction heating method for a nuclear fusion device in which the vacuum vessel is heated by independently energizing multiple sets of poloidal coils. 2. In a torus-type nuclear fusion device that includes a vacuum vessel for confining plasma and a plurality of sets of poloidal coils installed to surround the vacuum vessel, the heat distribution of the vacuum vessel is determined by a plurality of power sources connected to the An induction heating method for a nuclear fusion device, characterized in that the induction heating method is determined using the plurality of sets of the poloidal coils. 3. In a torus-type nuclear fusion device including a vacuum vessel for generating plasma and a plurality of sets of poloidal coils installed to surround the vacuum vessel, energizing the plurality of sets of poloidal coils at a specific ratio. An induction heating method for a nuclear fusion device, characterized by: 4. An induction heating device for a nuclear fusion device, characterized in that current values of a plurality of sets of poloidal coils are determined so that the least square sum of differences between a target value and an actual value of heat generation distribution in a vacuum vessel is minimized. 5. A nuclear fusion device characterized in that measuring instruments are distributed and arranged on a vacuum vessel, and the currents of a plurality of sets of poloidal coils are controlled so that the difference between the signal from the measuring instruments and a target value is minimized. induction heating device. 6. The induction heating device for a nuclear fusion device according to claim 5, wherein the measuring device is a thermocouple.
JP63152324A 1988-06-22 1988-06-22 Method and device for induction heating of nuclear fusion device Pending JPH01320495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63152324A JPH01320495A (en) 1988-06-22 1988-06-22 Method and device for induction heating of nuclear fusion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63152324A JPH01320495A (en) 1988-06-22 1988-06-22 Method and device for induction heating of nuclear fusion device

Publications (1)

Publication Number Publication Date
JPH01320495A true JPH01320495A (en) 1989-12-26

Family

ID=15538040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63152324A Pending JPH01320495A (en) 1988-06-22 1988-06-22 Method and device for induction heating of nuclear fusion device

Country Status (1)

Country Link
JP (1) JPH01320495A (en)

Similar Documents

Publication Publication Date Title
US4484048A (en) Process and apparatus for the homogeneous, electromagnetic induction heating with transverse flux of conducting and non-magnetic flat products
US4506131A (en) Multiple zone induction coil power control apparatus and method
Liu et al. Progress of the Keda Torus eXperiment Project in China: design and mission
US3742173A (en) Method and equipment for cooking electronically by specifying watts setting
JPH01320495A (en) Method and device for induction heating of nuclear fusion device
Khayrutdinov et al. Comparing DINA code simulations with TCV experimental plasma equilibrium responses
EP1425101B1 (en) Zone heating of specimen carriers
Coleman et al. The design and optimisation of tokamak poloidal field systems in the BLUEPRINT framework
US5870423A (en) Individual heating element power control for a furnace
Ward et al. Effects of plasma deformability on the feedback stabilization of axisymmetric modes in tokamak plasmas
AU2002324154A1 (en) Zone heating of specimen carriers
Hofmann et al. Vertical instability in TCV: comparison of experimental and theoretical growth rates
JPH02195294A (en) Helical device
Hofmann et al. Application of a new algorithm to plasma shape control in BPX
Emaami-Khonsaari Modelling and Control of Plasma Position in the STOR-M tokamak
Hawkes Modeling a cold crucible induction heated melter
US3450880A (en) Arrangement for the separate regulation of the tube currents for a plurality of x-ray tubes
JP2734108B2 (en) Heating output display of electromagnetic cooker
JP3015320B2 (en) Electric furnace power control method and apparatus
JPH0519077A (en) Supporting apparatus of operation of nuclear fusion reactor
JPS61230076A (en) Method and device for controlling shape of position of plasma
Averill et al. Final engineering report on the dual mode magnet for the high performance demonstration experiment
Woolley et al. TFTR Plasma Feedback Systems
Stambaugh et al. Plasma equilibrium control in Doublet III
Hatcher et al. Overview of the PBX-M plasma control system upgrade