JPH0131983B2 - - Google Patents

Info

Publication number
JPH0131983B2
JPH0131983B2 JP23623784A JP23623784A JPH0131983B2 JP H0131983 B2 JPH0131983 B2 JP H0131983B2 JP 23623784 A JP23623784 A JP 23623784A JP 23623784 A JP23623784 A JP 23623784A JP H0131983 B2 JPH0131983 B2 JP H0131983B2
Authority
JP
Japan
Prior art keywords
sleeve
molten metal
cylinder
mold
cylinder block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23623784A
Other languages
Japanese (ja)
Other versions
JPS61144260A (en
Inventor
Shizuo Ebisawa
Tetsuya Suzuki
Kyoshi Shibata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP23623784A priority Critical patent/JPS61144260A/en
Priority to US06/794,498 priority patent/US4905642A/en
Priority to CA000494626A priority patent/CA1266757A/en
Priority to GB08527654A priority patent/GB2168916B/en
Priority to CA000494934A priority patent/CA1260224A/en
Priority to GB08527655A priority patent/GB2168631B/en
Priority to DE19853539674 priority patent/DE3539674A1/en
Priority to FR8516578A priority patent/FR2572968B1/en
Publication of JPS61144260A publication Critical patent/JPS61144260A/en
Priority to US07/177,770 priority patent/US4831712A/en
Publication of JPH0131983B2 publication Critical patent/JPH0131983B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/10Cylinders; Cylinder heads  having cooling means for liquid cooling
    • F02F1/108Siamese-type cylinders, i.e. cylinders cast together
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1816Number of cylinders four

Description

【発明の詳細な説明】 A 発明の日的 (1) 産業上の利用分野 本発明はサイアミーズ型シリンダブロツク、特
に複数のシリンダバレルを結合してなるアルミニ
ウム合金製のサイアミーズシリンダバレルの各シ
リンダバレルに鋳鉄製スリーブを鋳ぐるんだもの
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION A. DETAILED DESCRIPTION OF THE INVENTION (1) Industrial Field of Application The present invention relates to a Siamese type cylinder block, particularly to each cylinder barrel of a Siamese cylinder barrel made of an aluminum alloy, which is formed by combining a plurality of cylinder barrels. This invention relates to a method of manufacturing a cast iron sleeve.

(2) 従来の技術 従来、前記構成のサイアミーズ型シリンダブロ
ツクは金型にスリーブを設置しているシリンダブ
ロツク素材をダイカスト鋳造し、その後各スリー
ブの内周面に真円加工を施すことにより製造され
ている。
(2) Conventional technology Conventionally, the Siamese type cylinder block having the above structure has been manufactured by die-casting the cylinder block material in which the sleeves are installed in a mold, and then processing the inner peripheral surface of each sleeve into a perfect circle. ing.

(3) 発明が解決しようとする問題点 しかしながら前記製造方法によると、溶湯充填
時相隣るスリーブの対向周壁部分が溶湯の充填圧
を強く受けるため各スリーブが長軸をシリンダバ
レル配列方向と直交させた略楕円形の断面形状を
呈するように変形する。
(3) Problems to be Solved by the Invention However, according to the above manufacturing method, since the opposing circumferential wall portions of adjacent sleeves receive strong molten metal filling pressure during filling with molten metal, the long axis of each sleeve is perpendicular to the direction in which the cylinder barrels are arranged. It deforms so that it has a substantially elliptical cross-sectional shape.

この場合、アルミニウム合金の凝固に伴う各シ
リンダバレルの収縮時の断面形状は長軸をシリン
ダバレル配列方向に平行させた略楕円形を呈する
ので、各スリーブはアルミニウム合金の収縮力を
受けて各シリンダバレルの収縮時の断面形状に倣
うように変形しようとするが、溶湯充填時におけ
る変形形状が僅かに変わる程度である。
In this case, the cross-sectional shape of each cylinder barrel when it contracts as the aluminum alloy solidifies takes on an approximately elliptical shape with its long axis parallel to the direction in which the cylinder barrels are arranged. It attempts to deform to follow the cross-sectional shape of the barrel when it contracts, but the deformed shape during filling with molten metal changes only slightly.

したがつて各スリーブの断面形状と各シリンダ
バレルの断面形状とが両長軸を90゜食い違わせた
ようになつて各スリーブに残留する鋳造応力がそ
の円周回りにおいて不均一となる。この状態のま
まスリーブの内周面に真円加工を施してエンジン
を組み立てそれを運転すると、スリーブの円周回
りにおける熱膨脹量が不均一となるためピストン
リングとスリーブ間に隙間を生じ、ブローバイガ
スを増加させたり、オイルを無駄に消費するとい
つた問題がある。
Therefore, the cross-sectional shape of each sleeve and the cross-sectional shape of each cylinder barrel have their long axes offset by 90 degrees, and the casting stress remaining in each sleeve becomes non-uniform around its circumference. If the inner peripheral surface of the sleeve is machined into a perfect circle in this state and an engine is assembled and operated, the amount of thermal expansion around the circumference of the sleeve will be uneven, creating a gap between the piston ring and the sleeve, resulting in blow-by gas. There are problems such as increasing oil consumption and wasting oil.

本発明は上記に鑑み、エンジン運転中での各ス
リーブの円周回りにおける熱膨脹量を略均一にす
るサイアミーズ型シリンダブロツクを得ることの
できる前記製造方法を提供することを目的とす
る。
In view of the above, an object of the present invention is to provide a manufacturing method capable of obtaining a Siamese-type cylinder block in which the amount of thermal expansion around the circumference of each sleeve is substantially uniform during engine operation.

B 発明の構成 (1) 問題点を解決するための手段 本発明は、金型に設置される150〜700℃に加熱
された前記スリーブに拡径力を与えた状態で該金
型に溶湯を加圧充填し、次いで該溶湯が凝固を完
了した後前記拡径力を除去するシリンダブロツク
素材鋳造工程と;前記スリーブの内周面に真円加
工を施す工程と;を用いることを特徴とする。
B. Structure of the Invention (1) Means for Solving the Problems The present invention provides a method for pouring molten metal into a mold while applying a diameter expanding force to the sleeve heated to 150 to 700°C installed in the mold. The cylinder block material is cast under pressure, and then after the molten metal has solidified, the diameter expanding force is removed; and the inner peripheral surface of the sleeve is machined into a perfect circle. .

(2) 作用 溶湯充填時に各スリーブに拡径力を与えておく
ことにより溶湯の充填圧による各スリーブの変形
が防止される。また各スリーブを150〜700℃に予
め加熱しておくと鋳造中において各スリーブを溶
湯によりそれと略同温度に加熱してその剛性を低
下させることが可能で、これにより溶湯が凝固を
完了した後各スリーブの拡径力を除去すると、低
剛性となつた各スリーブがシリンダバレルの収縮
時の断面形状に倣うように変形して各スリーブの
断面形状が長軸をシリンダバレル配列方向に平行
させた略楕円形を呈するようになる。
(2) Effect By applying a diameter expanding force to each sleeve when filling with molten metal, deformation of each sleeve due to the filling pressure of molten metal is prevented. In addition, if each sleeve is preheated to 150-700℃, it is possible to reduce the rigidity of each sleeve by heating it to approximately the same temperature with the molten metal during casting, so that after the molten metal has solidified. When the expansion force of each sleeve was removed, each sleeve, which had a low rigidity, was deformed to follow the cross-sectional shape of the cylinder barrel when it was contracted, and the cross-sectional shape of each sleeve was made so that its long axis was parallel to the cylinder barrel arrangement direction. It takes on a roughly elliptical shape.

これにより各スリーブに残留する鋳造応力がそ
の円周回りにおいて略均一化されてその応力のバ
ランス度が良好となる。
As a result, the casting stress remaining in each sleeve is made approximately uniform around its circumference, and the stress is well balanced.

この状態において各スリーブの内周面に真円加
工を施してエンジンを組立てそれを運転すると各
スリーブの円周回りにおける熱膨脹量が略均一と
なる。
In this state, when the inner peripheral surface of each sleeve is machined into a perfect circle and an engine is assembled and operated, the amount of thermal expansion around the circumference of each sleeve becomes approximately uniform.

(3) 実施例 第1〜第3図は、本発明により得られたサイア
ミーズ型シリンダブロツクSを示し、それはアル
ミニウム合金製シリンダブロツク本体2と、鋳鉄
製スリーブ3とよりなる。シリンダブロツク本体
2は複数、図示例は4個のシリンダバレル11
4を結合してなるサイアミーズシリンダバレル
1と、サイアミーズシリンダバレル1を囲繞する
外壁部4と、それらの下縁に連設されたクランク
ケース5とより構成される。サイアミーズシリン
ダバレル1と外壁部4間にはサイアミーズシリン
ダバレル1の外周が臨むウオータジヤケツト6が
形成され、そのウオータジヤケツト6のシリンダ
ヘツド側端部において各シリンダバレル11〜14
と外壁部4間は円周方向に配列された複数の補強
デツキ部8により部分的に連結され、相隣る補強
デツキ部8間はウオータジヤケツト6のシリンダ
ヘツド側への連通口7として機能する。これによ
りシリンダブロツクSはクローズドデツキ型に構
成される。スリーブ3は各シリンダバレル11
4に鋳ぐるまれており、そのスリーブ3により
シリンダボア3aが画成される。
(3) Embodiment FIGS. 1 to 3 show a Siamese type cylinder block S obtained according to the present invention, which consists of a cylinder block body 2 made of aluminum alloy and a sleeve 3 made of cast iron. The cylinder block body 2 has a plurality of cylinder barrels 1 1 to 4 in the illustrated example.
1 4 , an outer wall portion 4 surrounding the Siamese cylinder barrel 1, and a crankcase 5 connected to the lower edge of the outer wall portion 4. A water jacket 6 facing the outer periphery of the Siamese cylinder barrel 1 is formed between the Siamese cylinder barrel 1 and the outer wall 4, and each cylinder barrel 1 1 to 1 4 is connected to the cylinder head side end of the water jacket 6.
and the outer wall portion 4 are partially connected by a plurality of reinforcing deck portions 8 arranged in the circumferential direction, and the space between adjacent reinforcing deck portions 8 functions as a communication port 7 to the cylinder head side of the water jacket 6. do. As a result, the cylinder block S is constructed into a closed deck type. Sleeve 3 is attached to each cylinder barrel 1 1 ~
14 , and the sleeve 3 defines a cylinder bore 3a.

また各スリーブ3の肉厚t1は相隣るスリーブ3
間におけるシリンダバレル11〜14の最も薄い肉
厚、即ち相隣るスリーブ3の中心を結ぶ線上にお
ける肉厚t2の50%以下に設定される。この実施例
においては、最も薄い部分の肉厚t2を4.5mmとし
た場合各スリーブ3の肉厚は3mm以上に設定され
る。
Also, the wall thickness t 1 of each sleeve 3 is the thickness of the adjacent sleeve 3.
The thinnest wall thickness of the cylinder barrels 1 1 to 1 4 between them is set to 50% or less of the wall thickness t 2 on the line connecting the centers of adjacent sleeves 3 . In this embodiment, when the thickness t 2 of the thinnest portion is 4.5 mm, the thickness of each sleeve 3 is set to 3 mm or more.

第5〜第9図は、第4図に示すシリンダブロツ
ク素材Smの鋳造装置を示し、その装置は金型M
を備え、その金型Mは昇降自在な上型9と、その
上型9の下方に配設され、第5、第6図において
左右二つ割の第1および第2側型101,102
らびに第7図において左右二つ割の第3および第
4側型103,104と、各側型101〜104を摺
動自在に載置する下型11とより構成される。
5 to 9 show a casting device for the cylinder block material Sm shown in FIG.
The mold M is provided with an upper mold 9 that can be raised and lowered, and a first and second side mold 10 1 and 10 that are divided into left and right halves in FIGS. 5 and 6. 2 and 7, it is composed of third and fourth side molds 10 3 and 10 4 divided into left and right halves, and a lower mold 11 on which each of the side molds 10 1 to 10 4 is slidably placed.

上型9の下面に、各側型101〜104の上半部
と協働してサイアミーズシリンダバレル1および
外壁部4を成形すべく第1キヤビテイC1を画成
する型締め用凹部12が形成され、その凹部12
と嵌合する型締め用凸部13が各側型101〜1
4の上面に突設される。
A mold clamping recess 12 is formed on the lower surface of the upper mold 9 to define a first cavity C 1 in order to mold the Siamese cylinder barrel 1 and the outer wall 4 in cooperation with the upper half of each of the side molds 10 1 to 10 4 . is formed, and its recess 12
The mold clamping convex portion 13 that fits with each side mold 10 1 to 1
0 4 protrudes from the top surface.

第7、第8図に示すように、下型11に溶解炉
(図示せず)よりアルミニウム合金よりなる溶湯
を受ける湯溜部14と、その湯溜部14に連通す
る給湯シリンダ15と、その給湯シリンダ15に
摺合されるプランジヤ16と、湯溜部14より2
本に分岐して第1キヤビテイC1の長手方向に、
且つそれと略同一長さに亘つて延びる一対の湯道
17とが設けられる。また下型11は両湯道17
間において上方へ突出する成形ブロツク18を有
し、その成形ブロツク18は各側型101〜104
の下半部と協働してクランクケース5を成形する
第2キヤビテイC2を画成する。そのキヤビテイ
C2の上端は第1キヤビテイC1に連通し、また両
側の下端は両湯道17に複数の堰19を介して連
通する。
As shown in FIGS. 7 and 8, the lower mold 11 includes a sump 14 that receives molten metal made of aluminum alloy from a melting furnace (not shown), a hot water cylinder 15 communicating with the sump 14, and a hot water supply cylinder 15 that communicates with the sump 14. A plunger 16 that slides onto the hot water supply cylinder 15 and a
branching into the book in the longitudinal direction of the first cavity C1 ;
In addition, a pair of runners 17 are provided that extend over approximately the same length. Also, the lower mold 11 has both runners 17
It has a molding block 18 projecting upwardly in between, and the molding block 18 is connected to each side mold 10 1 to 10 4 .
A second cavity C2 is formed which forms the crankcase 5 in cooperation with the lower half of the crankcase C2. that cavity
The upper end of C 2 communicates with the first cavity C 1 , and the lower ends on both sides communicate with both runners 17 via a plurality of weirs 19 .

成形ブロツク18は、所定の間隔で形成された
背の高い4個のかまぼこ形第1成形部181と、
相隣る第1成形部181間および最外側の両第1
成形部181の外側に位置する凸字形第2成形部
182とよりなり、各第1成形部181はクランク
ピンおよびクランクアーム用回転空間20(第
2,第3図)を成形するために用いられ、第2成
形部182はクランクジヤーナルの軸受ホルダ2
1(第2、第3図)を成形するために用いられ
る。各堰19は各第2成形部182に対応して設
けられており、第2キヤビテイC2の容量の大き
な部分に溶湯を早期に充填するようになつてい
る。
The molding block 18 includes four tall semi-cylindrical first molding parts 181 formed at predetermined intervals;
Between adjacent first molded parts 18 1 and both outermost first molded parts 18 1
It consists of a convex second molding part 182 located outside the molding part 181, and each first molding part 181 is for molding the rotation space 20 for the crank pin and crank arm (Figs. 2 and 3). The second molded part 18 2 is used for the bearing holder 2 of the crank journal.
1 (Figures 2 and 3). Each weir 19 is provided corresponding to each second forming part 18 2 , and is designed to quickly fill the large volume portion of the second cavity C 2 with molten metal.

両湯道17の断面積が湯溜部14側より湯道先
17aに向けて段階的に減少するように、湯道1
7底面は湯溜部14側より数段の上り階段状に形
成されている。各段部17bに連なる各立上り部
17cは溶湯を各堰19にスムーズに導くことが
できるように斜めに形成される。
The runners 17 are arranged such that the cross-sectional area of both runners 17 gradually decreases from the water reservoir 14 side toward the runner tip 17a.
The bottom surface of 7 is formed in the shape of several steps ascending from the trough portion 14 side. Each rising portion 17c connected to each step portion 17b is formed diagonally so that the molten metal can be smoothly guided to each weir 19.

このように湯道17の断面積を段階的に減少さ
せると、断面積の大きな部分では大量の溶湯を遅
い速度で堰19を通じて第2キヤビテイC2に充
填し、また断面積の小さな部分では少量の溶湯を
速い速度で堰19を通じて第2キヤビテイC2
充填することができるので、そのキヤビテイC2
内では両側下端よりその全長に亘つて略均等に湯
面が上昇し、したがつて溶湯が第2キヤビテイ
C2内で乱流を起こすことがなく、空気等のガス
が溶湯に巻き込まれることを防止して巣の発生を
回避することができる。この溶湯の充填作業が効
率良く行われるので、鋳造能率を向上させること
ができる。
When the cross-sectional area of the runner 17 is reduced stepwise in this way, a large amount of molten metal is filled into the second cavity C2 through the weir 19 at a slow speed in the large cross-sectional area, and a small amount is filled in the small cross-sectional area. can be filled into the second cavity C 2 through the weir 19 at a high speed, so that the cavity C 2
Inside, the molten metal level rises almost evenly over the entire length from the lower ends of both sides, so that the molten metal rises to the second cavity.
There is no turbulence in C 2 , and gases such as air are prevented from being drawn into the molten metal, thereby avoiding the formation of cavities. Since this molten metal filling operation is performed efficiently, casting efficiency can be improved.

第5、第6図に示すように各第1成形部181
の頂面には、鋳鉄製スリーブ3の内周面と嵌合す
る位置決め突起22が突設され、その位置決め突
起22の中心には凹部23が形成される。また両
側に位置する2つの第1成形部181には、位置
決め突起22の両側において第1成形部181
貫通する貫通孔24が形成され、それら貫通孔2
4に一対の仮設置ピン28がそれぞれ摺合され、
それら仮設置ピン25は、ウオータジヤケツト用
砂中子の仮設置のために用いられる。両仮設置ピ
ン25の下端は、成形ブロツク18の下方に配設
された取付板26に固定される。その取付板26
には2本の支持ロツド27が挿通され、各支持ロ
ツド27の下部と取付板26の下面との間にはコ
イルばね28が縮設される。型開き時には、取付
板26は各コイルばね28の弾発力を受けて各支
持ロツド27先端のストツパ27aに当接するま
で上昇し、これにより各仮設置ピン25の先端は
第1成形部181頂面より突出している。各仮設
置ピン25の先端面には砂中子の下縁と係合する
凹部25aが形成される。
As shown in FIGS. 5 and 6, each first molding section 18 1
A positioning protrusion 22 that fits into the inner peripheral surface of the cast iron sleeve 3 is protruded from the top surface of the cast iron sleeve 3, and a recess 23 is formed in the center of the positioning protrusion 22. Furthermore, in the two first molded parts 18 1 located on both sides, through holes 24 are formed that penetrate through the first molded parts 18 1 on both sides of the positioning protrusion 22 .
4, a pair of temporary installation pins 28 are slid together, respectively.
These temporary installation pins 25 are used for temporary installation of a sand core for a water jacket. The lower ends of both temporary installation pins 25 are fixed to a mounting plate 26 disposed below the forming block 18. Its mounting plate 26
Two support rods 27 are inserted through the support rods 27, and a coil spring 28 is compressed between the lower part of each support rod 27 and the lower surface of the mounting plate 26. When the mold is opened, the mounting plate 26 receives the elastic force of each coil spring 28 and rises until it comes into contact with the stopper 27a at the tip of each support rod 27, so that the tip of each temporary installation pin 25 is attached to the first molded part 18 1 It protrudes from the top. A recess 25a that engages with the lower edge of the sand core is formed on the tip end surface of each temporary installation pin 25.

また両側に位置する2つの第1成形部181
は、両貫通孔24間の二等分位置において第1成
形部181を貫通する貫通孔29が形成され、そ
の貫通孔29に下端を取付板26に固定された作
動ピン30が摺合される。型開き時には、作動ピ
ン30の先端は凹部23内に突出し、また型閉め
時には後述する拡径機構により押し下げられ、こ
れにより両仮設置ピン25を第1成形部181
面より引き込ませるようになつている。
Further, in the two first molded parts 18 1 located on both sides, a through hole 29 is formed that penetrates the first molded part 18 1 at a bisecting position between both through holes 24 , and the lower end is inserted into the through hole 29 . An operating pin 30 fixed to the mounting plate 26 is slid together. When the mold is opened, the tip of the operating pin 30 protrudes into the recess 23, and when the mold is closed, it is pushed down by a diameter expanding mechanism, which will be described later, so that both temporary pins 25 are retracted from the top surface of the first molding section 181 . It's summery.

第1および第2側型101,102における第2
キヤビテイC2を画成する壁部の中央部分に砂中
子を本設置するための中子受31が2個所設けら
れている。各中子受31は砂中子の位置決めを行
う係合孔31aと、その開口部外周に形成されて
砂中子を挟持する挟持面31bとよりなる。
The second in the first and second side molds 10 1 , 10 2
Two core holders 31 are provided at the center of the wall defining the cavity C 2 for actually installing sand cores. Each core holder 31 includes an engagement hole 31a for positioning the sand core, and a clamping surface 31b formed on the outer periphery of the opening to clamp the sand core.

上型9の型締め用凹部12に、第1キヤビテイ
C1に連通する複数のオーバフロー用第3キヤビ
テイC3および連通口成形用第4キヤビテイC4
それぞれ開口し、また上型9に各第3キヤビテイ
C3および各第4キヤビテイC4に連通する貫通孔
32,33がそれぞれ形成される。
A first cavity is placed in the mold clamping recess 12 of the upper mold 9.
A plurality of third cavities C 3 for overflow and fourth cavities C 4 for forming communication ports are opened, and each third cavity C 3 is connected to the upper die 9 .
Through holes 32 and 33 communicating with C 3 and each fourth cavity C 4 are formed, respectively.

それら貫通孔32,33には閉鎖ピン34,3
5がそれぞれ挿入され、それら閉鎖ピン34,3
5の上端は上型9の上方に配設される取付板36
に固定される。
The through holes 32 and 33 have closing pins 34 and 3.
5 are inserted, respectively, and the closing pins 34, 3
The upper end of 5 is a mounting plate 36 disposed above the upper mold 9.
Fixed.

各貫通孔32,34の、両キヤビテイC3,C4
に対する連通端から上方へ所定の長さに亘つて延
びる小径部32a,33aは各閉鎖ピン34,3
5と嵌合して第3、第4キヤビテイC3,C4を閉
鎖し得るが、その外の部分の直径は各閉鎖ピン3
4,35の直径よりも大きく、これにより各閉鎖
ピン34,35と各貫通孔32,33間に空気通
路37,38が形成される。
Both cavities C 3 and C 4 of each through hole 32 and 34
The small diameter portions 32a, 33a extend upwardly over a predetermined length from the communicating ends of the respective closing pins 34, 3.
5 to close the third and fourth cavities C 3 and C 4 , but the diameter of the outer portion is smaller than that of each closing pin 3 .
4, 35, thereby forming air passages 37, 38 between each closing pin 34, 35 and each through hole 32, 33.

上型9の頂面と取付板36間には、油圧シリン
ダ39が介装され、その油圧シリンダ39の作動
により取付板36を昇降して各閉鎖ピン34,3
5により各小径部32a,33aを開閉するよう
になつている。40は取付板36の案内ロツドで
ある。
A hydraulic cylinder 39 is interposed between the top surface of the upper die 9 and the mounting plate 36, and the operation of the hydraulic cylinder 39 moves the mounting plate 36 up and down to close each closing pin 34, 3.
5 to open and close each small diameter portion 32a, 33a. 40 is a guide rod for the mounting plate 36.

上型9には、各シリンダバレル11〜14に鋳ぐ
るまれるスリーブ3を保持するための拡径機構4
1が設けられ、その機構41は下記のように構成
される。
The upper mold 9 has a diameter expanding mechanism 4 for holding the sleeve 3 cast into each cylinder barrel 1 1 to 1 4 .
1 is provided, and its mechanism 41 is constructed as follows.

上型9には、作動ピン30の延長軸線に中心線
を合致させた貫通孔42が形成され、その貫通孔
42に支持ロツド43が遊挿される。その支持ロ
ツド43の上端は上型9の頂面に立設されたブラ
ケツト44に固定され、またその下端に溶湯浸入
防止板45が固着される。溶湯浸入防止板45の
下面は、下型11における第1成形部181頂面
の凹部23に嵌合し得る凸部45aが形成され
る。
A through hole 42 whose center line coincides with the extension axis of the operating pin 30 is formed in the upper mold 9, and a support rod 43 is loosely inserted into the through hole 42. The upper end of the support rod 43 is fixed to a bracket 44 erected on the top surface of the upper mold 9, and a molten metal intrusion prevention plate 45 is fixed to the lower end. The lower surface of the molten metal intrusion prevention plate 45 is formed with a protrusion 45a that can fit into the recess 23 on the top surface of the first molded part 181 in the lower mold 11.

中空の保持筒46は円形の外周面と、上部から
下部に向けて下り勾配のテーパ孔47を有し、上
型9から下方へ突出する支持ロツド43の下部は
保持筒46のテーパ孔47に遊挿され、その保持
筒46の上端面は上型9の凹部12に突設された
凸部48に当接し、また下端面は溶湯浸入防止板
45に当接する。第9図に示すように保持筒46
の周壁部にはその内周面および外周面より半径方
向に延びる複数のすり割溝49が交互に且つ円周
上等間隔に形成される。
The hollow holding cylinder 46 has a circular outer peripheral surface and a tapered hole 47 with a downward slope from the top to the bottom. The holding cylinder 46 is inserted loosely, and its upper end surface abuts a protrusion 48 protruding from the recess 12 of the upper mold 9, and its lower end surface abuts a molten metal intrusion prevention plate 45. As shown in FIG.
A plurality of slot grooves 49 extending radially from the inner circumferential surface and outer circumferential surface of the circumferential wall are formed alternately and at equal intervals on the circumference.

支持ロツド43には、保持筒46を拡径するた
めの中空状作動ロツド50が支持ロツド43の略
全長に亘つて摺合され、その作動ロツド50は保
持筒46のテーパ孔47に嵌合するテーパ部50
aと、そのテーパ部50aに連設されて上型9の
貫通孔42に摺合されると共に上型9より突出す
る真円部50bとよりなる。テーパ部50aには
複数のピン57が突設され、それらピン57は保
持筒46の上下方向に長いピン孔58に挿入さ
れ、これによりテーパ部50aの上下動を許容し
つつ保持筒46の回止めがなされる。
A hollow actuating rod 50 for expanding the diameter of the holding tube 46 is slid onto the supporting rod 43 over substantially the entire length of the supporting rod 43, and the actuating rod 50 has a tapered shape that fits into the tapered hole 47 of the holding tube 46. Part 50
a, and a perfectly circular portion 50b that is connected to the tapered portion 50a, slides into the through hole 42 of the upper mold 9, and projects from the upper mold 9. A plurality of pins 57 are provided protruding from the tapered portion 50a, and these pins 57 are inserted into pin holes 58 that are long in the vertical direction of the holding tube 46, thereby allowing the rotation of the holding tube 46 while allowing the vertical movement of the tapered portion 50a. A stop is made.

上型9の頂面には、油圧シリンダ51が固定さ
れ、その中空ピストン52の上端面および下端面
に突設された中空ピストンロツド531,532
シリンダ本体54の上端壁および下端壁をそれぞ
れ貫通している。中空ピストン52および中空ピ
ストンロツド53を貫通する貫通孔55には作動
ロツド50の真円部50bが挿入され、その真円
部50bの環状溝に嵌めた抜止めストツパ561
562を中空ピストンロツド531,532の上、
下端面にそれぞれ当接させて中空ピストン52に
より作動ロツド50を昇降するようになつてい
る。前記拡径機構41はシリンダブロツクSの各
シリンダバレル11〜14に対応して4機設けられ
る。
A hydraulic cylinder 51 is fixed to the top surface of the upper die 9, and hollow piston rods 53 1 and 53 2 projecting from the upper and lower end surfaces of the hollow piston 52 respectively touch the upper and lower end walls of the cylinder body 54. Penetrating. A true circular portion 50b of the actuating rod 50 is inserted into a through hole 55 passing through the hollow piston 52 and the hollow piston rod 53, and a stopper 56 1 to prevent removal is fitted into an annular groove of the circular portion 50b.
56 2 on the hollow piston rods 53 1 and 53 2 ,
The actuating rod 50 is raised and lowered by a hollow piston 52, which is brought into contact with the lower end surface. Four diameter expanding mechanisms 41 are provided corresponding to each of the cylinder barrels 11 to 14 of the cylinder block S.

第10、第11図はウオータジヤケツト用砂中
子59を示し、その砂中子59は、シリンダブロ
ツクSの4本のシリンダバレル11〜14に対応し
て4本の円筒部601〜604を備えると共にそれ
らの相隣るもの相互の重合する周壁を欠如させた
中子本体61と、ウオータジヤケツトをシリンダ
ヘツドのウオータジヤケツトに連通する連通口7
を形成すべく、中子本体61の上端面に突設され
た複数の突起62と、中子本体61の中間に位置
する2本の円筒部602,603の両外側面にそれ
ぞれ突設された幅木63とより構成される。各幅
木63は中子本体61と一体の大径部63aと、
その端面に突設される小径部63bとより形成さ
れる。この場合突起62は前記第4キヤビテイ
C4に遊挿されるように、その寸法設定がなされ
る。
10 and 11 show a sand core 59 for a water jacket, and the sand core 59 has four cylindrical portions 60 1 corresponding to the four cylinder barrels 1 1 to 1 4 of the cylinder block S. - 60 4 and a core body 61 which lacks the surrounding walls overlapping their adjacent ones, and a communication port 7 which communicates the water jacket with the water jacket of the cylinder head.
In order to form a plurality of protrusions 62 protruding from the upper end surface of the core body 61 and protrusions protruding from both outer surfaces of the two cylindrical parts 60 2 and 60 3 located in the middle of the core body 61, respectively. The baseboard 63 is made of Each baseboard 63 has a large diameter portion 63a integrated with the core body 61,
It is formed with a small diameter portion 63b protruding from the end surface thereof. In this case, the protrusion 62 is connected to the fourth cavity.
Its dimensions are set so that it can be inserted loosely into C4 .

次に前記鋳造装置によるシリンダブロツク素材
Smの鋳造作業について説明する。
Next, the cylinder block material is made by the casting machine.
I will explain the casting work of Sm.

先ず第5図に示すように、上型9を上昇させ、
また相対向する両側型101,102;103,1
4を互いに離間するように移動させて型開きを
行う。拡径機構41においては、各油圧シリンダ
51を作動させて中空ピストン52により作動ロ
ツド50を下降させ、テーパ部50aの下方移動
により保持筒46を縮径させておく。また上型9
上の油圧シリンダ39を作動させて取付板36を
上昇させ、これにより各閉鎖ピン34,35をオ
ーバフロー用キヤビテイC3および連通口成形用
キヤビテイC4に連通する小径部32a,33a
より離脱させる。さらに給湯シリンダ15内のプ
ランジヤ16を下降させる。
First, as shown in FIG. 5, the upper mold 9 is raised,
Also, opposing both sides 10 1 , 10 2 ; 10 3 , 1
0 4 are moved apart from each other to open the mold. In the diameter expanding mechanism 41, each hydraulic cylinder 51 is operated to lower the actuating rod 50 using the hollow piston 52, and the diameter of the holding cylinder 46 is reduced by moving the tapered portion 50a downward. Also, upper mold 9
The upper hydraulic cylinder 39 is operated to raise the mounting plate 36, thereby connecting the respective closing pins 34, 35 to the overflow cavity C3 and the communication port forming cavity C4 .
Make them more detached. Furthermore, the plunger 16 in the hot water supply cylinder 15 is lowered.

略真円で厚さ5mmの鋳鉄製スリーブ3を250〜
400℃に加熱して各保持筒46に遊嵌し、スリー
ブ3の上端開口を上型9の凸部48に嵌合して閉
鎖し、またスリーブ3の下端面を溶湯浸入防止板
45の凸部45a下端面に合致させると共に溶湯
浸入防止板45によりスリーブ3の下端開口を閉
鎖する。そして拡径機構41の油圧シリンダ51
を作動させ、その中空ピストン52により作動ロ
ツド50を上昇させる。これによりテーパ部50
aが上方へ移動するので保持筒46が拡径し、ス
リーブ3は拡径力を受けて保持筒46に確実に保
持される。
Approximately perfect circle and 5mm thick cast iron sleeve 3 for 250~
The sleeve 3 is heated to 400° C. and fitted loosely into each holding cylinder 46, and the upper end opening of the sleeve 3 is fitted into the convex portion 48 of the upper die 9 to close it, and the lower end surface of the sleeve 3 is fitted into the convex portion of the molten metal intrusion prevention plate 45. The lower end opening of the sleeve 3 is closed by the molten metal intrusion prevention plate 45 while matching the lower end surface of the portion 45a. And the hydraulic cylinder 51 of the diameter expansion mechanism 41
is actuated to raise the actuating rod 50 by its hollow piston 52. As a result, the tapered portion 50
Since a moves upward, the holding cylinder 46 expands in diameter, and the sleeve 3 is reliably held in the holding cylinder 46 under the force of expanding the diameter.

第5、第11図に示すように砂中子59におけ
る両側の円筒部601,604下縁を、下型11に
おける両側の第1成形部181の頂面に突出する
各仮設置ピン25の凹部25aに係合させて砂中
子59の仮設置を行う。
As shown in FIGS. 5 and 11, the lower edges of the cylindrical portions 60 1 and 60 4 on both sides of the sand core 59 are connected to temporary installation pins that protrude from the top surface of the first molding portions 18 1 on both sides of the lower mold 11. The sand core 59 is temporarily installed by engaging the recess 25a of the sand core 59.

両側型101,102をそれらが互いに接近する
方向に所定距離移動させ、各中子受31の係合孔
31aに砂中子59における各幅木63の小径部
63bを嵌合して砂中子59を位置決めし、また
各大径部63aの端面を各中子受31の挟持面3
1bに衝合し、これにより砂中子59を正確に位
置決めして両側型101,102に挟持させ砂中子
59の本設置を行う。また他の両側型103,1
4も同様に移動させる。
The two-sided molds 10 1 and 10 2 are moved a predetermined distance in the direction in which they approach each other, and the small diameter portion 63b of each baseboard 63 of the sand core 59 is fitted into the engagement hole 31a of each core receiver 31, and the sand The core 59 is positioned, and the end face of each large diameter portion 63a is aligned with the clamping surface 3 of each core receiver 31.
1b, thereby accurately positioning the sand core 59 and sandwiching it between the molds 10 1 and 10 2 on both sides, thereby performing the actual installation of the sand core 59. Also, other double-sided type 10 3 , 1
Move 0 4 in the same way.

第6図に示すように、上型9を下降させて各ス
リーブ3を砂中子59の各円筒部601〜604
に挿入し、溶湯浸入防止板45の凸部45aを第
1成形部181頂面の凹部23に嵌合する。これ
により溶湯浸入防止板45の凸部45aにより作
動ピン30が押し下げられるので各仮設置ピン2
4が下降して第1成形部181頂面より引込む。
また上型9の型締め用凹部12が各側型101
104の型締め用凸部13に嵌合して型締めが行
われる。
As shown in FIG. 6, the upper die 9 is lowered and each sleeve 3 is inserted into each cylindrical portion 60 1 to 60 4 of the sand core 59, and the convex portion 45a of the molten metal infiltration prevention plate 45 is first formed. Part 18 1 fits into the recess 23 on the top surface. As a result, the operating pins 30 are pushed down by the convex portions 45a of the molten metal intrusion prevention plate 45, so that each temporary installation pin 2
4 descends and retracts from the top surface of the first molded part 181 .
Moreover, the mold clamping recess 12 of the upper mold 9 is connected to each side mold 10 1 to
The mold clamping is performed by fitting into the mold clamping convex portion 13 of 10 4 .

下型11の湯溜部14に溶解炉よりアルミニウ
ム合金よりなる溶湯を供給し、プランジヤ16を
上昇させて溶湯を両湯道17より堰19を通じて
第2キヤビテイの両下縁よりそのキヤビテイC2
および第1キヤビテイC1に充填する。両キヤビ
テイC1,C2内の空気等のガスは、溶湯により押
し上げられ第3、第4キヤビテイC3,C4に連通
する空気通路37,38を経て上型9の上方へ抜
ける。
Molten metal made of aluminum alloy is supplied from the melting furnace to the sump 14 of the lower mold 11, and the plunger 16 is raised to allow the molten metal to pass through the weir 19 from both runners 17 and into the cavity C 2 from both lower edges of the second cavity.
and fill the first cavity C1 . Gas such as air in both cavities C 1 and C 2 is pushed up by the molten metal and escapes above the upper mold 9 through air passages 37 and 38 communicating with the third and fourth cavities C 3 and C 4 .

この場合両湯道17の断面積が前述のように湯
道先17aに向けて段階的に減少するように、湯
道底面が湯溜部14側より数段の上り段階状に形
成されているので、プランジヤ16の上昇により
溶湯は両湯道17より各堰19を通じて第2キヤ
ビテイC2の両側下端よりその全長に亘つて略均
等にそのキヤビテイC2内をスムーズに押し上げ
られる。したがつて溶湯が両キヤビテイC1,C2
内で乱流を起こすことがなく、溶湯中への空気等
のガスの巻込みを防止して巣の発生を回避するこ
とができる。
In this case, the bottom surface of the runners is formed in several ascending steps from the trough portion 14 side so that the cross-sectional area of both runners 17 gradually decreases toward the runner tip 17a as described above. As the plunger 16 rises, the molten metal is smoothly pushed up into the cavity C 2 from both runners 17 and through each weir 19 from the lower ends of both sides of the second cavity C 2 almost uniformly over its entire length. Therefore, the molten metal has both cavities C 1 and C 2
This prevents turbulence within the molten metal, prevents gases such as air from getting into the molten metal, and prevents the formation of cavities.

各第3、第4キヤビテイC3,C4に溶湯が充填
された時点で、上型9上の油圧シリンダ39を作
動させて取付板36を下降させ、閉鎖ピン34,
35によつて両キヤビテイC3,C4に連通する小
径部32a,33aを閉鎖する。
When the third and fourth cavities C 3 and C 4 are filled with molten metal, the hydraulic cylinder 39 on the upper mold 9 is operated to lower the mounting plate 36, and the closing pin 34,
35 closes the small diameter portions 32a and 33a communicating with both cavities C 3 and C 4 .

前記注湯作業において、第2、第1キヤビテイ
C2,C1に溶湯を充填するためのプランジヤ16
の変位および溶湯圧力は第12図に示すように制
御される。
In the pouring work, the second and first cavities
Plunger 16 for filling C 2 and C 1 with molten metal
The displacement and molten metal pressure are controlled as shown in FIG.

即ち、プランジヤ16はその移動速度を第1〜
第3速V1〜V3の3段階に制御される。本実施例
では第1速V1は0.08〜0.12m/sec、第2速V2
0.14〜0.18m/sec、第3速V3は大幅な減速状態
となるように0.04〜0.08m/secにそれぞれ設定さ
れ、この3段階の速度制御によつて溶湯の波立を
防止して空気等のガスを巻き込むことのない静か
な溶湯流を形成し、その溶湯を前記両キヤビテイ
C2,C1に効率良く充填することができる。
That is, the plunger 16 changes its moving speed from the first to
The third speed is controlled in three stages, V1 to V3 . In this example, the first speed V 1 is 0.08 to 0.12 m/sec, and the second speed V 2 is
0.14 to 0.18 m/sec, and the third speed V 3 is set to 0.04 to 0.08 m/sec to achieve a significant deceleration state. By controlling the speed in these three stages, the molten metal is prevented from rippling and air etc. Forms a quiet flow of molten metal without involving any gases, and directs the molten metal into both cavities.
C 2 and C 1 can be efficiently filled.

またプランジヤ16の第1速V1では、溶湯は
両湯道17等に充満するだけであるから溶湯の圧
力P1は略一定に保持され、プランジヤ16の第
2、第3速V2、V3では溶湯は両キヤビテイC1
C2に充填されるので溶湯の圧力P2は急激に上昇
する。プランジヤ16を第3速V3で所定時間移
動させた後は、溶湯の充填圧P3を約1.5秒間、150
〜400Kg/cm2に保持し、これにより砂中子59を
溶湯により完全に包んでその表面に溶湯凝固膜を
形成する。
In addition, at the first speed V 1 of the plunger 16, the molten metal only fills both runners 17, etc., so the pressure P 1 of the molten metal is kept approximately constant, and at the second and third speeds V 2 and V of the plunger 16. In 3 , the molten metal is in both cavities C 1 ,
Since C 2 is filled with molten metal, the pressure P 2 of the molten metal rises rapidly. After moving the plunger 16 at the third speed V3 for a predetermined time, the molten metal filling pressure P3 is increased to 150°C for about 1.5 seconds.
~400 Kg/cm 2 , thereby completely covering the sand core 59 with the molten metal and forming a molten metal coagulation film on its surface.

前記時間経過後においては、プランジヤ16を
速度V4で減速移動させるので溶湯の圧力P4は上
昇し、その圧力P5が200〜600Kg/cm2となつたと
きプランジヤ16の移動を止めてこの状態で溶湯
を凝固させる。
After the above-mentioned time has elapsed, the plunger 16 is moved at a reduced speed V4 , so the pressure P4 of the molten metal rises, and when the pressure P5 reaches 200 to 600 kg/ cm2 , the plunger 16 stops moving. solidify the molten metal.

前記のように溶湯の圧力を所定時間略一定に保
つことにより砂中子59の表面に溶湯凝固膜を形
成すると、次の溶湯加圧時に砂中子59が前記膜
により保護されて破損することがない。
If a molten metal coagulation film is formed on the surface of the sand core 59 by keeping the pressure of the molten metal substantially constant for a predetermined period of time as described above, the sand core 59 will be protected by the film and damaged during the next pressurization of the molten metal. There is no.

また溶湯によつて砂中子59が膨脹するが、突
起62は第4キヤビテイC4に遊挿されているの
で、砂中子59の膨脹に突起62が追従し、これ
により突起62の折れが回避される。
Also, the sand core 59 expands due to the molten metal, but since the protrusion 62 is loosely inserted into the fourth cavity C4 , the protrusion 62 follows the expansion of the sand core 59, thereby preventing the protrusion 62 from breaking. Avoided.

さらに砂中子59は、それの各幅木63を介し
て両側型101,102により正確な位置に挟持さ
れているので、第1キヤビテイC1内への溶湯の
充填時およびそのキヤビテイC1内の溶湯の加圧
時において砂中子59が浮き上がつたりすること
がない。さらにまた各幅木63の大径部63aの
端面が両側型101,102における中子受31の
挟持面31bに衝合しているので、砂中子59が
脹らみ傾向になると、その変形力は各挟持面31
bによつて支承され、これにより砂中子59の変
形が防止されて各スリーブ3回りの肉厚が均一な
サイアミーズシリンダバレル1が得られる。
Furthermore, since the sand core 59 is held in an accurate position by the molds 10 1 and 10 2 on both sides through its baseboards 63, the sand core 59 is held in an accurate position by the molds 10 1 and 10 2 on both sides. When the molten metal in 1 is pressurized, the sand core 59 does not float or sag. Furthermore, since the end surfaces of the large diameter portions 63a of each baseboard 63 abut against the clamping surfaces 31b of the core receivers 31 in the double-sided molds 10 1 and 10 2 , when the sand cores 59 tend to swell, The deformation force is
b, thereby preventing deformation of the sand core 59 and providing a Siamese cylinder barrel 1 with uniform wall thickness around each sleeve 3.

前記のようにプランジヤ16の移動速度および
溶湯の圧力を制御することによつてダイカスト鋳
造と略同じ生産効率を以てクローズドデツキ型の
シリンダブロツク素材を鋳造することができる。
By controlling the moving speed of the plunger 16 and the pressure of the molten metal as described above, a closed deck cylinder block material can be cast with substantially the same production efficiency as die casting.

溶湯が凝固を完了した後、拡径機構41の油圧
シリンダ51を作動させ、作動ロツド50を下降
させてスリーブ3に対する保持筒46の拡径力を
除去し、型開きを行うと第4図に示すシリンダブ
ロツク素材Smが得られる。
After the molten metal has solidified, the hydraulic cylinder 51 of the diameter expansion mechanism 41 is operated, the operating rod 50 is lowered to remove the diameter expansion force of the holding cylinder 46 against the sleeve 3, and the mold is opened. The cylinder block material Sm shown is obtained.

このシリンダブロツク素Smにおいては、第1
3図aのタリロンド測定(100倍)結果に示すよ
うに各スリーブ3の断面形状が、長軸をシリンダ
バレル11〜14の配列方向に平行させた略楕円形
を呈し、これは各シリンダバレル11〜14の収縮
時の断面形状に合致している。
In this cylinder block element Sm, the first
As shown in the Talyrond measurement results (100 times magnification) in Figure 3a, the cross-sectional shape of each sleeve 3 is approximately elliptical with its long axis parallel to the arrangement direction of the cylinder barrels 1 1 to 1 4 . This corresponds to the cross-sectional shape of the barrels 1 1 to 1 4 when they are contracted.

このような結果が得られる理由は、溶湯充填時
拡径機構41により各スリーブ3に拡径力が与え
られているので、各スリーブ3が溶湯の充填圧に
より変形することが防止され、また溶湯が凝固を
完了した後各スリーブ3の拡径力を除去すると各
スリーブ3の肉厚が5mmと厚くても各スリーブ3
は、溶湯によりそれと略同温度に加熱されて剛性
を低下させられているので各シリンダバレル11
〜14の収縮時の断面形状に倣うように変形する
からである。
The reason why such a result is obtained is that the diameter expanding force is applied to each sleeve 3 by the diameter expanding mechanism 41 when filling the molten metal, so each sleeve 3 is prevented from being deformed by the filling pressure of the molten metal, and the molten metal is When the expansion force of each sleeve 3 is removed after the solidification of each sleeve 3 is completed, even if the wall thickness of each sleeve 3 is as thick as 5 mm,
is heated to approximately the same temperature by the molten metal, reducing the rigidity of each cylinder barrel 1 1
This is because it deforms to follow the cross-sectional shape of 14 when contracted.

これにより各スリーブ3に残留する鋳造応力
は、その全周に亘り略均一化される。
As a result, the casting stress remaining in each sleeve 3 is made substantially uniform over its entire circumference.

第13図bは、真円のスリーブ300を拡径機
構41を用いずにシリンダバレル1001〜10
4に鋳ぐるんで得られた比較例としてのサイア
ミーズ型シリンダブロツク素材のタリロンド測定
結果を示し、この図から明らからように各スリー
ブ300の断面形状は、長軸をシリンダバレルの
配列方向と直交させた略楕円形を呈しており、特
に相隣るシリンダバレル間においては、両スリー
ブ300の対向周壁部が溶湯の充填圧を受けて凹
状部300aとなつている。
FIG. 13b shows a cylinder barrel 100 1 to 10 without using a diameter expanding mechanism 41 using a perfectly circular sleeve 300.
04 shows the results of Talyrond measurement of a Siamese-type cylinder block material as a comparative example obtained by casting.As is clear from this figure, the cross-sectional shape of each sleeve 300 has a long axis perpendicular to the arrangement direction of the cylinder barrels. Particularly between adjacent cylinder barrels, the opposing circumferential walls of both sleeves 300 receive the filling pressure of the molten metal and form a concave portion 300a.

第14図aは前記シリンダブロツク素材Smに
おける各スリーブ3に残留する鋳造応力のバラン
ス度を示し、真円cは鋳造応力のO点を示してい
る。この図から前記素材Smにおいては、各スリ
ーブ3の全周に亘り良好なバランス度が確保され
ていることが明らかである。
FIG. 14a shows the balance of casting stress remaining in each sleeve 3 in the cylinder block material Sm, and the perfect circle c shows the O point of the casting stress. It is clear from this figure that a good degree of balance is ensured over the entire circumference of each sleeve 3 in the material Sm.

第14図bは前記比較例における各スリーブ3
00に残留する鋳造応力のバランス度を示し、相
隣るシリンダバレル間が特異傾向にあつてバラン
ス度が悪くなつている。
FIG. 14b shows each sleeve 3 in the comparative example.
00 indicates the degree of balance of residual casting stress, and there is a peculiar tendency between adjacent cylinder barrels, resulting in poor balance.

前記測定後シリンダブロツク素材Smに研削加
工を施して各第4キヤビテイC4と砂中子59の
各突起62との協働により成形された各突出部6
4を除去すると、突起62により連通口7が、ま
た相隣る連通口7間に補強デツキ部8がそれぞれ
形成される。その後砂抜きを行うことによりウオ
ータジヤケツト6が得られ、さらに各スリーブ3
の内周面に真円加工を施して肉厚t1を3mmに仕上
げ、さらにまたその他の所定の加工を施すと第1
〜第3図に示すシリンダブロツクSが得られる。
After the measurement, the cylinder block material Sm is subjected to a grinding process, and each protrusion 6 is formed by the cooperation of each fourth cavity C4 and each protrusion 62 of the sand core 59.
4, a communication port 7 is formed by the protrusion 62, and a reinforcing deck portion 8 is formed between adjacent communication ports 7. After that, the water jacket 6 is obtained by removing sand, and each sleeve 3 is further removed.
The inner circumferential surface of is machined into a perfect circle to make the wall thickness t 1 3 mm, and further other prescribed processing is performed to obtain the first
~The cylinder block S shown in FIG. 3 is obtained.

比較例のものにも同様の加工を施してシリンダ
ブロツクを得る。
A comparative example was also subjected to the same processing to obtain a cylinder block.

第15図a,bは両シリンダブロツクを均一に
加熱した場合における両スリーブ3,300の内
径変化を膨脹量として表わしたものである。膨脹
量の測定は第16図に示すように円周上4点a1
a4における内径の変化を求めた。
Figures 15a and 15b show changes in the inner diameters of both sleeves 3, 300 as expansion amounts when both cylinder blocks are uniformly heated. The amount of expansion is measured at four points a 1 on the circumference as shown in Figure 16.
The change in inner diameter at a4 was determined.

第15図aは本発明により得られたシリンダブ
ロツクSの場合を示し、エンジン運転中における
シリンダブロツクの加熱温度である190゜前後での
最高膨脹量と最低膨脹量の差D1は20μと小さく各
点a1〜a4における膨脹量のばらつきが少ない。し
かもそれら膨脹量は理論膨脹量Tに近似してい
る。これは前記のように各スリーブ3に残留する
鋳造応力のバランス度が良いことに起因する。
Figure 15a shows the case of the cylinder block S obtained according to the present invention, where the difference D 1 between the maximum expansion amount and the minimum expansion amount at around 190°, which is the heating temperature of the cylinder block during engine operation, is as small as 20μ. There is little variation in the amount of expansion at each point a1 to a4 . Moreover, these expansion amounts are close to the theoretical expansion amount T. This is due to the well-balanced casting stress remaining in each sleeve 3 as described above.

第15図bは比較例のものの場合を示し、前記
と同温度での最高膨脹量と最低膨脹量との差D2
が128μと大きく各点a1〜a4における膨脹量にばら
つきが見られる。しかもそれら膨脹量のうち3点
a2、a3、a4におけるものは理論膨脹量Tより大き
く隔つている。これは前記のように各スリーブ3
00に残留する鋳造応力のバランス度が悪いこと
に起因する。
Figure 15b shows the case of a comparative example, where the difference D 2 between the maximum expansion amount and the minimum expansion amount at the same temperature as above.
is as large as 128 μ, and there are variations in the amount of expansion at each point a 1 to a 4 . Moreover, 3 points out of those expansion amounts
Those at a 2 , a 3 , and a 4 are separated by a larger distance than the theoretical expansion amount T. This applies to each sleeve 3 as described above.
This is due to the poor balance of casting stress remaining in 00.

C 発明の効果 本発明によれば、金型に設置されるスリーブに
拡径力を与えた状態でそのキヤビテイに溶湯を加
圧充填するので、溶湯の充填圧によつて各スリー
ブが変形することが防止される。また各スリーブ
を150〜700℃に予め加熱しておくので鋳造中にお
いて各スリーブを溶湯によりそれと略同温度に加
熱してその剛性を低下させることができ、これに
より溶湯が凝固を完了した後前記拡径力を除去す
ると低剛性になつた各スリーブが各シリンダバレ
ルの収縮時の断面形状に倣うように変形するの
で、各スリーブに残留する鋳造応力がその円周回
りにおいて略均一化されてその応力のバランス度
が良好となる。
C. Effects of the Invention According to the present invention, since molten metal is pressurized and filled into the cavity with a diameter expanding force applied to the sleeve installed in the mold, each sleeve is prevented from being deformed by the filling pressure of the molten metal. is prevented. In addition, since each sleeve is preheated to 150 to 700°C, each sleeve can be heated by the molten metal to approximately the same temperature during casting to reduce its rigidity, so that after the molten metal has solidified, When the expansion force is removed, each sleeve, which has become low in rigidity, deforms to follow the cross-sectional shape of each cylinder barrel when contracted, so that the casting stress remaining in each sleeve is approximately equalized around its circumference, and its The degree of stress balance becomes better.

その後各スリーブの内周面に真円加工を施すの
で、エンジン運転中において各スリーブの円周回
りにおける熱膨脹量が略均一となり、これにより
ピストンリングとスリーブ間に隙間が生じること
を極力抑制してブローバイガスの増加、オイルの
無駄な消費といつた問題を解決することができ
る。
After that, the inner peripheral surface of each sleeve is machined into a perfect circle, so that the amount of thermal expansion around the circumference of each sleeve is approximately uniform during engine operation, thereby minimizing the formation of gaps between the piston ring and the sleeve. Problems such as increased blow-by gas and wasteful oil consumption can be solved.

また各スリーブが溶湯の充填圧により変形する
ことがないので、相隣るスリーブ間の間隔を極力
接近させることが可能となり、これによりシリン
ダブロツク、したがつてエンジン全体を小型化
し、その軽量化を達成することができる。
In addition, since each sleeve does not deform due to the filling pressure of molten metal, it is possible to make the spacing between adjacent sleeves as close as possible, which makes the cylinder block, and therefore the engine as a whole, smaller and lighter. can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1乃至第3図は本発明により製造されたサイ
アミーズ型シリンダブロツクを示し、第1図は上
方からみた斜視図、第2図は第1図−線断面
図、第2A図は第2図a−a線断面図、第3
図は下方から見た斜視図、第4図はサイアミーズ
型シリンダブロツク素材を上方から見た斜視図、
第5図は鋳造装置の型開き時の縦断正面図、第6
図は鋳造装置の型閉め時の縦断正面図、第7図は
第6図−線断面図、第8図は第7図−線
断面図、第9図は第5図−線断面図、第10
図は砂中子を上方から見た斜視図、第11図は第
10図XI−XI線断面図、第12図は時間に対する
プランジヤの変位および時間に対する溶湯の圧力
の関係を示すグラフ、第13図a,bは本発明の
鋳造工程で得られたサイアミーズ型シリンダブロ
ツク素材および比較例におけるスリーブの内径形
状についてタリロンド測定を行つた結果を示す測
定図、第14図a,bは本発明の鋳造工程で得ら
れたサイアミーズ型シリンダブロツク素材および
比較例におけるスリーブに残留する鋳造応力のバ
ランス度を示す説明図、第15図a,bは本発明
により得られたサイアミーズ型シリンダブロツク
および比較例におけるスリーブの加熱温度に対す
る膨脹量の関係を示すグラフ、第16図はスリー
ブの膨脹量測定位置を示す説明図である。 M……金型、S……シリンダブロツク、Sm…
…シリンダブロツク素材、11〜14……シリンダ
バレル、3……スリーブ。
1 to 3 show a Siamese type cylinder block manufactured according to the present invention, FIG. 1 is a perspective view seen from above, FIG. 2 is a sectional view taken along the line of FIG. 1, and FIG. -a line sectional view, 3rd
The figure is a perspective view seen from below, and Figure 4 is a perspective view of the Siamese type cylinder block material seen from above.
Figure 5 is a longitudinal sectional front view of the casting machine when the mold is opened;
The figure is a longitudinal sectional front view of the casting device when the mold is closed, FIG. 7 is a sectional view taken along the line shown in FIG. 6, FIG. 10
The figure is a perspective view of the sand core seen from above, Figure 11 is a sectional view taken along the line XI-XI in Figure 10, Figure 12 is a graph showing the relationship between the displacement of the plunger and the pressure of the molten metal over time, and Figure 13 Figures a and b are measurement diagrams showing the results of Talyrond measurement of the inner diameter shape of the sleeve in the Siamese type cylinder block material obtained by the casting process of the present invention and a comparative example. An explanatory diagram showing the balance of casting stress remaining in the Siamese type cylinder block material obtained in the process and the sleeve in the comparative example, Figures 15a and 15b are the Siamese type cylinder block material obtained by the present invention and the sleeve in the comparative example. FIG. 16 is a graph showing the relationship between the amount of expansion and the heating temperature of the sleeve, and FIG. 16 is an explanatory diagram showing the measurement position of the amount of expansion of the sleeve. M...Mold, S...Cylinder block, Sm...
... Cylinder block material, 1 1 to 1 4 ... Cylinder barrel, 3 ... Sleeve.

Claims (1)

【特許請求の範囲】[Claims] 1 複数のシリンダバレルを結合してなるアルミ
ニウム合金製サイアミーズシリンダバレルの各シ
リンダバレルに鋳鉄製スリーブに鋳ぐるんだサイ
アミーズ型シリンダブロツクを製造するに当り、
金型に設置される150〜700℃に加熱された前記ス
リーブに拡径力を与えた状態で該金型に溶湯を加
圧充填し、次いで該溶湯が凝固を完了した後前記
拡径力を除去するシリンダブロツク素材鋳造工程
と;前記スリーブの内周面に真円加工を施す工程
と;を用いることを特徴とするサイアミーズ型シ
リンダブロツクの製造方法。
1. When manufacturing a Siamese-type cylinder block in which a cast iron sleeve is cast into each cylinder barrel of an aluminum alloy Siamese cylinder barrel formed by joining a plurality of cylinder barrels,
Molten metal is pressurized and filled into the mold while applying a diameter expanding force to the sleeve heated to 150 to 700°C installed in the mold, and then, after the molten metal has solidified, the diameter expanding force is applied. A method for manufacturing a Siamese type cylinder block, comprising: a step of casting a cylinder block material to remove it; and a step of machining the inner peripheral surface of the sleeve into a perfect circle.
JP23623784A 1984-11-09 1984-11-09 Manufacture of siamese-type cylinder block Granted JPS61144260A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP23623784A JPS61144260A (en) 1984-11-09 1984-11-09 Manufacture of siamese-type cylinder block
US06/794,498 US4905642A (en) 1984-11-09 1985-11-01 Siamese-type cylinder block blank and apparatus for casting the same
CA000494626A CA1266757A (en) 1984-11-09 1985-11-05 Method for manufacturing siamese-type cylinder block and apparatus for casting blank for such cylinder block
GB08527655A GB2168631B (en) 1984-11-09 1985-11-08 Cylinder block blank manufacture
CA000494934A CA1260224A (en) 1984-11-09 1985-11-08 Siamese-type cylinder block blank and apparatus for casting the same
GB08527654A GB2168916B (en) 1984-11-09 1985-11-08 Cylinder block blank with cast-in liners
DE19853539674 DE3539674A1 (en) 1984-11-09 1985-11-08 TWIN CYLINDER BLOCK BLANK AND DEVICE FOR MOLDING SUCH A CYLINDER BLOCK BLANK
FR8516578A FR2572968B1 (en) 1984-11-09 1985-11-08 DRAWING OF A TWIN-TYPE CYLINDER BLOCK AND APPARATUS FOR MOLDING IT
US07/177,770 US4831712A (en) 1984-11-09 1988-04-05 Method for manufacturing siamese-type cylinder block and apparatus for casting blank for such cylinder block

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23623784A JPS61144260A (en) 1984-11-09 1984-11-09 Manufacture of siamese-type cylinder block

Publications (2)

Publication Number Publication Date
JPS61144260A JPS61144260A (en) 1986-07-01
JPH0131983B2 true JPH0131983B2 (en) 1989-06-28

Family

ID=16997814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23623784A Granted JPS61144260A (en) 1984-11-09 1984-11-09 Manufacture of siamese-type cylinder block

Country Status (1)

Country Link
JP (1) JPS61144260A (en)

Also Published As

Publication number Publication date
JPS61144260A (en) 1986-07-01

Similar Documents

Publication Publication Date Title
JPH0336620B2 (en)
JPH0140709B2 (en)
JPH0131983B2 (en)
JPH0140710B2 (en)
JPS6338259B2 (en)
JPH0245944B2 (en)
JPH0131981B2 (en)
JPH0131982B2 (en)
JPH0131984B2 (en)
JPH0245943B2 (en)
JPS6338260B2 (en)
JPH0318540B2 (en)
JPH0148385B2 (en)
JPH0322255B2 (en)
JPH0555223B2 (en)
JPH0112584B2 (en)
JPH0349778Y2 (en)
JPS6338257B2 (en)
JPH0328995Y2 (en)
JPS61142351A (en) Siamease type cylinder block
JPH0215305B2 (en)
JPH0141426B2 (en)
JPS6338258B2 (en)
JPH0261871B2 (en)
JPH03230858A (en) Method for controlling filling-up of molten metal in mold for forming cylinder block raw material for multi-cylinder internal combustion engine