JPH01319638A - Composite material having low thermal expansion and high thermal conductivity - Google Patents
Composite material having low thermal expansion and high thermal conductivityInfo
- Publication number
- JPH01319638A JPH01319638A JP15413088A JP15413088A JPH01319638A JP H01319638 A JPH01319638 A JP H01319638A JP 15413088 A JP15413088 A JP 15413088A JP 15413088 A JP15413088 A JP 15413088A JP H01319638 A JPH01319638 A JP H01319638A
- Authority
- JP
- Japan
- Prior art keywords
- matrix
- fibers
- parts
- thermal conductivity
- thermal expansion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 35
- 239000000835 fiber Substances 0.000 claims abstract description 55
- 239000011159 matrix material Substances 0.000 claims abstract description 42
- 229910052751 metal Inorganic materials 0.000 claims abstract description 14
- 239000002184 metal Substances 0.000 claims abstract description 14
- 229920000049 Carbon (fiber) Polymers 0.000 abstract description 11
- 229910052782 aluminium Inorganic materials 0.000 abstract description 11
- 239000004917 carbon fiber Substances 0.000 abstract description 11
- 239000012783 reinforcing fiber Substances 0.000 abstract description 6
- 229910052802 copper Inorganic materials 0.000 abstract description 3
- 150000002739 metals Chemical class 0.000 abstract description 3
- 238000013329 compounding Methods 0.000 abstract 1
- 230000002787 reinforcement Effects 0.000 abstract 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 abstract 1
- 229910010271 silicon carbide Inorganic materials 0.000 abstract 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 239000000758 substrate Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 238000007734 materials engineering Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、電子デバイスなどに用いらil、る低熱膨
張高熱伝導複合材料に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a low thermal expansion and high thermal conductivity composite material used in electronic devices and the like.
連続繊維強化金属は、低い熱膨張率を持たせることがで
き、セラミック基板あるいはシリコンなどと熱膨張率を
整合させた低熱膨張高熱伝導基板材料として期待されて
いる。(この技術分野については例えば特公昭56−1
7420 号公報に記載されている。)特にカーボン
繊維は、繊維軸方向の熱膨張率が小さく、金属マトリッ
クス中に埋めこんで所望の低熱膨張材料を得ることがで
きる。中でもカーボン繊維で強化したアルミニウムは、
低熱膨張高熱伝導特性を持ちかつ軽量であることから宇
宙、航空、自動車などの輸送機器搭載用の軽量材料とし
て期待されている。第4図は、カーボン繊維を00と9
0°方向の2方向へ配向し面内疑似等方としたカーボン
繊維強化アルミニウム複合材料における面内方向の熱膨
張率と繊維体積含有率σ)関係を示した特性図である。Continuous fiber-reinforced metal can have a low coefficient of thermal expansion, and is expected to be used as a low thermal expansion and high thermal conductivity substrate material whose thermal expansion coefficient matches that of ceramic substrates or silicon. (For this technical field, for example,
It is described in Publication No. 7420. ) In particular, carbon fibers have a low coefficient of thermal expansion in the axial direction of the fibers, and can be embedded in a metal matrix to obtain a desired low thermal expansion material. Among them, aluminum reinforced with carbon fiber,
Because it has low thermal expansion, high thermal conductivity, and is lightweight, it is expected to be used as a lightweight material for use in transportation equipment such as space, aviation, and automobiles. Figure 4 shows carbon fibers of 00 and 9.
It is a characteristic diagram showing the relationship between the coefficient of thermal expansion in the in-plane direction and the fiber volume content σ) in a carbon fiber-reinforced aluminum composite material that is oriented in two directions including the 0° direction and is pseudo-isotropic in the plane.
縦軸は熱膨張率(ハ)を、横軸は繊維体積含有率を表わ
す。低熱膨張高熱伝導基板材料として用いる場合には、
セラミック基板あるいはシリコンなどと熱膨張率を整合
させ、適当な繊維体積含有率を第4図より選んで用イル
。カーボン繊維強化アルミニウムは熱伝導率にも優れ、
面内疑似等方材の面内方向の熱伝導率は、繊維体積含有
率が60%の場合で90 W −m −にであ信こ。The vertical axis represents the coefficient of thermal expansion (c), and the horizontal axis represents the fiber volume content. When used as a low thermal expansion and high thermal conductivity substrate material,
Match the thermal expansion coefficient with that of the ceramic substrate or silicon, and select an appropriate fiber volume content from Figure 4. Carbon fiber reinforced aluminum also has excellent thermal conductivity.
The in-plane thermal conductivity of the in-plane pseudo-isotropic material is 90 W-m- when the fiber volume content is 60%.
これら従来の面内疑似等方連続繊維強化金属の欠点は、
面と直角方向の熱伝導率が悪いことである。この原因は
複合側より説明することができ(例えば林毅編複合材料
工学(日科技連)P45参照)、繊維軸と平行方向では
、熱伝導率が複合側による上限の値を持ち、繊維軸と直
角方向では下限に近い値を持つことによる。カーボン繊
維強化アルミニウムにおいては、カーボン繊維自体が異
方性を持ち、熱伝導率が、繊維軸と垂直方向では繊維軸
方向と比べ著しく低いことから、面と垂直方向の熱伝導
率が更に悪くなる問題点があった。この問題点は、例え
ば第5図の断面構成図に示すような構成で用いる場合に
特に大きく表1.る。第5図において、(8)が低熱膨
張高熱伝導複合材料であり、セラミック基板(9)を接
合し、更にセラミック基板(9)上に素子αOがマウン
トされる。熱膨張を低く抑えたい方向が低熱膨張高熱伝
導複合材料(8)の面内方向にある。α])はヒートシ
ンクであって、この構成のように低熱膨張高熱伝導複合
材料(8)の裏面より冷却を行う場合には、熱伝導率が
高く要求される方向が低熱膨張高熱伝導複合材料(8)
の面と垂直な方向となる。このため従来の面内疑似等方
連続界、維強化金属では熱抵抗が高くなるという問題が
生じた。The drawbacks of these conventional in-plane pseudo-isotropic continuous fiber reinforced metals are:
Thermal conductivity in the direction perpendicular to the surface is poor. The cause of this can be explained from the composite side (see, for example, page 45 of Composite Materials Engineering (Japan Society of Science and Technology) edited by Takeshi Hayashi); in the direction parallel to the fiber axis, the thermal conductivity has an upper limit value due to the composite side, and the fiber axis This is due to the fact that it has a value close to the lower limit in the perpendicular direction. In carbon fiber reinforced aluminum, the carbon fiber itself has anisotropy, and the thermal conductivity in the direction perpendicular to the fiber axis is significantly lower than in the direction of the fiber axis, so the thermal conductivity in the direction perpendicular to the plane is even worse. There was a problem. This problem is particularly severe when used in a configuration as shown in the cross-sectional configuration diagram of FIG. 5, for example. Ru. In FIG. 5, (8) is a low thermal expansion and high thermal conductivity composite material, a ceramic substrate (9) is bonded to it, and an element αO is mounted on the ceramic substrate (9). The direction in which thermal expansion is desired to be kept low is the in-plane direction of the low thermal expansion and high thermal conductivity composite material (8). α]) is a heat sink, and when cooling is performed from the back side of the low thermal expansion and high thermal conductivity composite material (8) as in this configuration, the direction where high thermal conductivity is required is the low thermal expansion and high thermal conductivity composite material (8). 8)
The direction is perpendicular to the plane of For this reason, conventional in-plane pseudo-isotropic continuous field and fiber-reinforced metals have a problem of high thermal resistance.
この発明は、上記σ)ような問題点を解消するためにな
これたもので、面内方向の熱膨張を低く抑えると同時に
、面と垂直方向の熱伝導率を高くすることのできる低熱
膨張高熱伝導複合材料を得ることを目的とする。This invention was developed in order to solve the above problem σ), and it is possible to suppress the thermal expansion in the in-plane direction and at the same time increase the thermal conductivity in the direction perpendicular to the plane. The aim is to obtain a high thermal conductivity composite material.
この発明の低熱膨張高熱伝導複合材料は、平面内疑似等
方に強化した繊維強化金属において、マトリックスに繊
維を複合させた部分とマI・リックスのみの部分とが平
面内で交互に並ぶように分布きせ、かつマI・す、クス
のみの部分が上記平面と交叉する方向に連な−て存在す
るように構成したものである。The low thermal expansion and high thermal conductivity composite material of the present invention is a fiber-reinforced metal reinforced quasi-isotropically in a plane, in which portions in which fibers are combined with the matrix and portions in which only the matrix is formed are arranged alternately in the plane. The structure is such that the distribution pattern and only the parts of the squares are continuous in the direction intersecting the above-mentioned plane.
この発明においては、マI・リックスに繊維を複合させ
ているので面方向の熱膨張率を低くできる。In this invention, since the matrix is composited with fibers, the coefficient of thermal expansion in the plane direction can be lowered.
また、マトリックスのみの部分が平面と交叉する方向に
連なって存在するように構成しているので、平面と垂直
な方向の熱伝導率を高くできる。Furthermore, since the matrix-only portion is arranged to exist in a row in a direction intersecting the plane, the thermal conductivity in the direction perpendicular to the plane can be increased.
この発明に係わる、低熱膨張高熱伝導ン1合材料全体の
平均繊維含有率は、所定の面内方向の熱膨張率を達成す
る量に設定される。マトリックスに繊維を複合(マトリ
ックスをPj維間に媒体させ、繊維とマトリックスを一
体化する)ζせた部分トマトリックスのみの部分とは交
互に並び、マクロ的に見ると実質的に均一に分布してい
るため、この平均繊維含有率は、従来の構成、すなわち
−木一木の繊維がマトリ、ックス中にほぼ均一に分布し
ている場合と同じ値となる。またマトリックスのみの部
分が平面と交叉する方向に連な−て存在するよう構成(
例えば繊維を配列)したことにより、平面と直角方向の
熱伝導率は、繊維より優ftだマトリックスの高い熱伝
導率を生かすことができるようになり、面と直角方向の
熱伝導率を改善することができる。The average fiber content of the entire low thermal expansion and high thermal conductivity composite material according to the present invention is set to an amount that achieves a predetermined coefficient of thermal expansion in the in-plane direction. The composite fibers in the matrix (the matrix is mediated between the Pj fibers and the fibers and the matrix are integrated) are arranged alternately with the matrix-only parts, and from a macroscopic perspective, they are substantially uniformly distributed. Therefore, this average fiber content is the same as in the conventional configuration, that is, in the case where the fibers of one tree are almost uniformly distributed in the matrix and the matrix. In addition, it is configured so that the matrix-only part is continuous in the direction that intersects the plane (
For example, by arranging fibers), the thermal conductivity in the direction perpendicular to the plane is superior to that of fibers.It is now possible to take advantage of the high thermal conductivity of the matrix, improving the thermal conductivity in the direction perpendicular to the plane. be able to.
マトリックスに繊維を複合させた部分は、50%以上r
7″1繊維体積含有率を持つことが好ましい。これ以下
では、連な−て存在するマトリックスのみの部分の断面
積を十分に大きく取ることが困難となり、熱伝導率を改
善する効果が少なくなる。また連なって存在するマトリ
ックスのみの部分の断面積は、単位となるひとつの太き
智が0.01 f12であることが好ましい。これ以下
では、マトリックスのみの部分が例えば平板を貫通して
連な−て存在するよう複合材料を製造することが著しく
困難となる。また、この断面積は5 m2以下であるこ
と、が好ましく、これより大きくなると、繊維含有率が
高い部分とマトリ、クスのみの部分との熱膨張率が異な
ることによる問題、例えば熱変化を受けた場合に境界で
クラックが発生し易くなる、表面で微小な凹凸発生が生
じ易くなるなどが生じる。The part where the fiber is composited with the matrix has a content of 50% or more
It is preferable to have a fiber volume content of 7"1. If it is less than this, it will be difficult to obtain a sufficiently large cross-sectional area of only the continuous matrix, and the effect of improving thermal conductivity will be reduced. In addition, it is preferable that the cross-sectional area of the continuous matrix-only part is 0.01 f12 as a unit.If the cross-sectional area is 0.01 f12, for example, the matrix-only part can pass through a flat plate. In addition, it is preferable that this cross-sectional area is 5 m2 or less, and if it is larger than this, only the high fiber content area, matrix, and Problems arise due to the difference in coefficient of thermal expansion between the two parts, such as cracks being more likely to occur at the boundary when subjected to thermal changes, and minute irregularities being more likely to occur on the surface.
また、この発明に用いられる強化繊維としては、例えば
カーボン、SiC等が用いられ、マトリックスとしては
、例えばアルミニウム、銅等が用いられる。Further, as the reinforcing fibers used in this invention, for example, carbon, SiC, etc. are used, and as the matrix, for example, aluminum, copper, etc. are used.
以下に、この発明の一実施例について図に基A、説明す
る。第1図(a) (b) (c)は各々この発明の一
実施例の低熱膨張高熱伝導複合材料の構成を示すもので
、(a)は模式斜視図、(b)は模式平面図、(c)は
模式断面図である。図において、(1)はマトリックス
に繊維を複合させた部分で、この場合はアルミニウムに
カーボン繊維を一方向に繊維が配向するようニ複合させ
た部分、(2)はマトリックスのみの部分、この場合は
アルミニウムのみの部分である。第1層は、一方向に繊
維が配向した繊維を複合させた部分(])がある間隔を
おいて並んでおり、第2層は、同じく一方向に繊維方向
が配向した繊維を複合させた部分(1)が第1層と90
°をなして、ある間隔をおいて並んでいる。次の第3層
は第1層と同じように第4層は第2層と同じようにと、
順に90°たがえて配列されている。また同図(1))
に示すように、繊維を含まないマトリックスのみの部分
が平面方向と垂直に貫通して連なっている。An embodiment of the present invention will be described below with reference to the drawings. FIGS. 1(a), 1(b), and 1(c) each show the structure of a low thermal expansion and high thermal conductivity composite material according to an embodiment of the present invention, in which (a) is a schematic perspective view, (b) is a schematic plan view, (c) is a schematic cross-sectional view. In the figure, (1) is a part where the matrix is composited with fibers, in this case a part where carbon fibers are composited with aluminum so that the fibers are oriented in one direction, and (2) is a part with only the matrix, in this case is an aluminum-only part. The first layer is a composite of fibers with fibers oriented in one direction arranged at certain intervals ( ]), and the second layer is a composite of fibers with fibers oriented in one direction. Part (1) is the first layer and 90
They are lined up at a certain distance, forming an angle. The next third layer is the same as the first layer, and the fourth layer is the same as the second layer.
They are arranged 90 degrees apart in order. Also in the same figure (1))
As shown in Figure 2, the matrix-only portions without fibers penetrate perpendicularly to the plane direction and are continuous.
第2図は第1図に示す複合材料の繊維配列を得るだめの
製造方法の一例を示す模式図である。FIG. 2 is a schematic diagram showing an example of a manufacturing method for obtaining the fiber arrangement of the composite material shown in FIG. 1.
まず金属板(3)の周囲に適当な間隔で細いピン(4)
を立てた治具を用意する。相対するピン(4)をつなぐ
ように適当な張力をかけながらカーボン繊維の束(5)
を第2図に示すように千鳥状に引返しながら張って行く
。第−層を張り終わった後、第−層と直角となるよう第
二層を張る。これを繰り返し所定の厚さとなるようにす
る。繊維を含まないマトリックスのみt17′117°
2)の面積は、干にピン(4)の太さによ−て決定され
る。一方向に繊維が配向した繊維を複合させた部分(1
)の大きさは、繊維の束(5)の大きさによる。繊維の
束(5)はこの実施例では、直径5〜15μmのカーボ
ン繊維を1000〜16000本含む。繊維の張力また
は、張り終わった後に板厚方向に適当に圧縮することに
より、繊維含有率を調整することができる。このように
して成形したカーボン繊維のプリフォームに、高圧凝固
鋳造法によりアルミニウムマトリックスを含浸させて、
この発明の一実施例のカーボン繊維強化アルミニウムの
低熱膨張高熱伝導複合材料を得た。First, place thin pins (4) at appropriate intervals around the metal plate (3).
Prepare a jig with the A bundle of carbon fibers (5) is applied while applying appropriate tension to connect the opposing pins (4).
As shown in Figure 2, it is stretched back in a staggered manner. After applying the first layer, apply the second layer at right angles to the first layer. Repeat this until the desired thickness is achieved. Only matrix without fibers t17′117°
The area of 2) is determined by the thickness of the pin (4). A composite part of fibers oriented in one direction (1
) depends on the size of the fiber bundle (5). The fiber bundle (5) in this example contains 1000 to 16000 carbon fibers with a diameter of 5 to 15 μm. The fiber content can be adjusted by the tension of the fibers or by appropriately compressing them in the thickness direction after tensioning. The carbon fiber preform molded in this way is impregnated with an aluminum matrix by high-pressure solidification casting method.
A carbon fiber-reinforced aluminum composite material with low thermal expansion and high thermal conductivity according to an embodiment of the present invention was obtained.
第3図はこのようにして得られた低熱膨張高熱伝導複合
材料の面と垂直方向の熱伝導率と繊維体積含有率の関係
を示した特性図である。なお、比較のためにマトリック
ス中に繊維がほぼ均等に分布した従来の複合材料の特性
もともに記す。図において、縦軸は面と垂直方向の熱伝
導率を、横軸は繊維体積含有率を示し、特性曲線(6)
はこの実施例の特性を、特性曲線(7)は従来例の特性
を表わしてている。図から、繊維含有率が低くなるほど
両者の差が大きくなり、この実施例の低熱膨張高熱伝導
複合材料の熱伝導率が従来の材料に比べて優れているこ
とが明らかである。FIG. 3 is a characteristic diagram showing the relationship between the thermal conductivity in a direction perpendicular to the surface of the low thermal expansion and high thermal conductivity composite material thus obtained and the fiber volume content. For comparison, the characteristics of a conventional composite material in which fibers are distributed almost evenly in the matrix are also described. In the figure, the vertical axis shows the thermal conductivity in the direction perpendicular to the plane, and the horizontal axis shows the fiber volume content, and the characteristic curve (6)
represents the characteristics of this embodiment, and characteristic curve (7) represents the characteristics of the conventional example. From the figure, it is clear that the lower the fiber content, the larger the difference between the two, and that the thermal conductivity of the low thermal expansion and high thermal conductivity composite material of this example is superior to the conventional material.
面と垂直方向に熱を伝える構成の1子デバイスに対する
基板材料として好適に用いら和る。It can be suitably used as a substrate material for a single-child device configured to conduct heat in a direction perpendicular to the surface.
なお、この発明の低熱膨張高熱伝導複合材Flの構成、
及びその製造方法は上記実施例に限るものではなく、例
えば繊維配向を60°ずつずらせて平面内疑似等方にな
るように構成しても良く、2種以上の繊維を複合させて
も良く、同様の効果を奏する。In addition, the structure of the low thermal expansion and high thermal conductivity composite material Fl of this invention,
And the manufacturing method thereof is not limited to the above embodiments, for example, the fiber orientation may be shifted by 60 degrees to make it pseudo isotropic in a plane, or two or more types of fibers may be composited, It has a similar effect.
以上のように、この発明によれば、平面内疑似等方に強
化した繊維強化金属において、マトリックスに繊維を複
合させた部分とマトリックスのみの部分とが平面内で交
互に並ぶように分布させ、かつマI・リックスのみの部
分が上記平面と交叉する方向に連なって存在するように
構成したので、例えば同じ繊維含有率で面内方向の熱膨
張率を同じに低く保ぢながら、面と垂直方向の熱伝導率
を改善、高くできる低熱膨張高熱伝導複合材料が得られ
る効果がある。As described above, according to the present invention, in a fiber-reinforced metal reinforced quasi-isotropically in a plane, portions in which fibers are combined with a matrix and portions consisting only of the matrix are distributed so as to be arranged alternately in a plane, In addition, since the structure is such that the portions containing only the matrix are continuous in the direction that intersects the plane, for example, with the same fiber content, the coefficient of thermal expansion in the in-plane direction can be maintained at the same low level, while the This has the effect of providing a low thermal expansion and high thermal conductivity composite material that can improve and increase the directional thermal conductivity.
第1図は(a)、(b)、(c)各々この発明の一実施
例の低熱膨張高熱伝導複合材料の構成を示すもぴ)で、
(a)は模式斜視図、(b)は模式平面図、(C)は模
式断面図である。第2図は、この発明の一実施例の複合
材料を得る製造方法の一例を示す模式図、第3図は、こ
の発明の一実施例の複合材料の熱伝導率と繊維含有率と
の関係を示した特性図、第4図は従来の複合材料の熱膨
張率と繊維含有率との関係を示した特性図、第5図は従
来の複合材料の低熱膨張高伝導基板材料としての用いら
ね方を示す断面構成図である。図において(1)はマト
リックスに繊維を複合させた部分、(2)はマトリック
スのみの部分である。
なお、各図中、同一符号は同−又は相当部分を示す。FIG. 1 shows (a), (b), and (c) each showing the structure of a low thermal expansion and high thermal conductivity composite material according to an embodiment of the present invention.
(a) is a schematic perspective view, (b) is a schematic plan view, and (C) is a schematic cross-sectional view. FIG. 2 is a schematic diagram showing an example of a manufacturing method for obtaining a composite material according to an embodiment of the present invention, and FIG. 3 is a diagram showing the relationship between thermal conductivity and fiber content of a composite material according to an embodiment of the present invention. Figure 4 is a characteristic diagram showing the relationship between the coefficient of thermal expansion and fiber content of a conventional composite material, and Figure 5 is a diagram showing the relationship between the coefficient of thermal expansion and fiber content of a conventional composite material. FIG. In the figure, (1) is a part where fibers are combined with a matrix, and (2) is a part where only the matrix is used. In each figure, the same reference numerals indicate the same or corresponding parts.
Claims (1)
リックスに繊維を複合させた部分とマトリックスのみの
部分とが平面内で交互に並ぶように分布させ、かつマト
リックスのみの部分が上記平面と交叉する方向に連なっ
て存在するように構成したことを特徴とする低熱膨張高
熱伝導複合材料。In a fiber-reinforced metal that is reinforced quasi-isotropically in a plane, parts where fibers are combined with the matrix and parts with only the matrix are distributed so as to be arranged alternately in the plane, and the parts with only the matrix intersect with the above-mentioned plane. A low thermal expansion and high thermal conductivity composite material characterized by being configured so that it exists in a continuous manner.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15413088A JPH01319638A (en) | 1988-06-21 | 1988-06-21 | Composite material having low thermal expansion and high thermal conductivity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15413088A JPH01319638A (en) | 1988-06-21 | 1988-06-21 | Composite material having low thermal expansion and high thermal conductivity |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01319638A true JPH01319638A (en) | 1989-12-25 |
Family
ID=15577557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15413088A Pending JPH01319638A (en) | 1988-06-21 | 1988-06-21 | Composite material having low thermal expansion and high thermal conductivity |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01319638A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04147654A (en) * | 1990-10-09 | 1992-05-21 | Mitsubishi Electric Corp | Base material for mounting electronic component |
US5306571A (en) * | 1992-03-06 | 1994-04-26 | Bp Chemicals Inc., Advanced Materials Division | Metal-matrix-composite |
FR2704479A1 (en) * | 1993-04-30 | 1994-11-04 | Thomson Csf | Composite boards, based on carbon fibres in a copper matrix, and their methods of manufacture |
-
1988
- 1988-06-21 JP JP15413088A patent/JPH01319638A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04147654A (en) * | 1990-10-09 | 1992-05-21 | Mitsubishi Electric Corp | Base material for mounting electronic component |
US5306571A (en) * | 1992-03-06 | 1994-04-26 | Bp Chemicals Inc., Advanced Materials Division | Metal-matrix-composite |
FR2704479A1 (en) * | 1993-04-30 | 1994-11-04 | Thomson Csf | Composite boards, based on carbon fibres in a copper matrix, and their methods of manufacture |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5435889A (en) | Preparation and coating of composite surfaces | |
US3647606A (en) | Semirigid multilayer thermal insulation and method of making same | |
US4560603A (en) | Composite matrix with oriented whiskers | |
US8491830B2 (en) | Boundary configurations for multi-material print-forming | |
US6866733B1 (en) | Method of forming a flexible insulation blanket having a ceramic matrix composite outer layer | |
US4482912A (en) | Stacked structure having matrix-fibered composite layers and a metal layer | |
US5372868A (en) | Fiber reinforced glass matrix and glass-ceramic matrix composite articles | |
US5260124A (en) | Intercalated hybrid graphite fiber composite | |
JP4108544B2 (en) | Mass concrete pipe cooling method | |
US7704596B2 (en) | Subsurface inclusion of fugitive objects and methodology for strengthening a surface bond in a hybrid ceramic matrix composite structure | |
CN104690988A (en) | Method for producing a structural component | |
US6994917B2 (en) | Composite material and method for manufacturing the same | |
JPH07504621A (en) | High thermal conductivity nonmetallic honeycomb | |
US20090255660A1 (en) | High Thermal Conductivity Heat Sinks With Z-Axis Inserts | |
WO1995011128A1 (en) | High thermal conductivity triaxial non-metallic honeycomb | |
US3637457A (en) | Nylon spun bonded fabric-concrete composite | |
JPH01319638A (en) | Composite material having low thermal expansion and high thermal conductivity | |
US5968671A (en) | Brazed composites | |
US20040096619A1 (en) | Flexible insulation blanket having a ceramic matrix composite outer layer | |
US3061912A (en) | Fabrication of porous sheet material by brazing | |
JP2002180356A (en) | Three-dimensional fiber structure | |
US5753271A (en) | Heat blanket buffer assembly | |
JP2016013946A (en) | Long fiber-reinforced silicon carbide composite material and method for producing the same | |
CA2409086C (en) | Metal matrix composite | |
US20200317567A1 (en) | Substrate and multilayer substrate |