JPH01318999A - Chemical decontamination - Google Patents

Chemical decontamination

Info

Publication number
JPH01318999A
JPH01318999A JP15116988A JP15116988A JPH01318999A JP H01318999 A JPH01318999 A JP H01318999A JP 15116988 A JP15116988 A JP 15116988A JP 15116988 A JP15116988 A JP 15116988A JP H01318999 A JPH01318999 A JP H01318999A
Authority
JP
Japan
Prior art keywords
decontamination
amount
piping
agent
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15116988A
Other languages
Japanese (ja)
Inventor
Kenichi Kusaka
日下 謙一
Akira Kikuchi
章 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP15116988A priority Critical patent/JPH01318999A/en
Publication of JPH01318999A publication Critical patent/JPH01318999A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a decontamination with a small amount of decontaminant by inserting a filling material at a center part of an equipment and/or a piping to which a radioactive substances stick and by inducing a chemical decontaminant into the above-mentioned equipment and/or piping under the said situation. CONSTITUTION:A filling material 2 is inserted into a large diameter piping 1 of an object of decontamination. Under this situation, a liquid decontaminant is circulated through a gap between the filling material 2 and the piping 1. In this way, a volume of the piping 1 is reduced in substance therefore an amount of the decontaminant can be reduced as much as the reduced volume of the piping. Also a concentration of the decontaminant can be increased therewith a decontamination effect can be improved.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は原子力施設における機器、配管等の化学除染方
法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Field of Industrial Application) The present invention relates to a method for chemical decontamination of equipment, piping, etc. in a nuclear facility.

(従来の技術) 原子力施設では機器、配管等へ放射性物質が付着するの
で、そこに働く作業員の被曝が懸念される。そこでこれ
らの放射性の付着物を取除き被曝の低減をはかる手段と
して化学除染が行なわれている。化学除染は除染剤の濃
度が数%と高い濃厚化学除染と、1%以下の希薄化学除
染に大別され、それぞれに除染方法および廃液処理方法
に特徴がある。また、除染剤の再生が行なわれるかどう
かで分類される場合もある。例えば濃厚、希薄を問わず
、除染中に除染剤が再生されない除染方法においては、
除染対象に付着している除染溶解物量に対応した最(当
量)、あるいはそれ以上の除染剤が必要である。一方、
希薄除染剤のうち、除染剤を再生するタイプの除染方法
では、除染剤濃度は除染対象の除染溶解物量に関係なく
一定であり、除染剤の再生に用いるイオン交換樹脂量を
除染溶解物量に合わせて増加して除染が行なわれる。
(Prior Art) At nuclear facilities, radioactive materials adhere to equipment, piping, etc., so there is concern about radiation exposure for workers working there. Therefore, chemical decontamination is being carried out as a means of removing these radioactive deposits and reducing exposure. Chemical decontamination is broadly divided into concentrated chemical decontamination, in which the concentration of decontamination agent is as high as several percent, and dilute chemical decontamination, in which the concentration of the decontaminating agent is less than 1%, and each type has its own characteristics in terms of decontamination methods and waste liquid treatment methods. In some cases, decontamination agents are classified based on whether they are recycled or not. For example, in decontamination methods where the decontamination agent is not regenerated during decontamination, regardless of whether it is concentrated or diluted,
The maximum (equivalent) amount of decontamination agent corresponding to the amount of decontamination solution adhering to the object to be decontaminated, or more, is required. on the other hand,
Among dilute decontamination agents, in decontamination methods that regenerate the decontamination agent, the concentration of the decontamination agent is constant regardless of the amount of decontamination solution to be decontaminated, and the ion exchange resin used to regenerate the decontamination agent Decontamination is carried out by increasing the amount according to the amount of decontamination solution.

したがって、除染剤を除染作業中に再生しない場合には
、除染対象物の中に存在する溶解すべき付着物の量を把
握し、かつそれを十分に溶解できるように化学量論的に
決められる当量よりも多量の除染剤成分を除染対象物に
対して供給する必要がある。
Therefore, if the decontamination agent is not regenerated during decontamination work, the amount of deposits to be dissolved in the object to be decontaminated must be ascertained, and the stoichiometric It is necessary to supply a larger amount of the decontamination agent component to the object to be decontaminated than the equivalent amount determined by .

(発明が解決しようとする課題) 前述したように除染剤量および除染剤濃度は、基本的に
は溶解すべき付着物量と除染剤の溶解能力とから決めら
れるが、除染対象物の容積と付着物の量によっては、必
ずしも最適な条件で除染作業が行なわれるとは限らない
(Problem to be Solved by the Invention) As mentioned above, the amount of decontaminating agent and the concentration of decontaminating agent are basically determined based on the amount of deposits to be dissolved and the dissolving ability of the decontaminating agent. Decontamination work may not necessarily be carried out under optimal conditions, depending on the volume of the container and the amount of deposits.

例えば容積が異なりさらに溶解すべき付着物の量が異な
る二つの配管の例を次に示す。なお、ここでは除染剤の
使用濃度を1〜8%とし、除染剤の溶解能力を“濃度1
%の除染剤が液量■1で1/10fVh の付着物を溶
解できる′°と仮定している。
For example, an example of two pipes having different volumes and different amounts of deposits to be dissolved is shown below. Note that the concentration of the decontamination agent used here is 1 to 8%, and the dissolving ability of the decontamination agent is defined as "concentration 1".
% decontamination agent can dissolve 1/10 fVh of deposits with a liquid volume of 1.

配管A:管径dcm、長さ1cm。Piping A: Pipe diameter dcm, length 1cm.

付着物m  mIRg/7 配管B:管径4dCrR,長ざ乏1゜ 付着物1 1/8m4/d 配管Aは除染対象物の容積に較べて、溶解すべき付着物
量が多い場合である。配管Bは除染対象の体積が大きい
にもかかわらず溶解すべき付着物量が少ない場合である
。それぞれの配管内表面積。
Deposits m mIRg/7 Pipe B: Pipe diameter 4 dCrR, length decrement 1° Deposits 1 1/8 m4/d In pipe A, the amount of deposits to be dissolved is large compared to the volume of the object to be decontaminated. Piping B has a large volume to be decontaminated, but the amount of deposits to be dissolved is small. Internal surface area of each pipe.

配管内体積、付着物量は次のようになる。The volume inside the pipe and the amount of deposits are as follows.

証宣Δ 配管内表面積S1=πdlaA 配管内体積V1= 1/4πd22CrIt3付着物量
M1=πdIl−TrLη 【豊旦 配管内表面積52−4πd乏ad= 4 S1配管内体
積V2=4πd21crn3 =16V1付着物IM2
 = 1/27rd 12 ・mmg=1/21’vh 除染剤濃度の上限は、除染剤成分の溶解度あるいは溶解
した付着物の溶解度等の制限から決められる。配管Aの
ように付着物が多いと、除染剤濃度の上限の8%でも付
着物をすべて溶解することができずく濃度8%、液量v
1で8/10tVh を溶解する)、1回の除染で溶解
を完了することができない。したがって、付着物がなく
なるまで除染を繰り返す必要がある。一方、配管Bは除
染対象の体積が大きいにも拘らず、溶解すべき付着物量
が少ない。このような条件はタンクの除染や大口径配管
の除染等でおこる。この例では化学量論的な推定から求
めた除染材料から定まる除染剤濃度は凡そ0.3%とな
り(除染剤濃度1%、液量v1で1/10fVhの付着
物を溶解するから、除染剤1%、液量v2では16/1
0M1の付着物を溶解できる。付着物量はここでは1/
2 Mtであるから、液IV2であれば約0.3%でよ
い。)、除染を効果的に行うことのできる下限の除染剤
濃度1%よりも低い濃度となる。だからといって除染の
効率を高めるために除染濃度を1%以上に上昇すれば、
化学量論的に求められる除染剤量よりも過剰な除染剤を
供給して、薬剤の無駄と廃棄物量の増大を招いてしまう
Evidence Δ Piping internal surface area S1 = πdlaA Piping internal volume V1 = 1/4πd22CrIt3 Amount of deposits M1 = πdIl-TrLη [Toyota pipe internal surface area 52-4πd deficient ad = 4 S1 pipe internal volume V2 = 4πd21crn3 = 16V1 deposits IM2
= 1/27rd 12 · mmg = 1/21'vh The upper limit of the decontamination agent concentration is determined based on limitations such as the solubility of the decontamination agent components or the solubility of dissolved deposits. If there is a lot of deposits like in pipe A, even the upper limit of the decontamination agent concentration of 8% cannot dissolve all the deposits.
1 to lyse 8/10 tVh), lysis cannot be completed in one decontamination. Therefore, it is necessary to repeat decontamination until there are no more deposits. On the other hand, although the volume of pipe B to be decontaminated is large, the amount of deposits to be dissolved is small. Such conditions occur during tank decontamination and large-diameter piping decontamination. In this example, the decontamination agent concentration determined from the decontamination material obtained from stoichiometric estimation is approximately 0.3% (because the decontamination agent concentration is 1% and the liquid volume v1 dissolves 1/10 fVh of deposits). , decontamination agent 1%, liquid volume v2 is 16/1
Can dissolve 0M1 deposits. The amount of deposit is 1/
2 Mt, about 0.3% is sufficient for liquid IV2. ), the concentration is lower than the lower limit of 1% decontamination agent concentration at which decontamination can be carried out effectively. However, if the decontamination concentration is increased to 1% or more in order to increase the efficiency of decontamination,
Supplying an excess amount of decontamination agent than the stoichiometrically required amount of decontamination agent results in waste of the agent and an increase in the amount of waste.

すなわち、配管Aの条件では除染の繰り返しを行なう必
要があるが、必要以上の除染剤を供給しているわけでは
なく、廃棄物量も除染対象物に存在する付着物の量から
当然発生する量である。しかしながら、配管Bでは効果
的な除染を行なおうとすれば、当量を大巾に越える除染
剤注入が必要で、また余分な除染剤の注入によって余分
な廃棄物発生を生じている。
In other words, although it is necessary to repeat decontamination under the conditions of pipe A, it does not mean that more decontamination agent is supplied than necessary, and the amount of waste is naturally generated from the amount of deposits present on the object to be decontaminated. This is the amount. However, if pipe B is to be effectively decontaminated, it is necessary to inject a large amount of decontaminating agent in excess of the equivalent amount, and the injection of the excess decontaminating agent generates excess waste.

ざらに、一般に除染剤を流す速度が大きいほうが除染効
果が高く、かつ短時間で除染を終了できるので、配管B
の条件で効果的に除染を行なうべく流速を大きくすると
、表面積に較べて体積が大きいために大容量のポンプが
必要になる。
In general, the higher the flow rate of the decontamination agent, the higher the decontamination effect, and the faster the decontamination can be completed, so pipe B
If the flow rate is increased to perform effective decontamination under these conditions, a large-capacity pump will be required because the volume is large compared to the surface area.

本発明は上記情況に鑑みてなされたもので、機器、配管
等の化学除染において、除染液量を減少しながら除染を
効率的に行ない、ざらに除染廃棄物量を減少することを
目的とするものである。
The present invention was made in view of the above circumstances, and aims to perform chemical decontamination of equipment, piping, etc. efficiently while reducing the amount of decontamination liquid, and to roughly reduce the amount of decontamination waste. This is the purpose.

[発明の構成] (課題を解決するための手段) 本発明は除染対象物の容積を減少させるように除染対象
物内部に充填物を入れて化学除染を行なうようにしたも
のであって、すなわち、本発明は、放射性物質の付着し
た機器、配管等に化学除染剤を流入して放射性物質を除
去する機器、配管等の化学除染方法において、前記機器
、配管等の内部にその内部表面と化学除染剤との接触を
妨げないように充填物を挿入することを特徴とする機器
[Structure of the Invention] (Means for Solving the Problems) The present invention performs chemical decontamination by placing a filler inside the object to be decontaminated so as to reduce the volume of the object. That is, the present invention provides a chemical decontamination method for equipment, piping, etc., in which radioactive materials are removed by flowing a chemical decontamination agent into equipment, piping, etc. to which radioactive materials have adhered. A device characterized by the insertion of a filling in such a way that the contact between its internal surface and the chemical decontamination agent is not obstructed.

配管等の化学除染方法に関する。Concerning chemical decontamination methods for piping, etc.

(作 用) 本発明では、例えば第1図の配管断面図に示すように、
配管1の内部に充填物2を入れているので配管の容積が
減少し、除染液量を減少させることができる。そして除
染液量の減少により除染剤濃度を高め、かつ除染剤流量
を高めることができるので、除染効果を向上させること
ができる。なお、第1図中符号3は充填物2が配管内部
表面に接して除染液の流れを妨げないように設けられた
スペーサである。
(Function) In the present invention, for example, as shown in the piping cross-sectional view of FIG.
Since the filling material 2 is placed inside the pipe 1, the volume of the pipe is reduced, and the amount of decontamination liquid can be reduced. Since the decontamination agent concentration can be increased and the decontamination agent flow rate can be increased by decreasing the amount of decontamination liquid, the decontamination effect can be improved. Note that the reference numeral 3 in FIG. 1 is a spacer provided so that the filler 2 does not come into contact with the inner surface of the pipe and obstruct the flow of the decontamination liquid.

次に、配管の単位面積当たりの付着量が等しいとした場
合の、配管の口径と配管内表面積、液量および除染剤濃
度との関係を第2図に示す。この図から明らかなように
、口径が大きくなるにつれて配管内部の表面積に対する
除染液量が増大し、したがって除染剤濃度は減少してい
く。配管中に充填物を入れることによって除染対象の容
積を減少させれば、付着物に対応した除染剤量と除染に
適した除染濃度の最適な条件を設定することができる。
Next, FIG. 2 shows the relationship between the diameter of the pipe, the inner surface area of the pipe, the amount of liquid, and the concentration of the decontaminating agent, assuming that the amount of adhesion per unit area of the pipe is equal. As is clear from this figure, as the diameter increases, the amount of decontamination liquid relative to the surface area inside the pipe increases, and therefore the concentration of decontamination agent decreases. By reducing the volume to be decontaminated by placing filler in the piping, it is possible to set the optimal conditions for the amount of decontamination agent corresponding to the deposits and the decontamination concentration suitable for decontamination.

(実施例) 本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described with reference to the drawings.

人旦■星豆府弥呈勇 第3図に充填物を入れた大口径配管の除染の例を示す。Human Dan■Hoshizufu Yaseiyu Figure 3 shows an example of decontamination of large-diameter pipes filled with fillers.

除染対象物の大口径配管1に充填物2を挿入する。充填
物2は可燃性で除染する温度(−般的には80〜120
℃程度)まで耐熱性のあるポリカーボネイトなどの材質
からなる。また、充填物の中には窒素を送り込んでいる
。ここで窒素を用いているのは、一部の除染剤は還元力
が強く、自身は空気に触れると酸化して除染性能が低下
するので、もし充填物から気体が洩れても問題とならな
いようにするためである。空気に触れても除染性能に変
化の生じない除染剤であるならば空気を充填してもかま
わない。充填物の外側には配管内面との間に除染剤が通
過できるようにスペーサ3をつける。
A filling material 2 is inserted into a large-diameter pipe 1 of an object to be decontaminated. The filling 2 is flammable and at a decontamination temperature (-generally 80-120
It is made of a material such as polycarbonate that is heat resistant up to temperatures up to 30°F (°C). Additionally, nitrogen is fed into the filling. Nitrogen is used here because some decontamination agents have a strong reducing power, and when they come into contact with air, they oxidize and decontamination performance decreases, so if the gas leaks from the filling, it will not be a problem. This is to prevent this from happening. If the decontamination agent does not cause any change in decontamination performance even when exposed to air, it may be filled with air. A spacer 3 is attached to the outside of the filling so that the decontaminating agent can pass between it and the inner surface of the pipe.

除染においては、除染対象である配管1に充填物2を挿
入してから、窒素ボンベ4から窒素を送り、充填物2を
除染対象内部に設置する。脱塩水を除染対象1、循環ポ
ンプ5および除染タンク6からなる除染ラインに充填し
、ヒーター7で昇温しながら循環ポンプ5で循環させる
。除染剤の特性に応じて、窒素ガスを注入するなどして
脱気することもある。除染剤は除染剤タンク8から除染
系統が昇温した時点で系統へ注入する。それ以後の除染
は通常の化学除染と同様に行なうことができる。
In decontamination, the filling material 2 is inserted into the piping 1 to be decontaminated, nitrogen is sent from the nitrogen cylinder 4, and the filling material 2 is installed inside the decontamination object. Desalinated water is filled into a decontamination line consisting of a decontamination target 1, a circulation pump 5, and a decontamination tank 6, and is circulated by the circulation pump 5 while being heated by a heater 7. Depending on the characteristics of the decontamination agent, degassing may be performed by injecting nitrogen gas. The decontamination agent is injected into the decontamination system from the decontamination tank 8 when the temperature of the decontamination system increases. Subsequent decontamination can be carried out in the same manner as normal chemical decontamination.

除染終了俊は除染廃液を廃液処理装置9へ送り、それぞ
れの除染廃液に応じた方法で処理する。
When the decontamination is completed, the decontamination waste liquid is sent to the waste liquid processing device 9 and treated in a manner appropriate for each decontamination waste liquid.

例えば第4図に示す濃厚除染方法では、除染廃液を廃液
受はタンク10に受けて、除染系統をフラッシング等に
より洗浄する。濃縮装置11では逆浸透膜、濃縮器等を
使用して濃縮と脱塩を行なう。
For example, in the intensive decontamination method shown in FIG. 4, the decontamination waste liquid is received in the waste liquid receiver tank 10, and the decontamination system is cleaned by flushing or the like. The concentration device 11 performs concentration and desalination using a reverse osmosis membrane, a concentrator, etc.

濃縮された廃液は同化処理装置12で固化される。The concentrated waste liquid is solidified in the assimilation treatment device 12.

また第5図に示す希薄除染方法では、イオン交換樹脂塔
13により廃液処理を行ない、ここで生じた脱塩水によ
り除染対象物1の洗浄を行なう。使用済のイオン交換樹
脂は廃棄物として樹脂廃棄物処理系14において処理さ
れる。
Further, in the dilute decontamination method shown in FIG. 5, waste liquid is treated by the ion exchange resin column 13, and the object 1 to be decontaminated is washed with the demineralized water generated therein. The used ion exchange resin is treated as waste in a resin waste treatment system 14.

次に、このような大口径の配管について、充填物を入れ
ない場合(P)と入れた場合(Q)の除染条件を比較し
、これを第1表に示す。二つの配管は同一形状であり、
除去すべき付着量は両者において等しい。
Next, for such large-diameter piping, the decontamination conditions when no filler was added (P) and when it was filled (Q) were compared, and the results are shown in Table 1. The two pipes have the same shape,
The amount of deposits to be removed is equal in both cases.

第1表 (P)  (Q) 表面積          200072000 ci
容積           5000cm3 1000
cm3付着物量(単位面積当り)  1■/cri  
1rn’j/7〃  (総量>       2SF 
   2g除染剤必要量(100%として) 209 
  2Cj(J除染剤濃度(当量濃度)0.4%   
2.0%〃   (使用濃度)1.0%   2.5%
除染剤注入量       50g25g充填物を入れ
たことによって、配管の容積は5000ff3から10
1000Cに減少した。付着物量は等しいので、除染剤
必要量は共に20gと等しいが、容積(すなわち液量)
が異なるので、Pでは除染剤当量濃度は0.4%となる
が、Qでは2.0%となる。除染剤の実際の使用濃度は
1〜8%の範囲であるので、Pではこれよりも低くなり
一方Qでは適当濃度となる。Pのように除染剤当量濃度
が使用濃度より低い場合は、除染剤使用濃度範囲の下限
値で行なうことになり、使用濃度はPでは1%となる。
Table 1 (P) (Q) Surface area 200072000 ci
Volume 5000cm3 1000
cm3 Amount of deposits (per unit area) 1■/cri
1rn'j/7〃 (total amount > 2SF
2g Required amount of decontamination agent (as 100%) 209
2Cj (J decontamination agent concentration (equivalent concentration) 0.4%
2.0%〃 (Using concentration) 1.0% 2.5%
Decontamination agent injection amount: 50g By adding 25g of filler, the volume of the pipe increases from 5000ff3 to 10
It decreased to 1000C. Since the amount of deposits is the same, the required amount of decontamination agent is both equal to 20g, but the volume (i.e. liquid volume)
are different, so the decontamination agent equivalent concentration for P is 0.4%, but for Q it is 2.0%. Since the actual concentration of the decontamination agent used is in the range of 1 to 8%, P will be lower than this, while Q will be at an appropriate concentration. When the decontamination agent equivalent concentration is lower than the usage concentration as in P, the decontamination is carried out at the lower limit of the decontamination usage concentration range, and the usage concentration for P is 1%.

したがって注入される除染剤の量は5000X0.01
=50(0)となる。Qではこれがi ooo xo、
025 =25(0)である。したがってPでは余分な
除染剤を注入することになり、一方Qではこのような無
駄が省けるばかりでなく、除染剤濃度が上がるので除染
速度が上がるという効果もめる。これは除染速度が除染
剤濃度が高くなると速くなるからである。
Therefore, the amount of decontamination agent injected is 5000 x 0.01
=50(0). In Q this is i ooo xo,
025=25(0). Therefore, in P, an extra amount of decontamination agent is injected, whereas in Q, not only can such waste be avoided, but also the decontamination speed can be increased because the decontamination agent concentration is increased. This is because the decontamination speed increases as the decontamination agent concentration increases.

充填物を入れる効果は濃度の上昇以外にもいくつかある
。これを第2表に示す。
In addition to increasing concentration, there are other effects of adding fillers. This is shown in Table 2.

第2表 (P)  (Q) 表面積          2000CrA2000c
d容積           5000cm3 100
0cm”除染剤濃度(使用濃度)1.0%   2.5
%除染剤注入IJ        50g25g除染流
速         15 温度上昇に要する時間   長い   短い廃液タンク
容置       51 廃液濃縮率        小さい  大きい浄化イオ
ン交換樹脂量    21 浄化に要する時間      91.7(単位のない数
値は相対値) 第2表から明らかなように、効果の一つは除染液量の減
少であり、これは除染剤の温度を上昇させる上で有利と
なる。すなわち、除染液量が少ないために容易に温度を
上昇させることができる。
Table 2 (P) (Q) Surface area 2000CrA2000c
d Volume 5000cm3 100
0cm” Decontamination agent concentration (use concentration) 1.0% 2.5
% Decontamination agent injection IJ 50g 25g Decontamination flow rate 15 Time required for temperature rise Long Short waste liquid tank storage 51 Waste liquid concentration ratio Small Large amount of purification ion exchange resin 21 Time required for purification 91.7 (Numbers without units are relative values) As is clear from Table 2, one of the effects is a reduction in the amount of decontamination liquid, which is advantageous in increasing the temperature of the decontamination agent. That is, since the amount of decontamination liquid is small, the temperature can be easily raised.

また除染液量の減少は廃液の減少になり、廃液タンク容
量の減少、廃液濃縮率の減少の効果を生ずる。希薄化学
除染法においてはイオン交換樹脂による浄化時間の減少
やイオン交換樹脂量の減少がもたらされる。第6図に充
填物のある場合とない場合における除染剤濃度と浄化時
間の関係を示す。
In addition, a decrease in the amount of decontamination liquid results in a decrease in waste liquid, which has the effect of reducing the waste liquid tank capacity and reducing the waste liquid concentration rate. The dilute chemical decontamination method results in a reduction in the purification time using the ion exchange resin and a reduction in the amount of the ion exchange resin. FIG. 6 shows the relationship between decontamination agent concentration and purification time with and without packing.

この図に示すように、充填物のある場合には浄化時間が
減少する。
As shown in this figure, the cleaning time is reduced in the presence of packing.

また充填物があると、同じポンプ流量でも配管内部表面
における除染剤の流速が速くなり、したがって除染速度
も速くなる。
In addition, if there is a filler, the flow rate of the decontamination agent on the inner surface of the pipe becomes faster even with the same pump flow rate, and therefore the decontamination rate also becomes faster.

久Zり五箪来1 第7図および第8図にタンク除染の実施例を示す。タン
クは除染しようと、する表面積に比べて容積が大きく、
廃液量が多いなどの問題が生じている。第7図ではタン
ク形状に合わせた充填物16とスペーサ18をタンク1
5に充填し、ポンプ17によって除染剤を循環する。第
9図では球状の充填物19をタンク内に沈めて除染剤注
入量を減少させている。この方法ではタンクの形状に合
わせて充填物を準備する必要がなく、どのような形状あ
るいは大きざでも同様な方法によって除染することがで
きる。
Figures 7 and 8 show examples of tank decontamination. The tank has a large volume compared to the surface area to be decontaminated.
Problems such as a large amount of waste liquid have arisen. In Fig. 7, a filler 16 and a spacer 18 that match the tank shape are installed in the tank 1.
5, and the decontamination agent is circulated by the pump 17. In FIG. 9, a spherical filler 19 is submerged in the tank to reduce the amount of decontamination agent injected. With this method, there is no need to prepare fillers according to the shape of the tank, and any shape or size can be decontaminated using the same method.

[発明の効果] 以上説明したように、本発明によれば大口径の配管やタ
ンクのように容量の大きい機器、配管等の除染において
、余分な除染剤を使用することなく除染効果を種々の面
で上げることができる。また、除染によって生ずる廃棄
物量を減少することができる。
[Effects of the Invention] As explained above, according to the present invention, decontamination effects can be achieved without using excess decontamination agent in decontaminating large-capacity equipment and pipes such as large-diameter pipes and tanks. can be improved in various ways. Additionally, the amount of waste generated by decontamination can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明するための配管断面図、第
2図は配管の単位面積当りの付着量が等しいとした場合
の配管口径と配管内液量、配管内表面積および除染剤濃
度との関係を示す図、第3図は本発明の一実施例を説明
するための大口径配管の除染の系統図、第4図および第
5図は本発明の除染方法の他の実施例を示す系統図、第
6図は充填物を入れた場合と入れない場合の除染剤浄化
時間と除染剤濃度との関係を示す図、第7図および第8
図はタンクを除染する場合の本発明の実施例を示す図で
ある。 1・・・配管(除染対象物) 2、16.19・・・充填物 3.18・・・スペーサ 4・・・窒素ボンベ 6・・・除染タンク 7・・・ヒーター 8・・・除染剤タンク 9・・・廃液処理装置 11・・・濃縮装置 12・・・固化装置 13・・・イオン交換樹脂塔 15・・・タンク(除染対象物) (8733)代理人 弁理士 猪 股 祥 晃(ほか 
1名) 第1図 配 管 テ杢 (相対値) 第2図 第3図 第4図 看化時閏(相対値)
Fig. 1 is a cross-sectional view of a pipe for explaining the present invention in detail, and Fig. 2 shows the pipe diameter, the amount of liquid in the pipe, the surface area inside the pipe, and the decontamination agent assuming that the amount of adhesion per unit area of the pipe is equal. Figure 3 is a diagram showing the relationship with concentration, Figure 3 is a system diagram for decontamination of large-diameter piping to explain one embodiment of the present invention, Figures 4 and 5 are diagrams showing other decontamination methods of the present invention. A system diagram showing an example, FIG. 6 is a diagram showing the relationship between decontamination agent purification time and decontamination agent concentration with and without filling, and FIGS. 7 and 8.
The figure is a diagram showing an embodiment of the present invention in the case of decontaminating a tank. 1... Piping (object to be decontaminated) 2, 16.19... Filler 3.18... Spacer 4... Nitrogen cylinder 6... Decontamination tank 7... Heater 8... Decontamination agent tank 9... Waste liquid treatment device 11... Concentration device 12... Solidification device 13... Ion exchange resin tower 15... Tank (object to be decontaminated) (8733) Agent Patent attorney Boar Yoshiaki Mata (and others)
1 person) Fig. 1 Piping test (relative value) Fig. 2 Fig. 3 Fig. 4 Nurification time jump (relative value)

Claims (1)

【特許請求の範囲】[Claims] (1)放射性物質の付着した機器、配管等に化学除染剤
を流入して放射性物質を除去する機器、配管等の化学除
染方法において、前記機器、配管等の内部にその内部表
面と化学除染剤との接触を妨げないように充填物を挿入
することを特徴とする機器、配管等の化学除染方法。
(1) In a chemical decontamination method for equipment, piping, etc. that removes radioactive materials by flowing a chemical decontamination agent into equipment, piping, etc. that has radioactive materials attached, the internal surface of the equipment, piping, etc. A chemical decontamination method for equipment, piping, etc., characterized by inserting a filler so as not to prevent contact with the decontaminating agent.
JP15116988A 1988-06-21 1988-06-21 Chemical decontamination Pending JPH01318999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15116988A JPH01318999A (en) 1988-06-21 1988-06-21 Chemical decontamination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15116988A JPH01318999A (en) 1988-06-21 1988-06-21 Chemical decontamination

Publications (1)

Publication Number Publication Date
JPH01318999A true JPH01318999A (en) 1989-12-25

Family

ID=15512824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15116988A Pending JPH01318999A (en) 1988-06-21 1988-06-21 Chemical decontamination

Country Status (1)

Country Link
JP (1) JPH01318999A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730997A (en) * 1980-08-04 1982-02-19 Biru Daikou Kk Swelling decontamination device for high level contaminated liquid waste storage tank or liquid waste transporting pipe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730997A (en) * 1980-08-04 1982-02-19 Biru Daikou Kk Swelling decontamination device for high level contaminated liquid waste storage tank or liquid waste transporting pipe

Similar Documents

Publication Publication Date Title
US4731124A (en) Application technique for the descaling of surfaces
CN1988051A (en) Pollutant removing process and pollutant removing agent for radioactive pollution metal
JP2015515626A (en) Selective regeneration of isotope-specific media resins in a system for separating radioisotopes from liquid waste
US6475296B1 (en) Degreasing composition and methods using same
JP4927210B2 (en) Methods for chemical dissolution of corrosion products
JPH01318999A (en) Chemical decontamination
US8115045B2 (en) Nuclear waste removal system and method using wet oxidation
KR20140042067A (en) Treatment method for radioactive contaminated water and treatment device
CN110491540B (en) Method for treating radioactive waste
JP6178116B2 (en) Soil decontamination apparatus and method
US6907891B2 (en) Radioactive substance decontamination method and apparatus
JP2002357695A (en) Decontamination method and device
JP2015025706A (en) Method and device for decontaminating soil
EP1290699B1 (en) Method of applying foam reagents for radioactive decontamination
Fournel et al. Decontamination of phebus experimental target chamber using sprayed foam
RU2113025C1 (en) Method for cleaning radioactive process water from cesium radionuclides in nuclear engineering
EP1060476B1 (en) Method and installation for decontaminating metallic surfaces
RU2105366C1 (en) Water cleaning system for solid radioactive waste cooling ponds
RU2240613C2 (en) Method for decontaminating surfaces from radioactive pollutants
JP2002116295A (en) Decontamination method and decontamination device
US20030052063A1 (en) Decontamination method and apparatus
JP4317737B2 (en) Chemical decontamination method
JP2653445B2 (en) Radioactive waste decontamination system
JP2000249790A (en) Magnetic oscillating decontamination method of radioactive contaminant and device thereof
JPH032596A (en) Decontamination device for metal contaminated with radioactivity