JPH01318953A - Method for evaluating physical property of surface of particle material for magnetic recording medium - Google Patents

Method for evaluating physical property of surface of particle material for magnetic recording medium

Info

Publication number
JPH01318953A
JPH01318953A JP14995588A JP14995588A JPH01318953A JP H01318953 A JPH01318953 A JP H01318953A JP 14995588 A JP14995588 A JP 14995588A JP 14995588 A JP14995588 A JP 14995588A JP H01318953 A JPH01318953 A JP H01318953A
Authority
JP
Japan
Prior art keywords
compound
magnetic recording
recording medium
particle material
carbonyl compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14995588A
Other languages
Japanese (ja)
Other versions
JP2536072B2 (en
Inventor
Haruo Watanabe
春夫 渡辺
Nobuyoshi Seto
瀬戸 順悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP63149955A priority Critical patent/JP2536072B2/en
Priority to KR1019890008402A priority patent/KR100195555B1/en
Publication of JPH01318953A publication Critical patent/JPH01318953A/en
Application granted granted Critical
Publication of JP2536072B2 publication Critical patent/JP2536072B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To examine the physical property of the surface of particle material for a magnetic recording medium by analyzing a compound which is formed by aldol condensation reaction of a carbonyl compound and compound which is formed by dehydrating reaction of a beta-hydroxycarbonyl compound. CONSTITUTION:Particle material for magnetic recording medium and a carbonyl compound having hydrogen atoms are brought into contact. At this time, the carbonyl compound and alpha,beta-double bonded carbonyl compound which is formed by the dehydrating reaction of beta-hydroxycarbonyl compound are analyzed. The presence of a base point is found by the formation of the beta-hydroxycarbonyl compound. The presence of an acid point is found by the formation of the alpha,beta-double bonded carbonyl compound.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、強磁性粉末や研磨剤等、磁気記録媒体に使用
される各種の磁気記録媒体用粒子材料の表面物性評価方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for evaluating the surface properties of various magnetic recording medium particle materials used in magnetic recording media, such as ferromagnetic powder and abrasives.

〔従来の技術〕[Conventional technology]

一般に磁気記録媒体は、強磁性粉末を結合剤。 Generally magnetic recording media uses ferromagnetic powder as a binder.

分散剤、潤滑剤、研磨剤等の添加剤と共に有機溶剤に分
散混練してなる磁性塗料をポリエステルフィルム等の非
磁性支持体の一方の面上に塗布することにより、その磁
性層が形成されている。これは、いわゆる塗布型磁気記
録媒体と呼ばれるものである。
A magnetic layer is formed by applying a magnetic paint made by dispersing and kneading additives such as dispersants, lubricants, and abrasives in an organic solvent onto one surface of a non-magnetic support such as a polyester film. There is. This is what is called a coating type magnetic recording medium.

さらに上記非磁性支持体の他方の面上には、結合剤中に
導電性カーボンブラック等を混入したいわゆるバックコ
ート層を設けることも広く行われている。このバックコ
ート層は、上述の塗布型磁気記録媒体ばかりでなく、強
磁性金属を真空蒸着等の手段により直接に非磁性支持体
上に被着して磁性層を形成した、いわゆる金属flfl
型膜気記録媒体にも適用されている。
Furthermore, on the other surface of the nonmagnetic support, it is widely practiced to provide a so-called back coat layer in which conductive carbon black or the like is mixed in a binder. This back coat layer is used not only in the above-mentioned coated magnetic recording media, but also in so-called metal flfl, which is a magnetic layer formed by depositing a ferromagnetic metal directly onto a nonmagnetic support by means such as vacuum deposition.
It is also applied to film-type recording media.

ところで、磁気記録媒体の性能は磁性体自身の特性に依
存することはもちろんであるが、磁性層あるいはバック
コート層中の粒子材料の充填性、配向性、分散性等に負
うところも大きい。このような磁気記録媒体にあっては
、磁性層に使用される強磁性粉末、研磨剤等や、バック
コート層に使用されるカーボンブラックをはじめとする
各種の粒子材料の表面物性を知り、結合剤その他の添加
剤との間の相互作用を正確に把握することが、材料の開
発・設計、あるいは製造工程における再現性の向上に不
可欠である。
Incidentally, the performance of a magnetic recording medium depends not only on the characteristics of the magnetic material itself, but also on the filling properties, orientation, dispersibility, etc. of the particle material in the magnetic layer or back coat layer. For such magnetic recording media, it is important to know the surface properties of various particulate materials, including the ferromagnetic powder, abrasive, etc. used in the magnetic layer, and the carbon black used in the backcoat layer. Accurately understanding interactions between agents and other additives is essential for improving reproducibility in material development and design or manufacturing processes.

従来かかる観点から、目的に応じて様々な方法で強磁性
粉末の表面物性の評価が試みられている。
From this point of view, various methods have been used to evaluate the surface properties of ferromagnetic powder depending on the purpose.

これらは、たとえば吸液量測定、湿潤熱測定、吸着等温
式にもとづく吸着熱測定等の各種の熱化学的方法や、電
位差滴定による電荷零点の測定1表面電位測定法(電気
浸透法、流動電位法、沈降電位法)、あるいは電気泳動
法による等電点の測定やゼータ電位測定等の電気化学的
方法等である。
These include, for example, various thermochemical methods such as liquid absorption measurement, wetting heat measurement, adsorption heat measurement based on adsorption isotherms, measurement of the zero point of charge by potentiometric titration, surface potential measurement (electroosmosis, streaming potential method, sedimentation potential method), or electrochemical methods such as isoelectric point measurement using electrophoresis or zeta potential measurement.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上述の各方法はいずれも表面の平均的な
物性に関するいわば巨視的な情報を与えるものであり、
そこから微視的な情報を得ることはできない、たとえば
、電気泳動法によりある粒子材料の等電点が求められた
としても、該粒子材料中にどの位の強さの酸点や塩基点
がどの位の割合で分布しているか等については知ること
ができない、このような微視的な表面物性を理解するこ
とができれば、材料設計や製造工程における再現性の向
上に非常に有効である。
However, each of the above-mentioned methods provides so-called macroscopic information regarding the average physical properties of the surface;
Microscopic information cannot be obtained from this. For example, even if the isoelectric point of a certain particulate material is determined by electrophoresis, how strong are the acid and basic points in the particulate material? Understanding such microscopic surface physical properties, for which it is impossible to know in what proportion they are distributed, would be extremely effective in improving reproducibility in material design and manufacturing processes.

そこで本発明は、磁気記録媒体用粒子材料の表面物性の
微視的な評価を可能とする方法を提供することを目的と
する。
Therefore, an object of the present invention is to provide a method that enables microscopic evaluation of the surface properties of particle materials for magnetic recording media.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、−IIに磁気記録媒体用材料粉末の表面
には材料に固有の、あるいは水分子の吸着や酸化等によ
り生じた酸点や塩基点が存在し、これらがブレンステッ
ド酸またはブレンステッド塩基として作用することに着
目し、これらを一連の反応により別々に定量できる方法
を見出し、本発明に到ったものである。
The present inventors have discovered that -II has acid sites and base sites inherent to the material or generated by adsorption of water molecules, oxidation, etc. on the surface of the magnetic recording medium material powder, and these are Brønsted acids or base sites. Focusing on the fact that they act as Brønsted bases, we found a method that allows these to be separately quantified through a series of reactions, leading to the present invention.

すなわち本発明の第1の発明にかかる磁気記録媒体用粒
子材料の表面物性評価方法は、α水素原子を有するカル
ボニル化合物と磁気記録媒体に使用される粒子材料とを
接触せしめ、上記カルボニル化合物のアルドール縮合反
応により生成するβ−ヒドロキシカルボニル化合物と、
該β−ヒドロキシカルボニル化合物の脱水反応により生
成するα、β−二重結二重結合カルボニル化合物析する
ことを特徴とするものである。
That is, the method for evaluating the surface properties of a particle material for a magnetic recording medium according to the first aspect of the present invention involves bringing a carbonyl compound having an α hydrogen atom into contact with a particle material used for a magnetic recording medium, and forming an aldol of the carbonyl compound. A β-hydroxycarbonyl compound produced by a condensation reaction,
This method is characterized in that an α,β-double bond carbonyl compound produced by the dehydration reaction of the β-hydroxycarbonyl compound is separated.

さらに本発明の第2の発明にかかる磁気記録媒体用粒子
材料の表面物性評価方法は、β−ヒドロキシカルボニル
化合物と磁気記録媒体に使用される粒子材料とを接触せ
しめ、上記β−ヒドロキシカルボニル化合物の逆アルド
ール縮合反応により生成するα水素原子を有するカルボ
ニル化合物と、上記β−ヒドロキシカルボニル化合物の
脱水反応により生成するα、β−二重結二重結合カルボ
ニル化合物析することを特徴とするものである。
Furthermore, a method for evaluating the surface properties of a particle material for a magnetic recording medium according to a second aspect of the present invention includes bringing a β-hydroxycarbonyl compound into contact with a particle material used for a magnetic recording medium, and It is characterized by the analysis of a carbonyl compound having an α hydrogen atom produced by a reverse aldol condensation reaction and an α,β-double bond carbonyl compound produced by a dehydration reaction of the β-hydroxycarbonyl compound. .

アルドール縮合反応は、α位に水素原子を持つアルデヒ
ドあるいはケトンにみられる反応である。
The aldol condensation reaction is a reaction that occurs with aldehydes or ketones that have a hydrogen atom in the α position.

この反応は次のように表される。This reaction is expressed as follows.

この式において、R1およびR2はそれぞれ水素原子、
置換基を有する炭化水素基あるいは無置換の炭化水素基
等を表す。ここでR2が水素原子であれば、上式中のカ
ルボニル化合物(])はアルデヒド、その他の炭化水素
基であればケトンである。また、R1およびR2は互い
に末端において結合し、環状ケトンを形成していても良
い。
In this formula, R1 and R2 are each a hydrogen atom,
Represents a hydrocarbon group having a substituent or an unsubstituted hydrocarbon group. Here, if R2 is a hydrogen atom, the carbonyl compound (]) in the above formula is an aldehyde, and if it is another hydrocarbon group, it is a ketone. Furthermore, R1 and R2 may be bonded to each other at the ends to form a cyclic ketone.

上述の反応経路によると、まず上記カルボニル化合物(
1)が塩基触媒の存在下で中間体(II)を経てβ−ヒ
ドロキシカルボニル化合物(I[[)に変化し、これが
さらに酸触媒の存在下で容易に脱水されてα、β−二重
結合カルボニル化合物(IV)を生成する。場合によっ
ては、上記β−ヒドロキシカルボニル化合物([1)と
カルボニル化合物(1)とが塩基触媒の存在下で反応し
、該カルボニル化合物(+)の三量体あるいはそれ以上
の多量体が生成することもある。
According to the above reaction route, first the carbonyl compound (
1) changes into a β-hydroxycarbonyl compound (I[[) through intermediate (II) in the presence of a base catalyst, which is further easily dehydrated in the presence of an acid catalyst to form an α,β-double bond. Carbonyl compound (IV) is produced. In some cases, the β-hydroxycarbonyl compound ([1) and the carbonyl compound (1) react in the presence of a base catalyst to produce a trimer or higher polymer of the carbonyl compound (+). Sometimes.

ここで、上記化合物(1)の代表例としては、アセトア
ルデヒド、アセトン、メチルエチルケトン、メチルイソ
ブチルケトン、シクロヘキサノン等があり、なかでもア
セトンは分析上の観点より好適である。
Here, representative examples of the above compound (1) include acetaldehyde, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc. Among them, acetone is preferable from an analytical point of view.

本発明の第1の発明によれば、粒子材料とカルボニル化
合物(1)を接触させた際のβ−ヒドロキシカルボニル
化合物(III)の生成により塩基点の存在を、α、β
−二重結合カルボニル化合物(IV)の生成により酸点
の存在を知ることができ、またこれら両化合物の生成比
により塩基点と酸点の存在比の目安を知ることも可能で
ある。ただし、この方法は塩基点による触媒作用を経て
いるため、塩基点を持たずに酸点のみを有する粒子材料
、あるいは塩基点に比べて酸点が大過剰であるような粒
子材料には適用できない、また、カルボニル化合物(1
)からβ−ヒドロキシカルボニル化合物(III)に至
る経路は可逆反応であるため、塩基点による触媒作用を
完全に進行させるためにはカルボニル化合物(1)を大
過剰に使用することが必要である。
According to the first aspect of the present invention, the presence of basic sites is reduced by the formation of the β-hydroxycarbonyl compound (III) when the particle material and the carbonyl compound (1) are brought into contact with each other.
- The presence of acid sites can be determined by the formation of the double-bonded carbonyl compound (IV), and it is also possible to determine the approximate abundance ratio of basic sites and acid sites based on the ratio of these two compounds. However, since this method is catalyzed by basic sites, it cannot be applied to particle materials that have only acid sites without basic sites, or particle materials that have a large excess of acid sites compared to basic sites. , and carbonyl compound (1
) to the β-hydroxycarbonyl compound (III) is a reversible reaction, so it is necessary to use a large excess of the carbonyl compound (1) in order to allow the catalytic action by the base site to proceed completely.

さらに本発明の第2の発明によれば、粒子材料とβ−ヒ
ドロキシカルボニル化合物(I[l)を接触させた際の
カルボニル化合物(1)の生成により塩基点の存在を、
α、β−二重結二重結合カルボニル化合物)の生成によ
り酸点の存在を知ることができ、またこれら両化合物の
生成比により塩基点と酸点の存在比の目安を知ることも
可能である。
Furthermore, according to the second aspect of the present invention, the presence of a basic site can be detected by the formation of a carbonyl compound (1) when the particle material and the β-hydroxycarbonyl compound (I[l) are brought into contact with each other.
The presence of acid sites can be known by the formation of α, β-double bond carbonyl compounds), and it is also possible to know the approximate abundance ratio of basic sites and acid sites from the formation ratio of these two compounds. be.

この方法を適用できる粒子材料には、第1の発明の場合
のような制約はない。
There are no restrictions on particle materials to which this method can be applied, as there are in the first invention.

本発明を適用できる磁、気記録媒体用粒子材料は、大別
すると強磁性粒子、研磨粉およびその他の添加粒子とな
る。
The particle materials for magnetic recording media to which the present invention can be applied can be broadly classified into ferromagnetic particles, abrasive powder, and other additive particles.

上記強磁性粒子としては、強磁性酸化鉄粒子、強磁性二
酸化クロム粒子、強磁性合金粒子、六方晶系バリウムフ
ェライト微粒子、金属炭化物、金属窒化物等が挙げられ
る。
Examples of the ferromagnetic particles include ferromagnetic iron oxide particles, ferromagnetic chromium dioxide particles, ferromagnetic alloy particles, hexagonal barium ferrite particles, metal carbides, metal nitrides, and the like.

上記強磁性酸化鉄粒子としては、一般式FeOxで表し
た場合、Xの値が1,33≦X≦1.50の範囲にある
もの、すなわちマグヘマイ)(7−FewO,、x−1
,50)、マグネタイト (F 630at  X ”
1.33)、およびこれらの固溶体(F e O,、1
,33<x<1.50)がある。さらに、これら強磁性
酸化鉄に保磁力を向上させる目的でコバルトをドープあ
るいは被着により保持させた材料も含まれる。
The above-mentioned ferromagnetic iron oxide particles, when expressed by the general formula FeOx, have a value of
,50), magnetite (F 630at
1.33), and their solid solutions (F e O,, 1
, 33<x<1.50). Furthermore, these materials also include materials in which cobalt is doped or deposited on these ferromagnetic iron oxides for the purpose of improving coercive force.

上記強磁性二酸化クロムには、保磁力を向上させる目的
でRu、Sn、Te、Sb、Fe、Ti。
The ferromagnetic chromium dioxide contains Ru, Sn, Te, Sb, Fe, and Ti for the purpose of improving coercive force.

V、Mn等の金属元素のうち少なくとも1種類を添加し
た材料も含まれる。
Also included are materials to which at least one metal element such as V and Mn is added.

上記強磁性合金粒子としては、Fe、Co。The ferromagnetic alloy particles include Fe and Co.

Ni、Fe−Co、Fe−Ni、Fe−Co−Ni、C
o−Ni、Fe−Co−B、Fe−C。
Ni, Fe-Co, Fe-Ni, Fe-Co-Ni, C
o-Ni, Fe-Co-B, Fe-C.

−Cr−B、Mn−B1.Mn−Al、Fe−CQ−V
等が挙げられる。またこれらに種々の特性を改善する目
的でAIl、Si、Ti、Cr。
-Cr-B, Mn-B1. Mn-Al, Fe-CQ-V
etc. Additionally, Al, Si, Ti, and Cr are added for the purpose of improving various properties of these materials.

Mn、Cu、Zn等の金属元素を添加したものであって
も良い。
A metal element such as Mn, Cu, or Zn may be added.

研磨粉としては、アルミナ、酸化クロム、炭化ケイ素、
コランダム、ダイヤモンド、ザクロ石、エメリー(主成
分:コランダムと磁鉄鉱)等がある。
Polishing powders include alumina, chromium oxide, silicon carbide,
These include corundum, diamond, garnet, and emery (main ingredients: corundum and magnetite).

さらにその他の添加粒子としては、エポキシ樹脂、ポリ
スチレン樹脂、ベンゾグアナミン−ホルムアルデヒド縮
合樹脂等の高分子ゲル粒子、バックコート層に添加され
るコンタクトブラック、チャンネルブラック、ロールブ
ラック、ディスクブラック、ファーネスブラック、サー
マルブラック。
Furthermore, other additive particles include polymer gel particles such as epoxy resin, polystyrene resin, benzoguanamine-formaldehyde condensation resin, contact black, channel black, roll black, disk black, furnace black, and thermal black added to the back coat layer. .

ランプブラック等の各種カーボンブラックやCaC0+
粉末、Ba5Oa粉末、ZnO粉末、α−Fe、O,粉
末、Tie、粉末1,1tos粉末、CrtOz粉末等
の無機顔料が挙げられる。
Various carbon blacks such as lamp black and CaC0+
Examples include inorganic pigments such as powder, Ba5Oa powder, ZnO powder, α-Fe, O, powder, Tie, powder 1,1tos powder, and CrtOz powder.

これらの粒子材料とα水素原子を有するカルボニル化合
物によるアルドール縮合反応は、気相系でも液相系でも
行わせることができる。
The aldol condensation reaction between these particle materials and a carbonyl compound having an α-hydrogen atom can be carried out in either a gas phase system or a liquid phase system.

また、上記アルドール縮合反応による生成物は、ガスク
ロマトグラフィー(GC) 、GC/質量分析、液体ク
ロマトグラフィー、高速液体クロマトグラフィー等の各
種の定性定量分析法により分析することができる。
Further, the product of the aldol condensation reaction can be analyzed by various qualitative and quantitative analysis methods such as gas chromatography (GC), GC/mass spectrometry, liquid chromatography, and high performance liquid chromatography.

〔作用〕[Effect]

いま、α水素原子を存するカルボニル化合物としてアセ
トンを使用した場合を考えると、アルドール縮合反応は
次のように説明される。
Now, considering the case where acetone is used as a carbonyl compound containing an α hydrogen atom, the aldol condensation reaction can be explained as follows.

まず、2分子のアセトンのうち一方のα位の水素原子が
磁気記録媒体用粒子材料の表面に存在する塩基点の触媒
作用を受けてプロトンとして引き抜かれる0次に、生じ
た陰イオンが他方のアセトンのカルボニル炭素に親核的
に反応し、中間体を経てジアセトンアルコールを生成し
、塩基点が再生される0次に、このジアセトンアルコー
ルは磁気記録媒体用粒子材料の表面に存在する酸点の触
媒作用を受けて脱水され、−c=c−c−o型の共鳴に
より安定化されたメシチルオキシドとなる。
First, the α-position hydrogen atom of one of the two molecules of acetone is extracted as a proton by the catalytic action of the basic point present on the surface of the particle material for magnetic recording media. It reacts nucleophilically with the carbonyl carbon of acetone to produce diacetone alcohol through an intermediate, and the base site is regenerated.Next, this diacetone alcohol reacts with the acid present on the surface of the particle material for magnetic recording media. It is dehydrated by the catalytic action of the point, and becomes mesityl oxide stabilized by -c=c-c-o type resonance.

以上の反応を式で表すと以下のとおりとなる。The above reaction can be expressed as follows.

上述の反応機構から明らかなように、本発明にかかる評
価方法によれば、磁気記録媒体用粒子材料の塩基点と酸
点の触媒作用に対応した生成物がそれぞれ得られる。こ
のため、たとえば従来の評価方法により同じ等電点を有
すると判定された材料であっても、より微視的にみれば
どの程度の強さの塩基点と酸点とが釣り合っているか等
の差異が明らかになる可能性がある。
As is clear from the above reaction mechanism, according to the evaluation method according to the present invention, products corresponding to the catalytic actions of the basic sites and acid sites of the particle material for magnetic recording media are obtained. For this reason, for example, even if materials are determined to have the same isoelectric point using conventional evaluation methods, from a more microscopic perspective, it is difficult to determine how strong the basic and acidic points are in balance. Differences may become apparent.

塩基点や酸点は他の材料粒子の吸着点として作用するも
のと考えられている。たとえば強磁性粉末の表面に存在
する塩基点や酸点は、混練される結合剤8分散剤、研磨
剤をはじめとするの各種の添加剤の吸着点として作用す
る。したがって、本発明の適用により得られる情報にも
とづいて、磁性塗料やバックコート層塗料に使用される
各種の粒子材料の組み合わせを適切に選択すれば、分散
性や表面性等の特性を改善することが可能となる。
It is believed that basic sites and acid sites act as adsorption sites for other material particles. For example, the basic points and acid points present on the surface of the ferromagnetic powder act as adsorption points for various additives including the binder, dispersant, and abrasive to be kneaded. Therefore, if the combination of various particle materials used in magnetic paints and backcoat layer paints is appropriately selected based on the information obtained by applying the present invention, properties such as dispersibility and surface properties can be improved. becomes possible.

〔実施例] 以下、本発明の好適な実施例を実験例にもとづいて説明
する。
[Example] Hereinafter, preferred embodiments of the present invention will be described based on experimental examples.

本実施例は、磁気記録媒体用粒子材料として各種の磁性
粉末を選び、これらの塩基点および酸点を実験的に評価
したものである。まず、第1表に使用した磁性粉末Aな
いし磁性粉末Jを挙げる。
In this example, various magnetic powders were selected as particle materials for magnetic recording media, and their basic sites and acid sites were experimentally evaluated. First, Table 1 lists the magnetic powders A to J used.

(以下余白) 実施例1 本実施例は、第1表に示した磁性粉末Aないし磁性粉末
Jにアセトンを作用させ、塩基点の触媒作用により生じ
たジアセトンアルコールと酸点の触媒作用により生じた
メシチルオキシドを分析したものである。
(Leaving space below) Example 1 In this example, acetone was applied to magnetic powder A to magnetic powder J shown in Table 1, and diacetone alcohol was produced by the catalytic action of the base site and diacetone alcohol was produced by the catalytic action of the acid site. This is an analysis of mesityl oxide.

まず、容積100mff1の共栓付き三角フラスコに第
1表に示す各磁性粉末0.5〜1gとアセトン40gを
秤量し、密封して超音波分散させた。続いて上記三角フ
ラスコを25±0.05℃に調節した恒温水槽中で15
〜20時間震盪した。得られた分散系2ml程度をディ
スポーザブルメンブランフィルタ−付きの2mlガラス
製シリンジに入れ、押し出し濾過を行って透明な濾液を
得た。この濾液をガスクロマトグラフィーにより分析し
た。分析は長さ3mのPF、G−20カラムと水素炎イ
オン化検出器を備えた島津製作所社製ガスクロマトグラ
フ装置GC−8Aを使用し、窒素ガス流量40mj!/
分。
First, 0.5 to 1 g of each magnetic powder shown in Table 1 and 40 g of acetone were weighed into a 100 mff1 Erlenmeyer flask with a stopper, the flask was sealed, and the flask was ultrasonically dispersed. Next, the Erlenmeyer flask was placed in a constant temperature water bath adjusted to 25±0.05℃ for 15 minutes.
Shake for ~20 hours. Approximately 2 ml of the obtained dispersion was placed in a 2 ml glass syringe equipped with a disposable membrane filter, and extrusion filtration was performed to obtain a transparent filtrate. This filtrate was analyzed by gas chromatography. The analysis was carried out using a Shimadzu gas chromatograph GC-8A equipped with a 3 m long PF, G-20 column and a hydrogen flame ionization detector, with a nitrogen gas flow rate of 40 mJ! /
Minutes.

温度180 ’Cの条件で行った。The temperature was 180'C.

このような分析方法によって得られる典型的なガスクロ
マトダラムを第1図に示す。この図において縦軸は相対
ピーク高さ、横軸は保持時間(分)を表す、保持時間0
.83分のピークは未反応のアセトン、3.05分のピ
ークはアセトンが塩基点の触媒作用によりアルドール縮
合反応を起こして2量化した化合物に相当するジアセト
ンアルコール、1.63分のピークはジアセトンアルコ
ールが酸点の触媒作用により脱水されて生じたメシチル
オキシド、8.34分のピークはジアセトンアルコール
がさらにアセトンとアルドール縮合反応を起こして生じ
た4、6−シヒドロキシー4.6−シメチルー2−ヘプ
タノン(アセトンの3量体に相当する。)である、これ
らの各化合物の同定は、標準物質の保持時間との照合お
よび質量スペクトルにもとづいて行った。
A typical gas chromatograph obtained by such an analytical method is shown in FIG. In this figure, the vertical axis represents the relative peak height, and the horizontal axis represents the retention time (minutes). Retention time 0
.. The peak at 83 minutes is unreacted acetone, the peak at 3.05 minutes is diacetone alcohol, which corresponds to a compound dimerized by acetone causing an aldol condensation reaction due to the catalytic action of the base site, and the peak at 1.63 minutes is diacetone alcohol. Mesityl oxide is produced when acetone alcohol is dehydrated by the catalytic action of acid sites.The peak at 8.34 minutes is 4,6-hydroxy-4,6-dimethyl- produced when diacetone alcohol undergoes an aldol condensation reaction with acetone. Identification of each of these compounds, which are 2-heptanone (corresponding to the trimer of acetone), was performed based on comparison with the retention time of a standard substance and mass spectra.

実施例2 本実施例は、第1表に示した磁性粉末Aないし磁性粉末
Jにジアセトンアルコールを作用させ、塩基点の触媒作
用により生じたアセトンと酸点の触媒作用により生じた
メシチルオキシドを分析したものである。
Example 2 In this example, diacetone alcohol was applied to magnetic powder A to magnetic powder J shown in Table 1, and acetone produced by the catalytic action of the base site and mesityl oxide produced by the catalytic action of the acid site were combined. This is an analysis of

実験は、恒温水槽の水温を30.0±O,OSoCとし
た以外は実施例1に記載した方法にならって行った。
The experiment was conducted in accordance with the method described in Example 1, except that the water temperature in the constant temperature water bath was 30.0±O, OSoC.

以上、実施例1および実施例2の結果を第2表にまとめ
て示す。
The results of Example 1 and Example 2 are summarized in Table 2.

(以下余白) 第2表 本発明にかかる表面物性の評価方法によれば、従来の方
法では捉えることのできなかった微視的な表面物性を評
価することができる。たとえば、本発明者らは先にブレ
タン・オブ・ケミカル・ソサエティー・オブ・ジャパン
(Bull、 Chew、 Soc。
(The following is a blank space) Table 2 According to the method for evaluating surface physical properties according to the present invention, it is possible to evaluate microscopic surface physical properties that could not be captured by conventional methods. For example, we previously worked with the Bulletin of Chemical Society of Japan (Bull, Chew, Soc.

Jpn、)第53巻、第9号、第2683ページ(19
86年)に、1−Fe、O,がex−Fe、O,よりも
全体として酸性であることを発表している。しかし第2
表において塩基点活性の高さの指標となるジアセトンア
ルコール生成量あるいはアセトン生成量をみると、y−
Fe□0.(磁性粉末B)の塩基点活性はむしろα−F
etus(磁性粉末D)のそれよりも高い、一方、酸点
活性の高さの指標となるメシチルオキシド生成量をみる
と、γ−Fe、O。
Jpn, ) Volume 53, No. 9, Page 2683 (19
(1986) announced that 1-Fe, O, is more acidic than ex-Fe, O, as a whole. But the second
Looking at the amount of diacetone alcohol produced or the amount of acetone produced, which is an indicator of the height of base site activity in the table, y-
Fe□0. The base site activity of (magnetic powder B) is rather α-F.
On the other hand, when looking at the amount of mesityl oxide produced, which is an indicator of high acid site activity, it is higher than that of etus (magnetic powder D).

(磁性粉末B)の酸点活性はα−Fezes(磁性粉末
D)のそれよりも高い、つまり、r  Fearsにお
いては塩基点活性と酸点活性が共に高く、さらに全体と
してα−Fe、O,より酸性であるのは、y−Fear
sの酸点活性が塩基点活性を上回っているからであると
結論できる。
The acid site activity of (Magnetic Powder B) is higher than that of α-Fezes (Magnetic Powder D), that is, in r Fears, both the base site activity and the acid site activity are high, and furthermore, as a whole, α-Fe, O, More acidic is y-Fear
It can be concluded that this is because the acid site activity of s exceeds the base site activity.

なお第2表をみると、全体的に実施例2において実施例
1よりも高い値が出ており、これは各素反応の平衡定数
に起因するものと思われる。さらに、磁性粉末A、 i
fi性粉末Cあるいは磁性粉末Gのように、実施例1の
方法では酸点、塩基点共に検出されないものでも実施例
2の方法で検出される場合があるので、評価方法は磁性
粉末の物性に応じて適宜選択することが好ましい。
Note that Table 2 shows that overall values in Example 2 are higher than in Example 1, and this is thought to be due to the equilibrium constant of each elementary reaction. Furthermore, magnetic powder A, i
Even if neither acidic nor basic sites are detected by the method of Example 1, such as fibrous powder C or magnetic powder G, they may be detected by the method of Example 2, so the evaluation method depends on the physical properties of the magnetic powder. It is preferable to select it appropriately depending on the situation.

〔発明の効果〕〔Effect of the invention〕

以上の説明からも明らかなように、本発明にかかる評価
方法によれば、従来より微視的な磁気記録媒体用粒子材
料の表面物性の評価が可能となる。
As is clear from the above description, according to the evaluation method according to the present invention, it is possible to evaluate the surface physical properties of a particle material for a magnetic recording medium more microscopically than before.

これにより、各種の粒子材料の溶剤との相互作用や粒子
材料同士の親和性等をより詳しく知ることができるよう
になり、材料設計や製造時の再現性が向上する。特に近
年は、分散性や表面性等の種々の特性を改善する目的で
結合剤をはじめとする添加剤に色々な極性基が導入され
るようになっているため、本発明はこれらの極性基と塩
基点あるいは酸点との相互作用を理解する上で極めて有
効である。
This makes it possible to know in more detail the interaction of various particulate materials with solvents, the affinity between particulate materials, etc., and improves reproducibility during material design and manufacturing. Particularly in recent years, various polar groups have been introduced into binders and other additives for the purpose of improving various properties such as dispersibility and surface properties. It is extremely useful for understanding the interaction between the base and acid sites.

また本発明にかかる評価方法の別の応用として、磁性塗
料を調製する際のケトン系溶媒の劣化診断が考えられる
。ケトン系溶媒は、磁性粉末等の材料粒子等を分散させ
るにしたがってアルドール縮合による高分子化を起こし
易い。このように高分子化したケトン系溶媒は、磁性塗
料やバックコート層塗料の塗布・乾燥工程において蒸発
しにくく、磁性層中に残留して悪影響を及ぼす0本発明
の評価方法を適用することにより、ケトン系溶媒の劣化
を発見し、上述のような悪影響を回避することが可能と
なる。
Another possible application of the evaluation method of the present invention is to diagnose the deterioration of ketone solvents used in preparing magnetic paints. Ketone solvents tend to polymerize through aldol condensation as they disperse material particles such as magnetic powder. The ketone solvent, which has been polymerized in this way, is difficult to evaporate during the coating and drying process of magnetic paint and back coat layer paint, and remains in the magnetic layer and has no adverse effects.By applying the evaluation method of the present invention, , it becomes possible to discover the deterioration of ketone solvents and avoid the above-mentioned adverse effects.

さらに別の応用として、ケトン系溶媒のアルドール縮合
を積極的に利用する場合の評価も可能である。たとえば
、環状ケトンの縮合生成物が潤滑効果を有することが特
開昭62−248128号公報に開示されている。した
がって、磁性塗料等の調製時にシクロヘキサノンを溶媒
として使用し、材料粒子を分散させるかたわら本発明の
評価方法によりアルドール縮合反応の進み具合を確認す
れば、適度な縮合度を選ぶことにより潤滑剤を別個に混
合しなくても潤滑性を示す磁性塗料等を得ることができ
る。
As another application, it is also possible to evaluate cases where aldol condensation of ketone solvents is actively used. For example, JP-A-62-248128 discloses that a condensation product of cyclic ketones has a lubricating effect. Therefore, if cyclohexanone is used as a solvent when preparing magnetic paint, etc., and the progress of the aldol condensation reaction is confirmed by the evaluation method of the present invention while dispersing the material particles, the lubricant can be separated by selecting an appropriate degree of condensation. It is possible to obtain a magnetic paint etc. that exhibits lubricity even without mixing it with the paint.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を磁性粉末に適用した場合の典型的なガ
スクロマトダラムである。
FIG. 1 shows a typical gas chromatography duram in which the present invention is applied to magnetic powder.

Claims (2)

【特許請求の範囲】[Claims] (1)α水素原子を有するカルボニル化合物と磁気記録
媒体に使用される粒子材料とを接触せしめ、上記カルボ
ニル化合物のアルドール縮合反応により生成するβ−ヒ
ドロキシカルボニル化合物と、該β−ヒドロキシカルボ
ニル化合物の脱水反応により生成するα,β−二重結合
カルボニル化合物とを分析することを特徴とする磁気記
録媒体用粒子材料の表面物性評価方法。
(1) A carbonyl compound having an α-hydrogen atom is brought into contact with a particle material used in a magnetic recording medium, and a β-hydroxycarbonyl compound is produced by an aldol condensation reaction of the carbonyl compound, and the β-hydroxycarbonyl compound is dehydrated. 1. A method for evaluating surface properties of particle materials for magnetic recording media, which comprises analyzing α,β-double bond carbonyl compounds produced by the reaction.
(2)β−ヒドロキシカルボニル化合物と磁気記録媒体
に使用される粒子材料とを接触せしめ、上記β−ヒドロ
キシカルボニル化合物の逆アルドール縮合反応により生
成するα水素原子を有するカルボニル化合物と、上記β
−ヒドロキシカルボニル化合物の脱水反応により生成す
るα,β−二重結合カルボニル化合物とを分析すること
を特徴とする磁気記録媒体用粒子材料の表面物性評価方
法。
(2) The β-hydroxycarbonyl compound and the particle material used in the magnetic recording medium are brought into contact, and the carbonyl compound having an α hydrogen atom, which is produced by a reverse aldol condensation reaction of the β-hydroxycarbonyl compound, and the β
- A method for evaluating the surface properties of a particle material for a magnetic recording medium, which comprises analyzing an α,β-double bond carbonyl compound produced by a dehydration reaction of a hydroxycarbonyl compound.
JP63149955A 1988-06-20 1988-06-20 Method for evaluating physical properties of surface of particulate material for magnetic recording medium Expired - Fee Related JP2536072B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63149955A JP2536072B2 (en) 1988-06-20 1988-06-20 Method for evaluating physical properties of surface of particulate material for magnetic recording medium
KR1019890008402A KR100195555B1 (en) 1988-06-20 1989-06-19 Recording and reproducing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63149955A JP2536072B2 (en) 1988-06-20 1988-06-20 Method for evaluating physical properties of surface of particulate material for magnetic recording medium

Publications (2)

Publication Number Publication Date
JPH01318953A true JPH01318953A (en) 1989-12-25
JP2536072B2 JP2536072B2 (en) 1996-09-18

Family

ID=15486251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63149955A Expired - Fee Related JP2536072B2 (en) 1988-06-20 1988-06-20 Method for evaluating physical properties of surface of particulate material for magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2536072B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020123423A (en) * 2019-01-31 2020-08-13 富士フイルム株式会社 Magnetic tape, magnetic tape cartridge, and magnetic tape device
JP2020123422A (en) * 2019-01-31 2020-08-13 富士フイルム株式会社 Magnetic tape, magnetic tape cartridge, and magnetic tape device
US11361792B2 (en) 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11361793B2 (en) 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11373680B2 (en) 2017-09-29 2022-06-28 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11417357B2 (en) 2018-07-27 2022-08-16 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11417359B2 (en) 2019-09-17 2022-08-16 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US11417358B2 (en) 2019-01-31 2022-08-16 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11423935B2 (en) 2018-12-28 2022-08-23 Fujifilm Corporation Magnetic tape with particular refractive index characteristics, magnetic tape cartridge, and magnetic tape apparatus
US11430478B2 (en) 2018-12-28 2022-08-30 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11437065B2 (en) 2019-09-17 2022-09-06 Fujifilm Corporation Magnetic recording medium and magnetic recording and reproducing device
US11468911B2 (en) 2018-10-22 2022-10-11 Fujifilm Corporation Magnetic tape having characterized magnetic layer, magnetic tape cartridge, and magnetic tape apparatus
US11475915B2 (en) 2017-06-23 2022-10-18 Fujifilm Corporation Magnetic recording medium
US11488628B2 (en) 2018-07-27 2022-11-01 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11495257B2 (en) 2017-06-23 2022-11-08 Fujifilm Corporation Magnetic recording medium
US11501799B2 (en) 2017-09-29 2022-11-15 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11514944B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device
US11514943B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11545177B2 (en) 2017-06-23 2023-01-03 Fujifilm Corporation Magnetic recording medium
US11475915B2 (en) 2017-06-23 2022-10-18 Fujifilm Corporation Magnetic recording medium
US11495257B2 (en) 2017-06-23 2022-11-08 Fujifilm Corporation Magnetic recording medium
US11631427B2 (en) 2017-06-23 2023-04-18 Fujifilm Corporation Magnetic recording medium
US11462242B2 (en) 2017-09-29 2022-10-04 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11373680B2 (en) 2017-09-29 2022-06-28 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11501799B2 (en) 2017-09-29 2022-11-15 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11551716B2 (en) 2018-03-23 2023-01-10 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11581015B2 (en) 2018-03-23 2023-02-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11514943B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device
US11514944B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device
US11361793B2 (en) 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11361792B2 (en) 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11488628B2 (en) 2018-07-27 2022-11-01 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11430475B2 (en) 2018-07-27 2022-08-30 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11417357B2 (en) 2018-07-27 2022-08-16 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11670332B2 (en) 2018-07-27 2023-06-06 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11468911B2 (en) 2018-10-22 2022-10-11 Fujifilm Corporation Magnetic tape having characterized magnetic layer, magnetic tape cartridge, and magnetic tape apparatus
US11443766B2 (en) 2018-12-28 2022-09-13 Fujifilm Corporation Magnetic tape with particular refractive index characteristics, magnetic tape cartridge, and magnetic tape apparatus
US11430478B2 (en) 2018-12-28 2022-08-30 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11423935B2 (en) 2018-12-28 2022-08-23 Fujifilm Corporation Magnetic tape with particular refractive index characteristics, magnetic tape cartridge, and magnetic tape apparatus
JP2020123423A (en) * 2019-01-31 2020-08-13 富士フイルム株式会社 Magnetic tape, magnetic tape cartridge, and magnetic tape device
US11437063B2 (en) 2019-01-31 2022-09-06 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11430476B2 (en) 2019-01-31 2022-08-30 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11417358B2 (en) 2019-01-31 2022-08-16 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
JP2020123422A (en) * 2019-01-31 2020-08-13 富士フイルム株式会社 Magnetic tape, magnetic tape cartridge, and magnetic tape device
US11437065B2 (en) 2019-09-17 2022-09-06 Fujifilm Corporation Magnetic recording medium and magnetic recording and reproducing device
US11417359B2 (en) 2019-09-17 2022-08-16 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device

Also Published As

Publication number Publication date
JP2536072B2 (en) 1996-09-18

Similar Documents

Publication Publication Date Title
JP2536072B2 (en) Method for evaluating physical properties of surface of particulate material for magnetic recording medium
JP2003178419A (en) Recording medium
JPS582225A (en) Hexagonal system ferrite powder for magnetic recording
JP3119362B2 (en) Method for producing cobalt-modified acicular iron oxide
JPH0743824B2 (en) Magnetic recording medium and manufacturing method thereof
JPH03292617A (en) Ferromagnetic metal particle for magnetic recording medium
JPS6396731A (en) Magnetic recording medium
JPH07335417A (en) Magnetic powder
JPS6378334A (en) Magnetic recording medium
JPS61154007A (en) Ferromagnetic metal powder coated with toluene polycondensate and manufacture thereof
JPH0320002A (en) Manufacture of hexagonal system barium ferite magnetic powder containing cobalt
JPH04106719A (en) Magnetic recording medium
JPH03171601A (en) Ferromagnetic metal powder and magnetic recording medium
JPH031503A (en) Magnetic powder and magnetic recording medium using same
JPS62202320A (en) Magnetic recording medium
JPH0677036A (en) Magnetism recording magnetic particle and magnetism recording medium using the same
JPH02260608A (en) Fine partice of ferromagnetic metallic iron, manufacture thereof, and magnetic recording medium using same
JPH05217727A (en) Ferromagnetic metallic powder for magnetic record medium, and magnetic record medium
JPH0312024A (en) Magnetic recording medium
JPH05250661A (en) Ferromagnetic metal fine particle for magnetic recording medium and magnetic recording using this particle
JPS61154011A (en) Ferromagnetic metal powder coated with copolycondensate toluene and methyl ethyl ketone and manufacture thereof
JPH04345918A (en) Production of magnetic recording medium
JPS6139926A (en) Magnetic recording medium
JP2001143238A (en) Magnetic recording medium
JPH06111280A (en) Magnetic recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees