JPH01318562A - Snubber energy regenerative circuit - Google Patents
Snubber energy regenerative circuitInfo
- Publication number
- JPH01318562A JPH01318562A JP63148473A JP14847388A JPH01318562A JP H01318562 A JPH01318562 A JP H01318562A JP 63148473 A JP63148473 A JP 63148473A JP 14847388 A JP14847388 A JP 14847388A JP H01318562 A JPH01318562 A JP H01318562A
- Authority
- JP
- Japan
- Prior art keywords
- snubber
- circuit
- capacitor
- transformer
- winding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000001172 regenerating effect Effects 0.000 title abstract description 3
- 239000003990 capacitor Substances 0.000 claims abstract description 42
- 238000004804 winding Methods 0.000 claims abstract description 40
- 230000008929 regeneration Effects 0.000 claims abstract description 7
- 238000011069 regeneration method Methods 0.000 claims abstract description 7
- 239000004065 semiconductor Substances 0.000 claims description 12
- 230000001629 suppression Effects 0.000 claims 1
- 230000007935 neutral effect Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 5
- 238000011084 recovery Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Inverter Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、スナバ回路で吸収されたエネルギーの回生が
可能なスナバエネルギー回生回路に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a snubber energy regeneration circuit capable of regenerating energy absorbed by a snubber circuit.
第3図は従来のスナバ回路を示すもので、交流電圧源で
あるインバータ1の出力は、変圧器20の1次巻線に接
続され、その2次巻線は、半導体素子としてダイオード
2,3,4.5のブリッジ接続回路で構成される整流回
路100の交流入力端子(U)、 (V)に接続され
る。この整流回路100の直流出力端子(P)、(N)
には直流リアクトル8を介してコンデンサ10及び抵抗
11の並列回路が接続される。FIG. 3 shows a conventional snubber circuit, in which the output of an inverter 1, which is an AC voltage source, is connected to the primary winding of a transformer 20, and the secondary winding is connected to diodes 2 and 3 as semiconductor elements. , 4.5, are connected to AC input terminals (U) and (V) of a rectifier circuit 100 composed of a bridge connection circuit of 4.5. DC output terminals (P), (N) of this rectifier circuit 100
A parallel circuit of a capacitor 10 and a resistor 11 is connected via a DC reactor 8 .
さらに、該整流回路100の直流出力端子(P)。Furthermore, a DC output terminal (P) of the rectifier circuit 100.
(N)には、ダイオード6、コンデンサ7、抵抗9から
なるスナバ回路101が接続される。A snubber circuit 101 consisting of a diode 6, a capacitor 7, and a resistor 9 is connected to (N).
このような回路構成において、インバータの出力電圧V
abとして第4図のような電圧Ov期間がある方形波電
圧とし、また、この時、リアクトル8の電圧■、は、図
示のごとく電流が断続しないとする。In such a circuit configuration, the inverter output voltage V
It is assumed that ab is a square wave voltage having a voltage Ov period as shown in FIG. 4, and at this time, the voltage (2) of the reactor 8 is such that the current is not intermittent as shown in the figure.
インバータ1の出力電圧Vabに正の電圧が生じている
時は、インバータ1の出力端子(a)−変圧器の漏れイ
ンダクタンス21→ダイオード2→リアクトル8−コン
デンサ10および抵抗11−ダイオード5−インバータ
1の出力端子(b)の経路で電流が流れる。When a positive voltage is generated in the output voltage Vab of the inverter 1, the output terminal (a) of the inverter 1 - the leakage inductance of the transformer 21 -> the diode 2 -> the reactor 8 - the capacitor 10 and the resistor 11 - the diode 5 - the inverter 1 A current flows through the path of the output terminal (b).
次に、インバータ1の出力電圧VabがOvの期間にな
ると、ダイオード2→リアクトル8→コンデンサ10、
抵抗11−ダイオード4の経路およびダイオード3−リ
アクトル8のコンデンサ10、抵抗11−ダイオード5
の経路で電流が流れ、いわゆる環流モードになる。この
時、整流回路の直流出力電圧VPNは第4図のようにO
vとなるため、スナバコンデンサ7の電荷は、抵抗9を
介して放電され、熱エネルギーとなって放出される。Next, when the output voltage Vab of the inverter 1 reaches a period of Ov, the diode 2 → reactor 8 → capacitor 10,
Resistor 11-diode 4 path and diode 3-reactor 8 capacitor 10, resistor 11-diode 5
Current flows through this path, resulting in a so-called free circulation mode. At this time, the DC output voltage VPN of the rectifier circuit is O as shown in Figure 4.
Therefore, the charge in the snubber capacitor 7 is discharged via the resistor 9 and released as thermal energy.
次に、インバータ1の出力電圧Vabに負の電圧が生じ
ると、ダイオード5及びダイオード2にはインバータ1
の端子(b)→ダイオード5−ダイオード4→漏れイン
ダクタンス21−インバータlの端子(a)およびイン
バータ1の端子(b)→ダイオード3→ダイオード2−
漏れインダクタンス21→インバータ1の端子(a)の
経路で逆回復電流が流れ、ダイオード5およびダイオー
ド2は逆回復する。その後、漏れインダクタンス21に
流れる電流のうち、リアクトル8の電流を越えた分は、
スナバ回路101に吸収されるため、ダイオード2およ
びダイオード5に加わる過電圧を防止することができる
。Next, when a negative voltage occurs in the output voltage Vab of the inverter 1, the inverter 1
terminal (b) → diode 5 - diode 4 → leakage inductance 21 - terminal (a) of inverter l and terminal (b) of inverter 1 → diode 3 → diode 2 -
A reverse recovery current flows through the path from leakage inductance 21 to terminal (a) of inverter 1, and diode 5 and diode 2 undergo reverse recovery. After that, the portion of the current flowing through the leakage inductance 21 that exceeds the current of the reactor 8 is
Since it is absorbed by the snubber circuit 101, overvoltage applied to the diode 2 and the diode 5 can be prevented.
以上の動作で動作半周期となるが、残りの半周期も同様
である。The above operation constitutes a half cycle of operation, and the same applies to the remaining half cycles.
前記スナバ回路101では、スナバコンデンサ7の電荷
は、インバータの動作半周期ごとに、スナバダイオード
6を介して充電され、スナバ抵抗9を介して放電される
。このため、インバータの動作周波数や電圧値が高くな
るのにともない、抵抗9で発生する損失やコンデンサ7
の充放電損失が増加し、抵抗9やコンデンサ7の大形化
が必要とされ、また装置効率が低下したり製造コストが
高騰するなどの問題点がある。In the snubber circuit 101, the snubber capacitor 7 is charged via the snubber diode 6 and discharged via the snubber resistor 9 every half cycle of the inverter operation. For this reason, as the operating frequency and voltage value of the inverter increase, the loss generated in the resistor 9 and the capacitor 7
There are problems such as an increase in charge/discharge losses, a need to increase the size of the resistor 9 and the capacitor 7, a decrease in device efficiency, and a rise in manufacturing costs.
本発明の目的は前記従来例の不都合を解消し、スナバコ
ンデンサが吸収したスナバエネルギーを効率よく回生で
き、その結果、スナバ回路としても小形かつ安価なもの
ですむスナバエネルギー回生回路を提供することにある
。SUMMARY OF THE INVENTION An object of the present invention is to provide a snubber energy regeneration circuit which can efficiently regenerate the snubber energy absorbed by the snubber capacitor and which can be made small and inexpensive as a snubber circuit. be.
〔課題を解決するための手段]
本発明は前記目的を達成するため、電圧形インバータの
交流出力端を変圧器の1次巻線に接続し、該変圧器の巻
線に整流回路を接続し、この整流回路の直流出力端子間
に整流回路を構成する半導体素子の過電圧を抑制するた
めのスナバダイオードとスナバコンデンサからなるスナ
バ回路を接続する回路において、該スナバコンデンサの
両端を前記変圧器の第3次巻線間に接続し、かつこのス
ナバコンデンサと変圧器の第3次巻線に該第3次巻線の
起電圧を用いてオン、オフする半導体スイッチを挿入し
たことを要旨とするものである。[Means for Solving the Problems] In order to achieve the above object, the present invention connects the AC output end of a voltage source inverter to the primary winding of a transformer, and connects a rectifier circuit to the winding of the transformer. , in a circuit that connects a snubber circuit consisting of a snubber diode and a snubber capacitor for suppressing overvoltage of a semiconductor element constituting the rectifier circuit between DC output terminals of the rectifier circuit, both ends of the snubber capacitor are connected to the terminal of the transformer. The gist is that a semiconductor switch is connected between the tertiary windings and is turned on and off using the electromotive force of the tertiary winding between this snubber capacitor and the tertiary winding of the transformer. It is.
本発明によれば、電圧形インバータが出力電圧を生じ、
しかも変圧器の第2.第3次巻線に電圧が生じると、ス
ナバコンデンサと第3次巻線間の半導体スイッチは導通
状態となる。According to the invention, a voltage source inverter produces an output voltage;
Moreover, the second part of the transformer. When a voltage is developed across the tertiary winding, the semiconductor switch between the snubber capacitor and the tertiary winding becomes conductive.
この時、スナバコンデンサの電圧と該第3次巻線の起電
圧とが同極性の時だけ該半導体スイッチが導通状態にな
るようにすることにより、スナバコンデンサの電圧は、
第3次巻線の電圧まで放電される。At this time, by making the semiconductor switch conductive only when the voltage of the snubber capacitor and the electromotive voltage of the tertiary winding have the same polarity, the voltage of the snubber capacitor becomes
It is discharged to the voltage of the tertiary winding.
これにより、スナバコンデンサが整流回路を構成する半
導体素子の逆回復時に吸収したエネルギーを変圧器の第
3次巻線を介してインバータ側に低損失で回生できる。Thereby, the energy absorbed by the snubber capacitor during reverse recovery of the semiconductor elements constituting the rectifier circuit can be regenerated to the inverter side through the tertiary winding of the transformer with low loss.
以下、図面について本発明の実施例を詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.
第1図は本発明のスナバエネルギー回生回路の1実施例
を示す回路図で、前記従来例を示す第3図と同一構成要
素には同一参照符号を付している。FIG. 1 is a circuit diagram showing one embodiment of the snubber energy regeneration circuit of the present invention, and the same components as in FIG. 3 showing the conventional example are given the same reference numerals.
すなわち、図中1は交流電圧源としての電圧形インバー
タ、100は半導体素子としてダイオード2〜5で構成
される整流回路で、変圧器30の第1次巻線はインバー
タ1の交流出力端子、第2次巻線は整流回路100の交
流入力端子に接続される。That is, in the figure, 1 is a voltage source inverter as an AC voltage source, 100 is a rectifier circuit composed of diodes 2 to 5 as semiconductor elements, and the primary winding of the transformer 30 is connected to the AC output terminal of the inverter 1, The secondary winding is connected to an AC input terminal of rectifier circuit 100.
また、整流回路100の直流出力端子には直流リアクト
ル8を介してコンデンサ10及び抵抗11の並列回路が
接続され、さらに該整流回路100の直流出力端子には
スナバコンデンサ6とスナバダイオード7の直列接続回
路からなるスナバ回路102が接続される点は前記従来
回路と同一である。Further, a parallel circuit of a capacitor 10 and a resistor 11 is connected to a DC output terminal of the rectifier circuit 100 via a DC reactor 8, and a series connection of a snubber capacitor 6 and a snubber diode 7 is connected to the DC output terminal of the rectifier circuit 100. The snubber circuit 102 consisting of a circuit is connected in the same manner as in the conventional circuit.
本発明は、変圧器30の第3次巻線の中性点(M)は、
スナバコンデンサ7の一方の端子(N)に接続され、該
第3次巻線の巻線タップ(X)には半導体スイッチとし
てのトランジスタ12のエミッタが接続され、またこの
トランジスタ12のコレクタはダイオード14のカソー
ドが接続され、該ダイオード14のアノードはコンデン
サ7の他方の端子(d)に接続され、さらに該トランジ
スタ12のへ一ス端子は、第3次巻線の巻線端(Xl)
に抵抗16を介して接続されるようにした。In the present invention, the neutral point (M) of the tertiary winding of the transformer 30 is
It is connected to one terminal (N) of the snubber capacitor 7, the emitter of a transistor 12 as a semiconductor switch is connected to the winding tap (X) of the tertiary winding, and the collector of this transistor 12 is connected to the diode 14. The cathode of the diode 14 is connected to the other terminal (d) of the capacitor 7, and the heath terminal of the transistor 12 is connected to the winding end (Xl) of the tertiary winding.
is connected to via a resistor 16.
また、前記第3次巻線の巻線タップ(Y)および半導体
スイッチとしてのトランジスタ13.ダイオード151
巻線端(Y l ) 、抵抗17についても前記と同様
に接続されるものとする。Also, the winding tap (Y) of the tertiary winding and the transistor 13 as a semiconductor switch. diode 151
The winding end (Y l ) and the resistor 17 are also connected in the same manner as described above.
次に、動作を第2図について説明する。Next, the operation will be explained with reference to FIG.
前記第1図の回路において、インバータ1の出力電圧V
abが正の電圧を発生し、ダイオード3゜4が逆回復し
た時を考える。In the circuit shown in FIG. 1, the output voltage V of the inverter 1
Consider a case where ab generates a positive voltage and diode 3.4 reversely recovers.
変圧器30の漏れインダクタンス31に流れる電流のう
ち、リアクトル8に流れる電流を越えた分はスナバ回路
102に吸収され、コンデンサ7の端子電圧Vcは上昇
しはじめる。Of the current flowing through the leakage inductance 31 of the transformer 30, the portion exceeding the current flowing through the reactor 8 is absorbed by the snubber circuit 102, and the terminal voltage Vc of the capacitor 7 begins to rise.
ここで、第3次巻線の(X)−(M)間の電圧Vxは、
第2次巻線の起電圧は■、と等しくなるように設定し、
また第3次巻線の(XI )−(X)間の電圧vIと抵
抗16はトランジスタ12を十分に導通できるように選
定されているとすれば、トランジスタ12は導通状態と
なり、コンデンサ7の電圧Vcは、コンデンサ7→ダイ
オード14→トランジスタ12→インバータ1→コンデ
ンサ7の経路でエネルギーが放電され、コンデンサ電圧
Vcは■えと等しくなる。Here, the voltage Vx between (X) and (M) of the tertiary winding is
The electromotive force of the secondary winding is set to be equal to ■,
Furthermore, if the voltage vI between (XI) and (X) of the tertiary winding and the resistor 16 are selected to sufficiently conduct the transistor 12, the transistor 12 becomes conductive, and the voltage across the capacitor 7 The energy of Vc is discharged along the path of capacitor 7→diode 14→transistor 12→inverter 1→capacitor 7, and the capacitor voltage Vc becomes equal to E.
インバータ1の次の動作半周期についても、同様に考え
ることができる。The next half cycle of the operation of the inverter 1 can be considered in the same way.
このように、コンデンサ7で一時吸収したエネルギーは
、インバータ1に回生されるため高効率となり、しかも
コンデンサ7の充放電電圧変化幅が前記第3図の従来回
路に比べ小さいため、コンデンサ7の小形、低損失化な
どの利点が得られる。In this way, the energy temporarily absorbed by the capacitor 7 is regenerated by the inverter 1, resulting in high efficiency.Moreover, since the range of change in the charging/discharging voltage of the capacitor 7 is smaller than that of the conventional circuit shown in FIG. 3, the capacitor 7 is small. , advantages such as lower loss can be obtained.
また、変圧器30の第3次巻線を通して回生される電力
は、コンデンサ7で吸収したエネルギー分だけであり、
その値は主回路電力に比べて十分に小さく、従って、第
3次巻線、トランジスタ12.13、ダイオード14.
15は主回路部品に比べて小形のものですむ。Further, the power regenerated through the tertiary winding of the transformer 30 is only the energy absorbed by the capacitor 7,
Its value is sufficiently small compared to the main circuit power and therefore the tertiary winding, transistor 12.13, diode 14.
15 is small compared to the main circuit components.
以上述べたように、本発明のスナバエネルギー回生回路
は、電圧形インバータの交流出力電圧を変圧器の1次側
巻線に印加し、その2次巻線に生じる交流電圧を整流回
路による直流電圧に変換する時、この整流回路を構成す
る半導体素子が逆回復する時に整流器の交流側のインダ
クタンス成分に蓄積された余剰エネルギーをスナバコン
デンサで一時的に吸収する作用を持たせたものにおいて
、前記インダクタンス成分の余剰エネルギーは、スナバ
コンデンサに一時的に蓄えられた後、電源であるインバ
ータ側に効率良く回生できるので、装置の高効率化及び
小形化が達成できるものである。As described above, the snubber energy regeneration circuit of the present invention applies the AC output voltage of the voltage source inverter to the primary winding of the transformer, and converts the AC voltage generated in the secondary winding into DC voltage by the rectifier circuit. In a snubber capacitor that has the function of temporarily absorbing surplus energy accumulated in the inductance component on the alternating current side of the rectifier when the semiconductor elements constituting the rectifier circuit undergo reverse recovery, the inductance After the surplus energy of the components is temporarily stored in the snubber capacitor, it can be efficiently regenerated to the inverter side, which is the power source, so that high efficiency and miniaturization of the device can be achieved.
第1図は本発明のスナバエネルギー回生回路の1実施例
を示す回路図、第2図は同上動作波形図、第3図は従来
例を示す回路図、第4図は同上動作波形図である。
1・・・インバータ
2.3,4,5.6・・・ダイオード
7.10・・・コンデンサ 8・・・直流リアクトル9
、11.16.17・・・抵抗
10・・・コンデンサ 20.30・・・変圧器2
L 31・・・変圧器漏れインダクタンス100・・・
整流回路 101,102・・・スナバ回路12、
13・・・トランジスタ
14、15・・・ダイオード
i11図
第2図
■ε−
oV□
第3図
第4図Fig. 1 is a circuit diagram showing one embodiment of the snubber energy regeneration circuit of the present invention, Fig. 2 is an operating waveform diagram of the same as above, Fig. 3 is a circuit diagram showing a conventional example, and Fig. 4 is an operating waveform diagram of the same as above. . 1... Inverter 2.3, 4, 5.6... Diode 7.10... Capacitor 8... DC reactor 9
, 11.16.17...Resistor 10...Capacitor 20.30...Transformer 2
L 31...Transformer leakage inductance 100...
Rectifier circuit 101, 102... snubber circuit 12,
13...Transistor 14, 15...Diode i11 Figure 2 ■ε- oV□ Figure 3 Figure 4
Claims (1)
続し、該変圧器の巻線に整流回路を接続しこの整流回路
の直流出力端子間に整流回路を構成する半導体素子の過
電圧を抑制するためのスナバダイオードとスナバコンデ
ンサからなるスナバ回路を接続する回路において、該ス
ナバコンデンサの両端を前記変圧器の第3次巻線に接続
し、かつこのスナバコンデンサと変圧器の第3次巻線間
に該第3次巻線の起電圧を用いてオン、オフする半導体
スイッチを挿入したことを特徴とするスナバエネルギー
回生回路。The AC output terminal of the voltage source inverter is connected to the primary winding of a transformer, a rectifier circuit is connected to the winding of the transformer, and the overvoltage of the semiconductor elements forming the rectifier circuit is removed between the DC output terminals of this rectifier circuit. In a circuit that connects a snubber circuit consisting of a snubber diode and a snubber capacitor for suppression, both ends of the snubber capacitor are connected to the tertiary winding of the transformer, and the snubber capacitor and the tertiary winding of the transformer are connected to each other. A snubber energy regeneration circuit characterized in that a semiconductor switch that is turned on and off using the electromotive voltage of the tertiary winding is inserted between the wires.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63148473A JPH01318562A (en) | 1988-06-16 | 1988-06-16 | Snubber energy regenerative circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63148473A JPH01318562A (en) | 1988-06-16 | 1988-06-16 | Snubber energy regenerative circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01318562A true JPH01318562A (en) | 1989-12-25 |
Family
ID=15453536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63148473A Pending JPH01318562A (en) | 1988-06-16 | 1988-06-16 | Snubber energy regenerative circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01318562A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012231637A (en) * | 2011-04-27 | 2012-11-22 | Shizuki Electric Co Inc | Electric power conversion device |
-
1988
- 1988-06-16 JP JP63148473A patent/JPH01318562A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012231637A (en) * | 2011-04-27 | 2012-11-22 | Shizuki Electric Co Inc | Electric power conversion device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH03103079A (en) | Method and apparatus for regenerating energy in power converting circuit using gto thyristor | |
JPH09285126A (en) | Snubber circuit of semiconductor rectifier | |
JP2004080880A (en) | Snubber circuit | |
KR970077923A (en) | AC current source circuit for converting DC voltage to AC current | |
JPH01318562A (en) | Snubber energy regenerative circuit | |
JP3070964B2 (en) | Inverter device | |
JPH10248264A (en) | Neutral-point clamping-type power conversion apparatus | |
JPH11146648A (en) | Dc-dc converter | |
JPH08116663A (en) | Snubber circuit for switching converter | |
JPH0731158A (en) | Snubber energy recovery circuit for power converter | |
JP2004320888A (en) | Noise suppression device for power conversion apparatus | |
JPH0833313A (en) | Snubber circuit for power converter | |
JPH09252576A (en) | Sunbber circuit of dc-dc converter | |
JPH06225516A (en) | Inverter apparatus | |
JPH08168263A (en) | Circuit and method for recovering snubber energy of power converter | |
JPH07303366A (en) | Snubber energy regenerative circuit | |
JP2538699Y2 (en) | Full bridge type inverter | |
JP2673996B2 (en) | Inverter device | |
JP2001197733A (en) | Dc/dc converter | |
JP3333920B2 (en) | Cyclo converter circuit | |
JP3246159B2 (en) | DC-AC converter | |
JPH0347437Y2 (en) | ||
JPH0880062A (en) | Three-phase cycloconverter circuit | |
JPH0433520A (en) | Snubber circuit of semiconductor element for power | |
JP2003143867A (en) | Snubber energy regenerating circuit |