JPH01318209A - Surface treatment of permanent magnet - Google Patents

Surface treatment of permanent magnet

Info

Publication number
JPH01318209A
JPH01318209A JP15190088A JP15190088A JPH01318209A JP H01318209 A JPH01318209 A JP H01318209A JP 15190088 A JP15190088 A JP 15190088A JP 15190088 A JP15190088 A JP 15190088A JP H01318209 A JPH01318209 A JP H01318209A
Authority
JP
Japan
Prior art keywords
oxide film
magnet
rare
thickness
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15190088A
Other languages
Japanese (ja)
Inventor
Toshiaki Yamagami
利昭 山上
Koji Akioka
宏治 秋岡
Osamu Kobayashi
理 小林
Tatsuya Shimoda
達也 下田
Nobuyasu Kawai
河合 伸泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Kobe Steel Ltd
Original Assignee
Seiko Epson Corp
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Kobe Steel Ltd filed Critical Seiko Epson Corp
Priority to JP15190088A priority Critical patent/JPH01318209A/en
Publication of JPH01318209A publication Critical patent/JPH01318209A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a protective coating with resistance to weather by a method wherein the surface of a magnet consisting of a rare-earth element, a transition metal and boron is covered with an oxide film of a specific thickness which mainly consists of a dense rare-earth element. CONSTITUTION:An oxidation film on the surface of a magnet is in powder form at room temperature and under atmospheric pressure and corrosion progresses at a lapse of time. However, if oxygen partial pressure is made lower and is subject to heat-treating at a temperature 200-400 deg.C, an oxide film which mainly consists of a rare-earth is formed and corrosion does not progress any more. It is difficult for this oxide film to be formed uniformly on the surface of the magnet if it measures 0.01mum or less and the metal surface is exposed due to slight friction and the adherence and corrosion resistance are not sufficient. On the other hand, when an oxide film exceeding 10mum in thickness is formed, no dense film is formed. Thus, the thickness of the oxide film should be 0.01-10mum. Thus, an oxide film with resistance to climate can be easily produced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は希土類元素と遷移金属、及びボロンを基本成分
とする永久磁石の表面処理に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to surface treatment of permanent magnets whose basic components are rare earth elements, transition metals, and boron.

[従来の技術] 永久磁石は、一般家庭の各種電気製品から大型コンピュ
ーターの周辺末端4!!器まで幅広い分野で使用されて
いる重要な電気、電子材料の一つである。最近の電気製
品の小型化、高効率化の要求にともない、永久磁石も益
々高性能化が求められている。現在使用されている永久
磁石のうち代表的なものはアルニコ、ハードフェライト
及び希土類−遷移金属系磁石である。特に、希土類(以
下、Rと略す、)−遭移金B(以下、TMと略す、)系
磁石であるR−Go系永久磁石や、R−Fe−B系永久
磁石は高い磁気性能が得られるので従来から多くの研究
開発が行なわれている。
[Prior Art] Permanent magnets are widely used in various electrical appliances in general households and peripheral devices of large computers. ! It is one of the important electrical and electronic materials used in a wide range of fields, including devices. With the recent demand for smaller size and higher efficiency of electrical products, permanent magnets are also required to have increasingly higher performance. Typical permanent magnets currently in use are alnico, hard ferrite, and rare earth-transition metal magnets. In particular, R-Go permanent magnets, which are rare earth (hereinafter abbreviated as R)-transferred metal B (hereinafter abbreviated as TM) magnets, and R-Fe-B permanent magnets have high magnetic performance. Therefore, much research and development has been carried out since then.

このR−TM−B系永久磁石は非常に活性なために、磁
石の酸化、錆等の腐食の問題がある。特にR−F e−
B系磁石に於いては磁石表面の酸化が著しく、磁石単体
では使用することが困難であり、なんらかの酸化防止を
目的とした表面処理を施さなければならない、この表面
処理方法としては、磁石表面に蒸着やスパッタリングに
よる金属メツキや、エポキシやその他の樹脂によるコー
ティング等を施していた。
Since this R-TM-B permanent magnet is very active, there are problems with corrosion such as oxidation and rust of the magnet. Especially R-F e-
In B-type magnets, the surface of the magnet is severely oxidized, making it difficult to use as a stand-alone magnet, and some type of surface treatment must be applied to prevent oxidation. Metal plating was done by vapor deposition or sputtering, or coating with epoxy or other resins.

[発明が解決しようとする課題] しかしながら、このような表面処理方法は、保護膜が厚
い、磁石との密着性が悪い、吸水性がある、高価な装置
を必要とする等の問題点を有している。
[Problems to be Solved by the Invention] However, such surface treatment methods have problems such as a thick protective film, poor adhesion to magnets, water absorption, and the need for expensive equipment. are doing.

本発明は以上の問題点を解決するもので、その目的とす
るところは、R−T M−B系永久磁石に強固で且つ緻
密な、耐候性のある保護皮膜を簡便な方法で施すところ
にある。
The present invention is intended to solve the above problems, and its purpose is to apply a strong, dense, and weather-resistant protective coating to R-T M-B permanent magnets by a simple method. be.

[課題を解決するための手段] 本発明による表面処理方法は、希土類元素(但しイツト
リウムを含む)と遷移金属、及びボロンを基本成分とす
る永久磁石に於て、前記基本成分から成る磁石表面が緻
密な希土類を主成分とする酸化膜で少なくとも0.01
μm〜10μmでおおわれることを特徴とする永久磁石
の表面処理法である。
[Means for Solving the Problems] The surface treatment method according to the present invention provides a permanent magnet whose basic components are rare earth elements (including yttrium), transition metals, and boron. Dense rare earth-based oxide film with at least 0.01
This is a surface treatment method for permanent magnets characterized by being coated with a thickness of μm to 10 μm.

[作用コ 本発明者は、R−T M−B系磁石合金を酸化性雰囲気
中で熱処理する事により、その表面に希土類を主成分と
する酸化膜が形成する事を知見し、熱処理の雰囲気を制
御することにより、緻密な、且つ磁石との密着性もよい
膜を形成することができることを知見した。
[Function] The present inventor found that by heat-treating an R-T M-B magnet alloy in an oxidizing atmosphere, an oxide film containing rare earth elements as a main component is formed on the surface of the R-T M-B magnet alloy. It has been found that by controlling this, it is possible to form a dense film with good adhesion to the magnet.

室温、大気圧下では磁石表面層の酸化膜は、粉状であり
、時間とともに腐食が進行していく。しかし、酸素分圧
を低くし、200℃〜400℃の間で熱処理する事によ
り、黒色の緻密な希土類を主成分とする酸化膜が形成さ
れ、それ以上腐食は進行しない。この酸化膜は、0.0
1μm以下の場合では磁石表面に一様に形成することは
難しく、また、わずかの摩擦により金属表面が露呈して
しまい、その密着性、耐食性が不十分である。反対に1
0μm以上の酸化膜を形成した場合では緻密な膜が形成
されず、やはり、耐食性に問題が残る。また、磁石単体
としても磁性相以外の物質はできるだけ少ない方が良い
ことは明白であり、この酸化膜の厚みは0.01〜10
μmの間が適当である。
At room temperature and atmospheric pressure, the oxide film on the magnet surface layer is powder-like, and corrosion progresses over time. However, by lowering the oxygen partial pressure and performing heat treatment at a temperature between 200° C. and 400° C., a black, dense oxide film mainly composed of rare earth elements is formed, and corrosion does not progress any further. This oxide film is 0.0
If the thickness is 1 μm or less, it is difficult to uniformly form the magnet surface, and the metal surface is exposed due to slight friction, resulting in insufficient adhesion and corrosion resistance. On the contrary 1
When an oxide film with a thickness of 0 μm or more is formed, a dense film is not formed, and a problem still remains in corrosion resistance. Furthermore, it is clear that it is better to minimize the amount of substances other than the magnetic phase in the magnet itself, and the thickness of this oxide film should be 0.01 to 10
A value between μm is suitable.

次に、本発明の実施例に次いて述べる。Next, examples of the present invention will be described.

[実施例1] 表1に本実施例で用いた合金の組成を示す。[Example 1] Table 1 shows the composition of the alloy used in this example.

表1の組成となるように、希土類元素、遷移金属元素、
およびボロンを秤量し、アルゴンガス雰囲気下で高周波
溶解炉にて溶解・鋳造する。
Rare earth elements, transition metal elements,
and boron are weighed and melted and cast in a high frequency melting furnace under an argon gas atmosphere.

記号aの合金は例えば特開昭59−46008号公報に
示されるような焼結法にて、その他のものは例えば特開
昭62−276803号公開に示されるような鋳造−熱
間加工−熱処理にて磁石を作成した。
Alloys with symbol a are processed by the sintering method as shown in JP-A No. 59-46008, and others are processed by casting-hot working-heat treatment as shown in JP-A-62-276803. A magnet was created.

作成された各磁石を適当な大きさに切り出し、以下の条
件で表面処理を施した。
Each of the created magnets was cut out to an appropriate size and subjected to surface treatment under the following conditions.

表面処理条件= 1 アルゴン+酸素ガス、酸素分圧0.01atm温度  
250℃ 時間  10分 表面処理により、各磁石とも膜厚2〜5μmの、黒色の
酸化膜の形成が認められた1表2に耐候性試験として、
45°C湿度95%恒温槽内24時間放置したときの、
磁石表面の錆のつき具合いを示す、(O: 錆観測され
ず、Δ: 一部錆び観測、×:著しく酸化〉なお、比較
例として表面処理を施さない磁石も同様に示した。
Surface treatment conditions = 1 Argon + oxygen gas, oxygen partial pressure 0.01 atm temperature
After surface treatment at 250°C for 10 minutes, the formation of a black oxide film with a thickness of 2 to 5 μm was observed on each magnet.Table 2 shows the weather resistance test.
When left in a thermostat at 45°C and 95% humidity for 24 hours,
The degree of rust on the magnet surface is shown (O: No rust observed, Δ: Partial rust observed, ×: Significant oxidation) As a comparative example, a magnet without surface treatment is also shown in the same manner.

表2 [実施例2コ 下記の条件2で[実施例1コと同様に表面処理を施した
。耐候性試験の結果を表3にボす。
Table 2 [Example 2] Surface treatment was performed in the same manner as in Example 1 under the following conditions 2. The results of the weather resistance test are shown in Table 3.

表面処理条件= 2 アルゴン+酸素ガス、酸素分圧0.01atm温度  
350°C 時間  1.5.20分 各処理時間の膜厚は各磁石とも以下の通りであった。
Surface treatment conditions = 2 Argon + oxygen gas, oxygen partial pressure 0.01 atm temperature
350° C. Time: 1.5.20 minutes The film thickness for each treatment time was as follows for each magnet.

1分    〜0.1μm 5分     2〜5μm 20分    10〜20μm 表3 以上の結果から明らかなように、本発明による表面処理
によれば、R−T M−B系磁石表面に耐候性のある酸
化皮膜を簡便な方法で作成することができることが分か
る。
1 minute ~ 0.1 μm 5 minutes 2 ~ 5 μm 20 minutes 10 ~ 20 μm Table 3 As is clear from the above results, according to the surface treatment according to the present invention, the R-T M-B magnet surface has weather resistance. It can be seen that the oxide film can be created by a simple method.

[発明の効果] 以上述べたように、本発明によればR−TM″″B系磁
石表面磁石表面のある酸化皮膜を簡便な方法で作成する
ことができるので、R−TM−B系磁石の大きな欠点で
ある耐候性の問題をコストアップする事なく解決するこ
とが可能であり、さらに、R−T M−B系磁有の用途
を大きく拡大することができるという効果を有する。
[Effects of the Invention] As described above, according to the present invention, a certain oxide film on the surface of the R-TM''''B magnet can be created by a simple method. It is possible to solve the problem of weather resistance, which is a major drawback of R-T M-B magnets, without increasing costs, and furthermore, it has the effect of greatly expanding the applications of R-T M-B magnets.

以  上 出願人 セイコーエプソン株式会社that's all Applicant: Seiko Epson Corporation

Claims (1)

【特許請求の範囲】[Claims] 希土類元素(但しイットリウムを含む)と遷移金属、及
びボロンを基本成分とする永久磁石に於て、前記基本成
分から成る磁石表面が緻密な希土類を主成分とする酸化
膜を少なくとも0.01μm〜10μm形成せしめるこ
とを特徴とする永久磁石の表面処理方法。
In a permanent magnet whose basic components are rare earth elements (including yttrium), transition metals, and boron, the surface of the magnet made of the basic components has a dense oxide film mainly composed of rare earths of at least 0.01 μm to 10 μm. A method for surface treatment of a permanent magnet, characterized by forming a permanent magnet.
JP15190088A 1988-06-20 1988-06-20 Surface treatment of permanent magnet Pending JPH01318209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15190088A JPH01318209A (en) 1988-06-20 1988-06-20 Surface treatment of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15190088A JPH01318209A (en) 1988-06-20 1988-06-20 Surface treatment of permanent magnet

Publications (1)

Publication Number Publication Date
JPH01318209A true JPH01318209A (en) 1989-12-22

Family

ID=15528645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15190088A Pending JPH01318209A (en) 1988-06-20 1988-06-20 Surface treatment of permanent magnet

Country Status (1)

Country Link
JP (1) JPH01318209A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156853A (en) * 2004-11-30 2006-06-15 Tdk Corp Rare earth magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156853A (en) * 2004-11-30 2006-06-15 Tdk Corp Rare earth magnet

Similar Documents

Publication Publication Date Title
JP6385551B1 (en) Method for enhancing coercive force of Nd-Fe-B magnetic material
CN102347126B (en) High-performance sintered neodymium-iron-boron (Nd-Fe-B) rare-earth permanent magnet material and manufacturing method thereof
US7806991B2 (en) Low loss magnet and magnetic circuit using the same
JP2016129217A (en) Rare earth permanent magnet and method for manufacturing the same
JP6712836B2 (en) Heavy rare earth element diffusion treatment method for Nd-Fe-B sintered permanent magnet
CN104505247A (en) Solid diffusion process with capability of improving performances of Nd-Fe-B magnet
JPH01318209A (en) Surface treatment of permanent magnet
CN1022520C (en) Rareearth -Fe-N permanent magnet
CN110993231A (en) Surface-alloyed high-corrosion-resistance sintered NdFeB magnet and preparation method thereof
US3755007A (en) Stabilized permanent magnet comprising a sintered and quenched body of compacted cobalt-rare earth particles
CN112635145B (en) Preparation method of composite magnetic powder
JPS62294159A (en) Method for preventing rust of permanent magnet alloy
JPS6254868B2 (en)
JPH0569282B2 (en)
JP2020532111A (en) Magnetic stabilization method for permanent magnet materials
JPH0237081B2 (en) EIKYUJISHAKUNOSEIZOHOHO
JPH0554683B2 (en)
JPS6362204A (en) Permanent magnet having improved corrosion resistance and its manufacture
JPH04217304A (en) Zn diffused pb containing sintered magnet excellent in corrosion resistance and its manufacture
JPH05226125A (en) Manufacture of highly corrosion-resistant rare-earth magnet
WO2020110893A1 (en) Magnetic alloy material
JPH01119009A (en) Formation of ferromagnetic thin film
JPH04214604A (en) Sintered magnet with zn diffused therein and having superior corrosion resistance and manufacture thereof
JPH023205A (en) Manufacture of permanent magnet
JPH04217302A (en) Ag containing sintered magnet excellent in corrosion resistance