JPH01317680A - Production of zinc alloy and compounded zinc alloy - Google Patents

Production of zinc alloy and compounded zinc alloy

Info

Publication number
JPH01317680A
JPH01317680A JP14762088A JP14762088A JPH01317680A JP H01317680 A JPH01317680 A JP H01317680A JP 14762088 A JP14762088 A JP 14762088A JP 14762088 A JP14762088 A JP 14762088A JP H01317680 A JPH01317680 A JP H01317680A
Authority
JP
Japan
Prior art keywords
zinc
based alloy
steel products
zinc alloy
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14762088A
Other languages
Japanese (ja)
Other versions
JPH0685994B2 (en
Inventor
Kyoichi Sasaki
恭一 佐々木
Masayuki Shimada
真幸 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP63147620A priority Critical patent/JPH0685994B2/en
Publication of JPH01317680A publication Critical patent/JPH01317680A/en
Publication of JPH0685994B2 publication Critical patent/JPH0685994B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Coating With Molten Metal (AREA)

Abstract

PURPOSE:To improve mechanical strength without losing the castability and transferability of the characteristics of a zinc alloy by subjecting steel products for general structural purposes to internal chill with the zinc alloy. CONSTITUTION:Scale, rust, etc., are generally stuck on the surfaces of the steel products for structural purposees and are removed by shot blasting from the surfaces of the steel products; thereafter, the steel products are subjected to a surface treatment for the purpose of surface cleaning by degreasing and pickling. The steel products are subjected to a fluxing treatment in order to improve the joining between the steel products subjected to the surface cleaning treatment and the zinc alloy. The steel products are thereafter heated for a prescribed period of time at a prescribed temp. for the purpose of drying and preheating and are then installed in the prescribed position in a casting mold. The zinc alloy of 420-520 deg.C melt temp. is poured into the casting mold to internally chill the steel products. The preheated steel products are heated by the molten metal and are heated up to the pouring temp. of the zinc alloy but the diffusion at the boundary between the steel products and the zinc alloy is sufficiently accelerated and, therefore, the time to the solidification of the molten metal is maintained and the slow cooling is attained.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は複合化された亜鉛基合金に係わり、とりわけ機
械的強度の向上を計った亜鉛基合金の製造方法および複
合強化された亜鉛基合金に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a composite zinc-based alloy, and more particularly, to a method for producing a zinc-based alloy with improved mechanical strength and composite reinforcement. The present invention relates to zinc-based alloys.

(従来技術) 亜鉛基合金は鋳造性および転写性に優れていて、鋳造に
より樹脂用金型全製作することができ、機械加工工程の
大巾な削減カj計れる利点があるために、樹脂成形品の
試作品用金型として太いに利用されているが、その反面
機械的性質が脈弱と云う欠点がある。近年成形品の多様
化に合わせ多品種小量生産のための樹脂用金型に対して
°低コスト短納期等の要望が強まり、従来試作品用金型
に用いられている亜鉛基合金の機械的性質の強度向上を
計ったものが求められていて、その目的のために種々の
試みがなされている。しかしそれらの試みの殆んどはM
あるいはCuまたはTiあるいはBe等の添加で合金成
分を変えて強度向上を計ろうとしている。
(Prior art) Zinc-based alloys have excellent castability and transferability, and resin molds can be completely manufactured by casting, which has the advantage of greatly reducing the machining process. Although it is widely used as a mold for prototype products, it has the disadvantage of poor mechanical properties. In recent years, with the diversification of molded products, there has been an increasing demand for low cost and short delivery times for resin molds for high-mix, low-volume production. There is a need for something that improves the strength of its physical properties, and various attempts have been made for that purpose. However, most of those attempts
Alternatively, efforts are being made to improve strength by changing alloy components by adding Cu, Ti, Be, or the like.

(発明が解決しようとする課題) 樹脂用金型に用いられる亜鉛基合金は、Znに約4%の
M、約1俤のCu全添加した鋳造用合金が一般的である
。しかしこうし次合金は機械的性質が脆弱であるために
金型に使用したときにはコーナ部に割れを生じる問題が
ある。そのために合金成分を変えて機械的強度の向上全
させる試みでは小さな試験片ではそれなりの効果が表わ
れるものがあるが、金型のような大きな製品に適用する
には現状では種々の問題がある。その例を第9図を参照
して説明すると、A/−を添加したものは、凝固速度が
大きく影響し、金型のような大きな製品では場所により
凝固速度が異なるために、均一で安定した強度向上が得
られることは困難であり、かつまたAtの添加量が増加
すると渦流れを悪くし、そのために鋳巣が発生しやすく
、転写性も悪くなり、鋳造製品の製作上問題がある。ま
たCu全添加したものは凝固速度の影響も大きく、さら
にZn  AL  Cu三元系金属においてε相4出 
(し、硬度の向上は望めるが強さの点では大きな改善は
望めない。さらにTiあるいはBe f添加したときに
は、Zn −At−Cuの三元系金属合金が素地を形成
するため、AtあるいはCu k添加したときと同じく
凝固速度が犬きく影響し、機械的強度が低下する問題が
ある。
(Problems to be Solved by the Invention) Zinc-based alloys used for resin molds are generally casting alloys in which about 4% M and about 1 ton of Cu are added to Zn. However, since these alloys have weak mechanical properties, there is a problem that cracks occur at the corners when used in molds. For this reason, attempts have been made to improve mechanical strength by changing the alloy components, and although some results appear in small test specimens, there are currently various problems in applying this to large products such as molds. . An example of this can be explained with reference to Figure 9. For products containing A/-, the solidification rate is greatly affected, and in large products such as molds, the solidification rate varies depending on the location, so the solidification rate is uniform and stable. It is difficult to obtain an improvement in strength, and an increase in the amount of At added worsens the vortex flow, which causes cavities to easily occur and transferability to deteriorate, which poses problems in the production of cast products. In addition, the solidification rate is greatly affected by the total addition of Cu, and in addition, the ε phase 4 is produced in the Zn AL Cu ternary metal.
(Although an improvement in hardness can be expected, no significant improvement can be expected in terms of strength.Furthermore, when Ti or Bef is added, a ternary metal alloy of Zn-At-Cu forms the base, so At or Cu Similar to when K is added, the coagulation rate is significantly affected and mechanical strength is reduced.

本発明は上記問題点に鑑みなされたもので、−膜構造用
鋼材を亜鉛基合金で鋳ぐるむことにより、亜鉛基合金の
特性である鋳造性および転写性全失うことなく、機械的
強度の向上を計った亜鉛基合金の製造方法および複合強
化された亜鉛基合金を提供することを目的としている。
The present invention has been made in view of the above-mentioned problems. - By casting the membrane structural steel material with a zinc-based alloy, the mechanical strength can be improved without losing all of the castability and transferability, which are the characteristics of the zinc-based alloy. It is an object of the present invention to provide an improved method of manufacturing zinc-based alloys and a composite reinforced zinc-based alloy.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は上記問題点全解決するために鋼材を脱脂および
酸洗にて表面の清浄化処理後、znct2350〜go
o t/l、NaF 20〜70 ?/l、 NaOH
IQ 〜402μとを含んだ水溶混合液でフラキシング
処理および加熱処理を施し鋳型内所定位置に保持して、
溶融した亜鉛基合金で鋳ぐるみ強固な接合を得る亜鉛基
合金の製造方法を特徴としている。
(Means for Solving the Problems) In order to solve all of the above-mentioned problems, the present invention provides surface cleaning treatment for steel materials by degreasing and pickling.
o t/l, NaF 20-70? /l, NaOH
Fluxing treatment and heat treatment are performed with an aqueous mixture containing IQ ~402μ, and the mold is held at a predetermined position in the mold.
It is characterized by a method for manufacturing zinc-based alloys that produces strong casting joints using molten zinc-based alloys.

また本発明は脱脂および酸洗いにて表面の清浄化処理、
フラキシング処理、加熱処理とを施し鋳型内所定位置に
保持した鋼材と、溶融し次亜鉛基合金を鋳型に注湯して
前記鋼材が鋳ぐるまれ複合強化された亜鉛基合金を特徴
としている。
In addition, the present invention provides surface cleaning treatment by degreasing and pickling;
It is characterized by a steel material that has been subjected to fluxing treatment and heat treatment and held in a predetermined position in a mold, and a zinc-based alloy that has been compositely strengthened by pouring molten zinc-based alloy into the mold and casting the steel material.

さらに樹脂用金型に利用する場合に、成形時の力が加わ
る方向に対抗するよりに配設し鋳型内所定位置に保持し
た鋼材と、溶融した亜鉛基合金を鋳型内に注湯して前記
鋼材が鋳ぐるまれ複合化された亜鉛基合金を特徴として
いる。
Furthermore, when used in a mold for resin, a steel material is placed so as to oppose the direction of force applied during molding and held at a predetermined position in the mold, and a molten zinc-based alloy is poured into the mold. It is characterized by a zinc-based alloy made by casting steel into a composite.

(作用) 鋼材を脱脂および酸洗で表面の清浄化処理後、zn c
t2350〜8009μ、 Na F’ 20〜70 
?/l 、 Na 0H10〜409/lk含む混合液
でフラキシング処理を施こすことにエリ鋼材表面の活性
化をはかり、その後加熱処理にて予熱を与え、溶融した
亜鉛基合金を注湯して鋼材が昇温されることにより亜鉛
基合金内にFeが拡散することを促がしている。
(Function) After cleaning the surface of the steel material by degreasing and pickling, ZNC
t2350~8009μ, NaF'20~70
? The surface of the steel material is activated by fluxing with a mixed solution containing Na0H10-409/l, Na0H10-409/l, and then preheated by heat treatment, and molten zinc-based alloy is poured into the steel material. The increased temperature promotes the diffusion of Fe into the zinc-based alloy.

(実施例) 一般に構造用鋼材は表面にスケール、錆等が付着してお
り、それ等をシ目ブトプラストで鋼材表面より除去し、
その後脱脂お工び酸洗で表面清浄化のための下地処理を
行う。
(Example) Structural steel materials generally have scale, rust, etc. attached to the surface, and these are removed from the surface of the steel material using crease butoplast.
After that, the surface is prepared by degreasing and pickling to clean the surface.

この脱脂処理は脱脂剤を含有する溶液に浸漬して行なわ
れる。この脱脂溶液は特に規定はしないカNa OH、
Naz On S i 02等の5〜20%、好ましく
は10チ濃度の水溶液を用いる。脱脂浴の温度は常温〜
80℃の温度で行なわれるが高温の方が高速脱脂に好都
合であす、60°近辺が好ましい。また酸洗処理は通常
行なわれている酸洗法が用いられる。即ち5〜20%程
度のHClもしくはH2SO4の水溶液による浸漬で、
60℃付近の温度で20〜 ゛900秒程度が好ましい
This degreasing treatment is carried out by immersion in a solution containing a degreasing agent. This degreasing solution is not particularly specified.
An aqueous solution having a concentration of 5 to 20%, preferably 10%, such as Naz On Si 02, is used. The temperature of the degreasing bath is room temperature ~
Although the degreasing is carried out at a temperature of 80°C, higher temperatures are more convenient for high-speed degreasing, preferably around 60°C. In addition, a commonly used pickling method is used for the pickling treatment. That is, by immersion in an aqueous solution of about 5 to 20% HCl or H2SO4,
Preferably, the heating time is about 20 to 900 seconds at a temperature around 60°C.

これらの表面清浄化処理を施した鋼材と亜鉛基合金との
接合をよくするために鋼材に7ラキシング処理を施す。
In order to improve the bond between the surface-cleaned steel material and the zinc-based alloy, the steel material is subjected to 7 laxing treatment.

このフラキシング処理としてZnCtz 350〜go
o f/l、 NaF 20〜70f/z、NaOH1
0〜40fμの混合液に浸漬捷たはスプレィでの吹付に
より行う。
For this fluxing treatment, ZnCtz 350~go
o f/l, NaF 20-70 f/z, NaOH1
It is carried out by immersion in a mixed solution of 0 to 40 fμ or by spraying.

その後鋼材を乾燥および予熱を目的として150〜26
5℃で所定時間加熱を保持した後鋳型内の所定位置に設
置し、420〜520℃の溶湯温度の亜鉛基合金を鋳型
に注湯して鋼材を鋳ぐるむ。この際F’e −Zn間の
拡散を促がすのであるが、この拡散は亜鉛基合金の溶融
温度である380〜390℃付近よりはじまり、温度上
昇に伴ない活発になり、500℃近傍で極太値を示しそ
の後ゆるやかな状態となる。一方予熱を与えられた鋼材
は第3図に示すように溶湯により加熱され、亜鉛基合金
の注湯温度付近まで昇温されるが、鋼材と亜鉛基合金と
の境界面での拡散を十分促がすために溶湯の凝固までの
時間全10〜20分保持し、除冷させる。即ち亜鉛基合
金と鋼材との拡散は第3図Tの間なされる。以上のよう
に鋼材を亜鉛基合金で鋳ぐるんだ複合化された亜鉛基合
金の鋼材と亜鉛基合金の境界部の顕微鏡写真(400倍
)を第1図に示し、第2図にはpeの拡散状態を示すB
PMA写真を示す。
After that, the steel material was heated to 150~26℃ for the purpose of drying and preheating.
After being heated at 5° C. for a predetermined time, the mold is placed at a predetermined position in a mold, and a zinc-based alloy having a molten metal temperature of 420 to 520° C. is poured into the mold to cast a steel material. At this time, diffusion between F'e and Zn is promoted, and this diffusion begins around 380 to 390°C, which is the melting temperature of zinc-based alloys, and becomes active as the temperature rises until it reaches around 500°C. It shows a very thick value and then becomes a gradual state. On the other hand, the preheated steel material is heated by the molten metal as shown in Figure 3, and its temperature is raised to around the pouring temperature of the zinc-based alloy, which sufficiently promotes diffusion at the interface between the steel material and the zinc-based alloy. The molten metal is held for a total of 10 to 20 minutes until it solidifies, and then allowed to gradually cool down. That is, the diffusion of the zinc-based alloy and the steel material takes place during the period T in FIG. Figure 1 shows a micrograph (400x) of the boundary between the composite zinc-based alloy steel and zinc-based alloy in which the steel is cast with the zinc-based alloy. B showing the diffusion state of
A PMA photograph is shown.

この第2図によると亜鉛基合金内にpeが拡散している
状態が解る。このようにして複合化された亜鉛基合金を
第4 (a)、(b)図の試験片で第5(a)、Φ)図
のようにして試験した結果を下記第1表および第6図に
示す。
According to FIG. 2, it can be seen that PE is diffused within the zinc-based alloy. The zinc-based alloy composited in this way was tested using the test pieces shown in Figs. 4(a) and (b) as shown in Figs. 5(a) and Φ). The results are shown in Tables 1 and 6 below. As shown in the figure.

第1表 この試験は万能試験機で亜鉛基合金にクラプク(破壊〕
が発生した時の値である。また複合化率は第4(a)、
Φ)図のWに対するSの値の比率である。
Table 1: This test is performed on zinc-based alloys using a universal testing machine.
This is the value when this occurs. In addition, the compounding rate is 4 (a),
Φ) is the ratio of the value of S to W in the figure.

これによると複合化率が高まるにつれて、引張り強さ、
曲げ強さのいずれの強度も向上している。
According to this, as the composite ratio increases, the tensile strength and
Both bending strengths have improved.

次に第7図、第8図について説明する。本実施例は樹脂
用金型で、成形時に力が加わると隅部工り亀裂の生じ易
いキャビティ側金型1に適用した例で、丸棒3を折り曲
げて1個所を溶接し口状にした鋼材をショツトブラスト
処理後、60℃で10俤のNa OH水溶液に浸漬して
脱脂、水洗、さらに60℃、lO%HCz水溶液に浸漬
して酸洗い、水洗いを行った。前記下地処理を行った後
鋼材表面の活性化を計るために、ZnCL2700f/
z、NaF5Qf/l。
Next, FIGS. 7 and 8 will be explained. This example is a mold for resin, and is an example applied to the mold 1 on the cavity side, where corner machining cracks are likely to occur when force is applied during molding.A round bar 3 is bent and welded at one point to form a mouth. After shot blasting, the steel material was immersed in 10 volumes of NaOH aqueous solution at 60°C for degreasing and water washing, and further immersed in 1O% HCz aqueous solution at 60°C for pickling and water washing. In order to activate the surface of the steel material after the above-mentioned surface treatment, ZnCL2700f/
z, NaF5Qf/l.

NaOH25Vl−tl”含む混合液に浸漬してフラキ
シング処理を施す。その後乾燥、予熱のために250℃
で15分間加熱を施し、鋳型内の所定位置に配役保持す
る。樹脂金型は空間部4に樹脂が注入されると内力がか
かるので、その力に対抗する工うに鋼材全配設し、溶融
した亜鉛基合金を鋳型に注湯して、口字状丸棒3金鋳ぐ
るんだキャビティ側金型lが製作できる。
Fluxing treatment is performed by immersing in a mixed solution containing NaOH25Vl-tl. After that, the temperature is 250°C for drying and preheating.
Heat for 15 minutes and hold the cast in place in the mold. When resin is injected into the space 4, an internal force is applied to the resin mold, so all steel members are placed in the mold to counteract that force, and molten zinc-based alloy is poured into the mold to form a round rod with a mouth shape. A cavity side mold l filled with 3-metal metal can be manufactured.

このようにして製作されたこの金型を使用して型締力5
0トンの機械でポリプロピレン樹脂を連続IQ、000
回の成形試験を行った結果、割れ、亀裂等の異常はみと
められなかった。
Using this mold manufactured in this way, the mold clamping force was 5
Continuous IQ of polypropylene resin with 0 ton machine, 000
As a result of multiple molding tests, no abnormalities such as cracks or cracks were observed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように下地処理お工びフラキシング処理を
施した鋼材を亜鉛基合金で鋳ぐるむことにより、亜鉛基
合金の特性である鋳造性、転写性の良さを失なわずに機
械的性質の強い複合化さnた亜鉛基合金が得られた。ま
たこれ全樹脂用金型に利用することにより強度の強い金
型が簡単に製作できる大きな利点がある。
As explained above, by casting steel materials that have been subjected to surface preparation and fluxing treatment in zinc-based alloy, the mechanical properties can be improved without losing the good castability and transferability that are the characteristics of zinc-based alloy. A strong composite zinc-based alloy was obtained. Moreover, by using this for all-resin molds, there is a great advantage that strong molds can be easily produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は亜鉛基合金と鋼材との接合部の顕微鏡写真(4
00倍)、第2図は接合部におけるFeの拡散状態を示
すEPMA写真、第3回は鋼材の温度変化の形態の説明
図、第4 (a)、(t))図は試験片を示す図、第5
(a)、Φ)図は試験片に力を加えた方向を説明する図
、第6図は複合化率と強さの変化を示す図、第7図はキ
ャピテイ側金型の平面図、第8図は第7図■−■断面図
、第9図は亜鉛基合金の添加物による凝固までの保持時
間による強さの変化を示す図である。 1・・・キャビティ側金型、 2・・・コア側金型、3
・・・丸棒、 4・・・空間
Figure 1 is a micrograph of the joint between zinc-based alloy and steel (4
00 times), Figure 2 is an EPMA photograph showing the diffusion state of Fe in the joint, Part 3 is an explanatory diagram of the form of temperature change in steel, and Figures 4 (a) and (t)) show test pieces. Figure, 5th
Figures (a) and Φ) are diagrams explaining the direction in which force is applied to the test piece, Figure 6 is a diagram showing changes in composite ratio and strength, Figure 7 is a plan view of the mold on the capacity side, 8 is a sectional view taken along line 7--2 in FIG. 7, and FIG. 9 is a diagram showing changes in strength of zinc-based alloys depending on holding time until solidification due to additives. 1... Cavity side mold, 2... Core side mold, 3
...Round bar, 4...Space

Claims (1)

【特許請求の範囲】 1 鋼材を鋳ぐるむことにより複合強化することを特徴
とする亜鉛基合金の製造方法。 2 鋼材は脱脂及び酸洗いにより表面の清浄化処理を行
ない、フラキシング処理、乾燥及び予熱のための加熱処
理を施し、溶融亜鉛基合金で鋳ぐるみ強固な接合を得る
ことを特徴とする請求項1記載の亜鉛基合金の製造方法
。 3 鋼材を鋳型内の所定位置に設置し、1回の亜鉛基合
金の鋳造でニアネットシェイプの成形品を得ることを特
徴とする請求項1記載の亜鉛基合金の製造方法。 4 フラキシング処理はZncl_2350〜800・
g/l、NaF20〜70g/l、NaOH10〜40
g/lを含む混合液に浸漬することを特徴とする請求項
2記載の亜鉛基合金の製造方法。 5 脱脂及び酸洗いの表面清浄化処理、フラキシング処
理、乾燥および予熱のための加熱処理とを施し鋳型内の
所定位置に保持した鋼材と、溶融した亜鉛基合金を鋳型
に注湯して前記鋼材が鋳ぐるまれたことを特徴とする複
合化された亜鉛基合金。 6 樹脂用金型において、成形時の力が加わる方向に対
して、その力に抗するより配設され、鋳型内所定位置に
保持した鋼材と、溶融した亜鉛基合金を鋳型に注湯して
前記鋼材が鋳ぐるまれたことを特徴とする請求項5記載
の複合化された亜鉛基合金。
[Claims] 1. A method for manufacturing a zinc-based alloy, which comprises compositely strengthening the steel material by casting it. 2.Claim 1, wherein the steel material is subjected to surface cleaning treatment by degreasing and pickling, fluxing treatment, drying and heat treatment for preheating, and a strong joint is obtained by casting with a molten zinc-based alloy. A method of producing the described zinc-based alloy. 3. The method for manufacturing a zinc-based alloy according to claim 1, wherein the steel material is placed at a predetermined position in a mold, and a near-net-shape molded product is obtained by one casting of the zinc-based alloy. 4 Fluxing treatment is Zncl_2350-800.
g/l, NaF20-70g/l, NaOH10-40
The method for manufacturing a zinc-based alloy according to claim 2, characterized in that the zinc-based alloy is immersed in a mixed solution containing g/l. 5 A steel material that has been subjected to surface cleaning treatment such as degreasing and pickling, fluxing treatment, and heat treatment for drying and preheating and held in a predetermined position in a mold, and a molten zinc-based alloy is poured into the mold to form the steel material. A composite zinc-based alloy characterized by being cast. 6 In a mold for resin, a steel material is placed so as to resist the force in the direction in which it is applied during molding, and is held at a predetermined position within the mold, and a molten zinc-based alloy is poured into the mold. The composite zinc-based alloy according to claim 5, wherein the steel material is cast.
JP63147620A 1988-06-15 1988-06-15 Method for producing composite-reinforced zinc-based alloy member, and composite-reinforced zinc-based alloy member and mold Expired - Lifetime JPH0685994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63147620A JPH0685994B2 (en) 1988-06-15 1988-06-15 Method for producing composite-reinforced zinc-based alloy member, and composite-reinforced zinc-based alloy member and mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63147620A JPH0685994B2 (en) 1988-06-15 1988-06-15 Method for producing composite-reinforced zinc-based alloy member, and composite-reinforced zinc-based alloy member and mold

Publications (2)

Publication Number Publication Date
JPH01317680A true JPH01317680A (en) 1989-12-22
JPH0685994B2 JPH0685994B2 (en) 1994-11-02

Family

ID=15434443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63147620A Expired - Lifetime JPH0685994B2 (en) 1988-06-15 1988-06-15 Method for producing composite-reinforced zinc-based alloy member, and composite-reinforced zinc-based alloy member and mold

Country Status (1)

Country Link
JP (1) JPH0685994B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114378265A (en) * 2020-10-18 2022-04-22 赤峰中色锌业有限公司 Zinc alloy cooling forming process method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019777A (en) * 1973-06-06 1975-03-01
JPS5441661A (en) * 1977-09-09 1979-04-03 Hitachi Ltd Counter
JPS58112649A (en) * 1981-12-28 1983-07-05 Yanmar Diesel Engine Co Ltd Casting method for composite member
JPS6186063A (en) * 1984-10-02 1986-05-01 Mitsuyoshi Gokin Kogyo Kk Production of injection mold for synthetic resin product

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019777A (en) * 1973-06-06 1975-03-01
JPS5441661A (en) * 1977-09-09 1979-04-03 Hitachi Ltd Counter
JPS58112649A (en) * 1981-12-28 1983-07-05 Yanmar Diesel Engine Co Ltd Casting method for composite member
JPS6186063A (en) * 1984-10-02 1986-05-01 Mitsuyoshi Gokin Kogyo Kk Production of injection mold for synthetic resin product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114378265A (en) * 2020-10-18 2022-04-22 赤峰中色锌业有限公司 Zinc alloy cooling forming process method

Also Published As

Publication number Publication date
JPH0685994B2 (en) 1994-11-02

Similar Documents

Publication Publication Date Title
US4840219A (en) Mixture and method for preparing casting cores and cores prepared thereby
CN105057594A (en) Precise investment casting technology
US7762308B2 (en) Cast parts with improved surface properties and methods for their production
CN110029344B (en) Method for strengthening 7075 aluminum alloy surface by laser melt injection
CN108620561A (en) The intensifying method of MgFe compound casting combination interfaces
JPS59159243A (en) Metallic mold for casting and its production
JP6514237B2 (en) Process for preparing molten metal for casting at low to zero superheat temperatures
JPH01317680A (en) Production of zinc alloy and compounded zinc alloy
JP3286224B2 (en) Manufacturing method of magnesium molded product
KR101256126B1 (en) The interlayer inserting mothod for enhancing the bonding power at that time of combining Al alloy with Fe
CN106756131A (en) A kind of non-crystaline amorphous metal part processing method
JP3456311B2 (en) Continuous casting method of multilayer slab
JPS5838654A (en) Casting method for composite member
CN113462995A (en) Preparation method of high-specific-stiffness aluminum silicon carbide structural part and high-specific-stiffness aluminum silicon carbide structural part
JPS60261656A (en) Molding die for die casting
JP2007038248A (en) Casting method
JP2003073768A (en) Fe-BASED ALLOY MATERIAL FOR THIXOCASTING AND CASTING METHOD THEREFOR
KR0165120B1 (en) The manufacturing method for the use of core alloy with plastic deformation
JPH0542352A (en) Raw material for die-casting iron series alloy containing carbon and method for producing it and method for using it
JPS5814311B2 (en) Laminated material of zinc alloy and aluminum and its manufacturing method
CN117123737A (en) Preparation method and application method of meltable mold core
JPS62297521A (en) Screw section of structure member
CA1180989A (en) Method for manufacture of aluminum alloy casting
CN113198973A (en) High-silicon aluminum alloy casting method
CN116441540A (en) Golf club head manufacturing method and golf club head