JPH01317515A - Alkali resistant filter medium - Google Patents

Alkali resistant filter medium

Info

Publication number
JPH01317515A
JPH01317515A JP15042188A JP15042188A JPH01317515A JP H01317515 A JPH01317515 A JP H01317515A JP 15042188 A JP15042188 A JP 15042188A JP 15042188 A JP15042188 A JP 15042188A JP H01317515 A JPH01317515 A JP H01317515A
Authority
JP
Japan
Prior art keywords
spinel
aggregate
xmgo
mgo
yal2o3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15042188A
Other languages
Japanese (ja)
Inventor
Takao Sato
佐藤 隆男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITSUI KENSAKU TOISHI KK
Original Assignee
MITSUI KENSAKU TOISHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITSUI KENSAKU TOISHI KK filed Critical MITSUI KENSAKU TOISHI KK
Priority to JP15042188A priority Critical patent/JPH01317515A/en
Publication of JPH01317515A publication Critical patent/JPH01317515A/en
Pending legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Filtering Materials (AREA)

Abstract

PURPOSE:To improve alkali resistance by adding bonding agents comprising activated xMgO.yAl2O3 to a porous sinter whose composition is represented by a general formula of xMgO.yAl2O3 wherein the crystal structure thereof includes 95% or more of spinel type MgO.Al2O3 and sintering them together. CONSTITUTION:An activated substance having composition of xMgO.yAl2O3 is added, as a bonding agent 2, to an aggregate 1 comprising spinel type MgO.Al2O3, whereto dextrin and water are added to be mixed therewith, and thereafter they are molded, dried and sintered. After being sintered, they are aged and cooled naturally to produce an alkali resistant filter medium comprising porous sinter whose composition is represented by a general formula of xMgO.yAl2O3 wherein the crystal structure thereof includes 95% or more of spinel type MgO.Al2O3. The filter medium has an improved alkali resistance and is effective in filtering substances containing alkali in the form of powder, liquid or gas.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はアルカリ成分を含む粉状、液状、ガス状の物質
のろ過に関して、ろ過性能と化学的劣化に対して優れて
いるセラミックスフィルターを供給しようとするもので
、化学プラントをはじめ、薬液処理工程や薬液分離精製
工程、塩基性スラグな処理する工程、凝縮性ガスを分離
精製工程、アルカリ性蒸気の分離膜、アルカリ処理に耐
えるファーメンタ−用フィルター、アルカリ溶液中にお
けるガス拡散用散気素子、高温ガス用フィルター、アル
カリ性廃液処理用フィルター、電気化学反応に用いる各
種隔膜等に使用することを目的とする。
[Detailed Description of the Invention] (Industrial Application Field) The present invention provides a ceramic filter that has excellent filtration performance and resistance to chemical deterioration when it comes to filtering powdery, liquid, and gaseous substances containing alkaline components. It is used in chemical plants, chemical treatment processes, chemical separation and purification processes, basic slag treatment processes, condensable gas separation and purification processes, alkaline vapor separation membranes, and fermenters that can withstand alkali treatment. It is intended for use in filters, diffuser elements for gas diffusion in alkaline solutions, filters for high temperature gas, filters for alkaline waste liquid treatment, various diaphragms used in electrochemical reactions, etc.

熱的、化学的に厳しい環境に強い耐久力を有するMgo
−Aztosスピネルを焼結多孔体化しろ過材としたも
のである。
Mgo has strong durability in harsh thermal and chemical environments.
- Aztos spinel is sintered into a porous body and used as a filter material.

(従来の技術) 従来からアルカリ溶液に耐久力があるとされる金属フィ
ルターや、カーボン、弗素樹脂を材料とするフィルター
等が使用されて来ている。ステンレス等の金属フィルタ
ーは耐久力はあるが高価な上に、微細な細孔のものが製
造しにくく、その上形状にも制約があること。カーボン
フィルターは成形形状の任意性及び細孔の均一性、微細
孔化忙難点がある。弗素樹脂で製造されるフィルターは
、高価であることや水溶液などには接触角が大きいため
、ろ過操作ではろ過収量に影響し実用に供せられる分野
は限られる。一方、従来のセラミック系のろ過材料は種
々の材料が提供されているが、アルカリ性の環境下で使
用に耐え、産業上の利用可能な価格で供給されているも
のはない。たとえば一番多く使用されているアルミナ系
フィルターでは熱水アルカリ中では徐々に侵食が進み、
強度の劣化は大きい。5in2系ではアルカリ溶液中で
は使用は不可能である。
(Prior Art) Metal filters that are said to have durability against alkaline solutions, filters made of carbon, fluororesin, and the like have been used. Although metal filters such as stainless steel are durable, they are expensive, and they are difficult to manufacture with minute pores, and there are also restrictions on their shapes. Carbon filters have the disadvantages of arbitrary molding shape, uniformity of pores, and difficulty in forming micropores. Filters made of fluororesin are expensive and have a large contact angle with aqueous solutions, which affects the filtration yield in filtration operations and limits the fields in which they can be put to practical use. On the other hand, although various conventional ceramic filtration materials are available, there is none that can withstand use in an alkaline environment and is available at an industrially acceptable price. For example, the most commonly used alumina filter gradually erodes in hot alkaline water.
The deterioration in strength is significant. The 5in2 system cannot be used in alkaline solutions.

(発明が解決しようとする問題点) 従来のセラミックス材料の多くはアルカリ溶液に侵食さ
れ強度劣化を起す。それはろ過材を構成している主原料
骨材と結合剤の組成に問題があり、アルカリによって分
解したシ、塩を作ってしまうためである。例えば添加剤
や不純物としてTie、、Sin、 、 Fe2 o、
 、 MgO,Cab、 Na2O、K、Oなどを含む
場合が多い。また、骨材、そのものがアルカリに冒され
るものが少くない。シリカ、ムライト、炭化珪素、アル
ミナ等、これらの最も良く使用される材料そのものがア
ルカリ溶液に対して、耐久性がない。α−アルミナ自体
はアルカリに耐久力があるという報告もあるが、実際に
侵食テストを実施すると徐々に強度劣化が進行する。
(Problems to be Solved by the Invention) Many conventional ceramic materials are corroded by alkaline solutions and deteriorate in strength. This is because there is a problem with the composition of the main raw material aggregate and binder that make up the filter material, and the alkali decomposes it and creates salt. For example, additives and impurities include Tie, , Sin, , Fe2 o,
, MgO, Cab, Na2O, K, O, etc. are often included. In addition, many aggregates themselves are affected by alkali. These most commonly used materials, such as silica, mullite, silicon carbide, and alumina, are themselves not durable against alkaline solutions. There are reports that α-alumina itself has resistance to alkali, but when an actual erosion test is carried out, the strength gradually deteriorates.

セラミックス体がどのような構造形体をとるかでも侵食
劣化レベルに差異が生じる。通常、耐アルカリ材料と称
するものはほとんど緻密体で論じられ、例えば珪酸マグ
ネシウム、珪酸カルシウム等はアルカリ金属塩の被膜を
生成しながら侵食を阻止しても、多孔体にした場合では
劣化は顕著である。さらにろ過材等の多孔体では対象液
の濃度、温度、時間によっても影響を受け、ろ過材の気
孔率、気孔径の差異によっても侵食劣化に大きな違いが
認められる。
The level of erosion and deterioration varies depending on the structural form of the ceramic body. Normally, most of the so-called alkali-resistant materials are discussed in terms of dense bodies. For example, magnesium silicate, calcium silicate, etc. prevent corrosion while forming a film of alkali metal salts, but when made into porous materials, the deterioration is noticeable. be. Furthermore, porous materials such as filter media are affected by the concentration of the target liquid, temperature, and time, and large differences in erosion and deterioration are recognized depending on the porosity and pore diameter of the filter media.

が安定しない材料等もあり広範な使用目的に適応する材
料は現在まで存在しなかった。この発明はこれらの問題
を解決するろ過材料を提供することを目的とする。
Until now, there have been no materials that can be used for a wide range of purposes, as some materials are not stable. The present invention aims to provide a filtration material that solves these problems.

(問題点を解決するための手段) この問題を達成するために、セラミックス材料の高温耐
火度、結晶構造に着目し、アルミナより融点が100℃
以上高いMgO・h1203スピネルに注目し開発を進
め、実験を積ねるうちにMgO・Al、Osスピネルは
アルカリ溶液に対して充分な耐久性能があることが判り
、この物質でろ過材を作り上げることに成功したもので
ある。
(Means for solving the problem) In order to achieve this problem, we focused on the high-temperature refractory properties and crystal structure of ceramic materials.
Focusing on MgO/h1203 spinel, which has the above-mentioned high content, we proceeded with development, and through repeated experiments, we found that MgO/Al and Os spinel had sufficient durability against alkaline solutions, and decided to create a filter material using this substance. It was a success.

本発明のろ過材は焼結完了時にMg O−AA!t O
sスピネルが95%以上の主成分を有する条件が必要で
あり、骨材原料はMg0A120.スピネル粉体、およ
び焼結完了時にMgO・hltosスピネルの結晶構造
をとる出発原料とする物質を混合する方法で作成すを有
するものもあり、そのままの状態でも多孔材料を作れる
。特許請求の範囲に記載する%MgO・γU、Os  
の活性粒子の結合剤は多孔体を構成するxMgO−YA
ltosを強固に焼結させる目的で用いるためで、この
結合剤の添加によって焼結温度を下げ、多孔質構造体を
作り上げることが出来る。xMgO・yhltosの活
性粒子はスピネル化した粒子でも、水和物、あるいはス
ピネル化前段階にあるものでも有効である。この活性粒
子は低温で焼結し易い特性を持つほど本特許の多孔体に
は効果的に作用する。すなわち、ミクロンオーダー以上
の粒子径の骨材粒子に対して、サブミクロンオーダーの
粒子径の活性粒子は骨材粒子の焼結開始温度より、低い
温度で焼結が完了してしまうので、通常のセラミックス
の焼結のように大きな収縮をともなうことがなく、気孔
率を大きくした多孔体を作り易い。
The filter medium of the present invention has Mg O-AA! upon completion of sintering. t O
Conditions are required in which spinel has a main component of 95% or more, and the aggregate raw material is Mg0A120. Some porous materials can be made by mixing spinel powder and a starting material that assumes the crystalline structure of MgO·hltos spinel upon completion of sintering, and can be used as is. %MgO・γU, Os described in the claims
The binder for the active particles is xMgO-YA, which constitutes the porous body.
This is used for the purpose of strongly sintering ltos, and by adding this binder, the sintering temperature can be lowered and a porous structure can be created. The active particles of xMgO.yhltos are effective whether they are spinelized particles, hydrated particles, or particles at a pre-spinelization stage. The more easily these active particles can be sintered at low temperatures, the more effectively they act on the porous body of this patent. In other words, compared to aggregate particles with a particle size of micron order or more, active particles with a particle size of submicron order complete sintering at a temperature lower than the sintering start temperature of the aggregate particles. Unlike sintering of ceramics, this method does not cause large shrinkage, and it is easy to create porous bodies with high porosity.

MgO・Altosスピネルを構成する結晶構造につい
て学術的にも充分解明されていない現状において理由は
明確ではないがAltosが過剰の方が成形法によって
は強度が犬きくなシ使用目的に適合することもあり、又
、MgOが過剰の方が塩基性スラグ等に用いる場合明ら
かに耐久性において優れていることが認められる。本発
明は種々実験の結果、使用条件の厳しい環境下で用いる
ろ過材料は少くとも95チ以上のMgO−Al2O,ス
ピネルを生成させである焼結体が適するとの結論を得た
。好ましくは全成分がスピネル結晶構造で構成されてい
ることが特殊な場合を除いて使用分野が拡大することが
認められた。
At present, the crystal structure of MgO/Altos spinel has not been sufficiently elucidated academically, and although the reason is not clear, an excess of Altos may be more suitable for the purpose of use, depending on the molding method. It is also recognized that excess MgO is clearly superior in durability when used for basic slag and the like. As a result of various experiments, the present invention has concluded that a sintered body made of at least 95 inches of MgO-Al2O and spinel is suitable as a filtration material to be used in an environment with severe usage conditions. It has been found that preferably all the components have a spinel crystal structure, which expands the field of use except in special cases.

本発明によるろ過材はxMg O−y AA!20s 
で構成され、原料に混入してしまう不純物以外は他の成
分を添加しないが、製造工程において添加される化学物
質が完成時に消失し、存在を認めることが出来ないもの
は本特許請求の範囲に含まれる。例えば、消失してしま
う有機物、結晶生長に寄与した後、消失してしまう低温
分解性の無機物等、焼結2 ′ ″セス、等の方法により Mg0−AltOs以外の成
分を完成時に含有しない操作方法で達成させること等で
ある。消失してしまう化学物質として、LiC1、Li
Fなどのアルカリ金属、Mg C12、MgF、などの
アルカリ土類金属等の塩化物、弗化物、B20.などの
硼化物がある。
The filter medium according to the present invention is xMg O-y AA! 20s
However, chemical substances added in the manufacturing process that disappear upon completion and whose existence cannot be recognized are within the scope of this patent. included. For example, organic matter that disappears, low-temperature decomposable inorganic matter that disappears after contributing to crystal growth, etc., and an operation method that does not contain components other than Mg0-AltOs at the time of completion by sintering 2''' process, etc. Chemical substances that disappear include LiC1, Li
Alkali metals such as F, chlorides and fluorides of alkaline earth metals such as Mg C12, MgF, B20. There are borides such as

本発明によるろ過材の1例は次のようにして製造される
。目的に応じてモル比を決定したMgO・Altosス
ピネル含有粉体をボールミルにて粉砕、酸洗、水洗し、
純度を確保した後、粒子径を調整するため分級機を経て
、用途によ多粒子径分布レベルを設定した操作を行なう
。特に均一に調整する必要があるときは累積分布の75
%平均粒子径:D7.と25チ平均粒子径=D0の比は
次の数値以下に小さくすることが好ましい。
An example of a filter medium according to the present invention is manufactured as follows. MgO/Altos spinel-containing powder with a molar ratio determined according to the purpose is ground in a ball mill, pickled, and washed with water.
After ensuring purity, it passes through a classifier to adjust the particle size, and then performs operations that set multiple particle size distribution levels depending on the application. 75 of the cumulative distribution, especially when it is necessary to adjust uniformly.
% average particle diameter: D7. It is preferable that the ratio of 25 cm average particle diameter = D0 be smaller than the following value.

D、、、となる記載方法)結合剤は活性化された、モル
比調整した粉末で焼結温度が1000℃近傍でスピネル
化が行なわれるものが好ましい。活性粒子は通常、粒子
径はサブミクロンオーダーであり、比表面積の増大にと
もなって高い表面エネルギーを持つ。本発明による活性
粒子の製作方法は共沈法、共分解法等が代表例で、一般
的に調整剤として緩衝液、解こう剤、凝集剤、溶媒とし
て水、水−有機系、沈殿剤として陽イオン、陰イオン、
錯化合物、原料塩として硝酸塩や塩酸塩の形で用いる。
D) The binder is preferably an activated powder whose molar ratio is adjusted and which undergoes spinelization at a sintering temperature of around 1000°C. The active particles usually have a particle size on the submicron order, and have a high surface energy as the specific surface area increases. Typical examples of the method for producing active particles according to the present invention include coprecipitation, colysis, etc. Generally, buffers, peptizers, flocculants are used as adjusting agents, water or water-organic systems are used as solvents, and precipitants are used as precipitants. cations, anions,
Used in the form of nitrates and hydrochlorides as complex compounds and raw material salts.

水溶液の濃度を制御することによシ微細な結晶を析出さ
せる沈殿操作からろ過、乾燥し、速やかに熱分解して粉
末が作成される。共分解法はマグネシウム溶液アルミニ
ウム溶液を混合して作成される方法で、その他にもこれ
に類する種々の方法がある。湿式法と異る合成法として
、高純度なMg −AA!合金ベレットを純水中に入れ
電極を用いて火花放電させると微細な合金の水和物が得
られ、この粉末を1000℃前後の温度で速やかに仮焼
することKよシ製造される活性粉末もある。
By controlling the concentration of the aqueous solution, fine crystals are precipitated through a precipitation operation, followed by filtration, drying, and rapid thermal decomposition to create a powder. The co-decomposition method is a method in which a magnesium solution and an aluminum solution are mixed, and there are various other similar methods. As a synthesis method different from the wet method, high purity Mg-AA! When an alloy pellet is placed in pure water and a spark is discharged using an electrode, a fine alloy hydrate is obtained, and this powder is rapidly calcined at a temperature of around 1000°C to produce an active powder. There is also.

この方法はマグネシウムとアルミニウムの両金属を別々
に上記と同様に火花放電で水和物を作り、混合焼結させ
ても良い。本発明のろ過材の骨格となるMg0−h12
0.スピネルは活性を抑制した安定したタイプのものが
好ましく、又結合層となるべきMgO−A40sスピネ
ル粒子は、高純度のサブミクロンの粒子径を有する高活
性体が好ましい。
In this method, hydrates of magnesium and aluminum may be made separately by spark discharge in the same manner as above, and the hydrates may be mixed and sintered. Mg0-h12, which is the skeleton of the filter medium of the present invention
0. The spinel is preferably of a stable type with suppressed activity, and the MgO-A40s spinel particles to serve as the bonding layer are preferably highly active particles having a highly purified submicron particle size.

このようにして得られた骨材100重量部に対して10
〜40重量部の結合剤を添加し精製水を加えてスラリー
とし、充分に混合後、ドライヤーを通して乾燥物とし、
成形法に合せて配合物を調整する。形状は板状、パイプ
状と自在に成形可能である。用いられる糊付は有機系の
ものが一般的で、無機化合物等の不純物含有量の少ない
ものを選ぶ。例えばでんぷん、デキストリン、PVA。
10 parts by weight of the aggregate thus obtained.
Add ~40 parts by weight of a binder, add purified water to make a slurry, mix thoroughly, and then pass through a dryer to dry it.
Adjust the formulation according to the molding method. The shape can be freely formed into a plate shape or a pipe shape. The glue used is generally organic, and one with a low content of impurities such as inorganic compounds is selected. For example, starch, dextrin, PVA.

PVB、CMClMC,PEG、EC等である。気孔調
整剤として各種のプラスチック、木粉などの可燃消失性
物質が用いられる。成形方法により、解こう剤、潤滑剤
、消泡剤等を添加する。前処理工程で顆粒化粉体にして
使用することもある。成形法はプレス法、アイラスタチ
ックプレス法、泥奨鋳込法、テープ成形法、ドクターブ
レード法、抄造法、押出法等が適応される。成形後、各
々の成形物に適した乾燥法で乾燥し、焼結する。焼結温
度は最高温度の設定温度1100〜1700℃の範囲が
実用強度を発現する温度範囲であり、 1100℃に至
らない温度では活性粉体の投入量を多くしたシ、製品の
厚みを大きくして素材の強度を補強したシ、ネット等の
支持具で外部で補助すること等が必要になってしまう。
These include PVB, CMClMC, PEG, and EC. Combustible and dissipative substances such as various plastics and wood flour are used as pore regulators. Depending on the molding method, deflocculants, lubricants, antifoaming agents, etc. are added. It may also be used in the form of granulated powder in the pretreatment process. As the forming method, a press method, an air static press method, a mud casting method, a tape molding method, a doctor blade method, a paper forming method, an extrusion method, etc. are applicable. After molding, each molded product is dried and sintered using a drying method suitable for the molded product. The maximum sintering temperature is set at 1,100 to 1,700°C, which is the temperature range in which practical strength is achieved; at temperatures below 1,100°C, the amount of active powder added may be increased, or the thickness of the product may be increased. Therefore, it becomes necessary to provide external assistance with supports such as sheets or nets that reinforce the strength of the material.

1700℃を越える高い焼結温度では粒子径の大きい多
孔体には有効でも微細孔のろ過材は収縮量が大きくなり
、気孔率の低下、焼成装備の高度化や、エネルギーコス
トの上昇など製品のコストアップ要因が大きくなり好ま
しくない。好ましい実用焼結温度は1300〜1500
℃が適当である。
Although high sintering temperatures exceeding 1,700°C are effective for porous materials with large particle sizes, microporous filter media will shrink more, resulting in lower porosity, more sophisticated firing equipment, and higher energy costs. This is not preferable because it increases the cost increase factor. Preferred practical sintering temperature is 1300-1500
°C is appropriate.

このようにしてアルカリ成分を含む粉状、液状、ガス状
の物質のろ過に関し、一般式xMgO・yAtbosで
示される組成で作成される焼結多孔体の結晶構造が95
チ以上のMg O−AA!20sスピネルで構成され、
結合剤にxMgO・yAA!to、の活性化物質を用い
て焼結させることを特徴とする耐アルカリ性ろ過材を作
シ、産業上の利用分野の項に列記した関係分野に用いら
れ、従来技術の問題点を解消するものである。
In this way, for the filtration of powdery, liquid, and gaseous substances containing alkaline components, the crystal structure of the sintered porous body created with the composition represented by the general formula
Mg O-AA more than Chi! Composed of 20s spinel,
xMgO・yAA as a binder! To produce an alkali-resistant filter material characterized by sintering using an activated substance, which is used in the related fields listed in the section of industrial application fields, and which solves the problems of the conventional technology. It is.

(作用) 不活性粒子と活性粒子の化学組成が近似又は同一の結合
剤にサブミクロンの粒子を用いた焼結形態の温度上昇に
ともなうプロセスの1例を示すと図面に示した経過をた
どると考えられる。第1図は骨材lの不活性粒子に結合
剤2の活性粒子がまぶシついた状態である。標準的な充
填状態は配位数8前後をとっている。この状態は焼成初
期の状態で糊等の有機添加剤が燃焼により消失し、結合
剤の活性粒子間は結合力弱く、活性粒子層内は空孔が多
い。骨材1ヒ1の間にはこの状態でも「橋かけ」が行な
われている。第2図でさらに温度が上昇すると骨材lと
1の間に存在する「橋かけ」部の活性粒子の表面エネル
ギーの解放による焼結駆動力は活性粒子が多く集積して
いる結合橋の中心部に向って作用し、結合橋から離れた
部位にある活性粒子を引き寄せながら、骨材1の表面の
活性粒子を引き寄せて、結合橋の空孔を埋めつつ、密度
を高めて行く。同時に骨材1と1の間も間隔が狭くなり
、収縮する方向に向う。第3図は骨材10表面と接触し
ている結合橋との反応焼結も進み一結合橋を構成してい
る粒子も結晶成長を続け、骨材1と近似した表面エネル
ギーを保持するレベルになり、安定状態となって焼結は
完了し、骨材1と結合剤2によって囲まれた部位には気
孔3が造成される。
(Function) An example of a process in which submicron particles are used in a binder with inert particles and active particles having similar or identical chemical compositions as the temperature increases is shown in the drawing. Conceivable. FIG. 1 shows a state in which active particles of binder 2 are sprinkled on inert particles of aggregate 1. The standard packing state has a coordination number of around 8. This state is in the early stage of firing, where organic additives such as glue disappear due to combustion, the binding force between the active particles of the binder is weak, and there are many pores within the active particle layer. Even in this state, "bridging" is performed between the aggregates 1 and 1. In Figure 2, as the temperature rises further, the sintering driving force due to the release of surface energy of the active particles in the "bridge" part between aggregates 1 and 1 is applied to the center of the bonding bridge where many active particles are accumulated. The aggregate 1 acts toward the surface of the aggregate 1 while attracting active particles located away from the bonding bridges, thereby increasing the density while filling the pores of the bonding bridges. At the same time, the distance between the aggregates 1 and 1 becomes narrower, and the aggregates tend to shrink. Figure 3 shows that the reaction and sintering of the bond bridges that are in contact with the surface of aggregate 10 progresses, and the particles that make up the bond bridges continue to grow crystals, reaching a level where they maintain a surface energy similar to that of aggregate 1. Then, a stable state is reached and sintering is completed, and pores 3 are created in the area surrounded by the aggregate 1 and the binder 2.

実施例1゜ MgO・AA!20.スピネルを鋼製ボールミルで粉砕
、酸洗、水洗を繰り返した粉体を湿式分級により平得た
。(Dys :累積分布における75%平均粒子径、D
2.:累積分布における25チ粒子径、Dlo。
Example 1゜MgO・AA! 20. Spinel was ground in a steel ball mill, pickled, and washed repeatedly, and a powder was obtained by wet classification. (Dys: 75% average particle diameter in cumulative distribution, D
2. : 25-inch particle size in cumulative distribution, Dlo.

を10091+に最大粒子径を表わす方法による。)結
合剤の活性粒子は火花放電法によるMgO−Al2O。
According to the method of expressing the maximum particle size as 10091+. ) The active particles of the binder are MgO-Al2O by the spark discharge method.

スピネル粒子を用いた。活性粒子は0,2μmの平均粒
子径に調整して骨材のMg0−AJ120sスピネル骨
材(Mg0A40aスピネル)    100重量部活
性粒子(MgO・、V2O,スピネル)   20重量
部デキストリン           4重量部水(精
製水)           4重量部この配合物は混
合後に成形圧力200 klil/Crn2でプレスし
、直径60mtxφ、肉厚2龍φで成形し乾燥◇最高温
度1400’Cで焼成した。昇温速度は100℃/hr
、最高温度で5時間熟成後、自然放冷による冷却法で常
温まで降下させ、焼結体を得た。
Spinel particles were used. The active particles were adjusted to an average particle diameter of 0.2 μm, and the aggregate Mg0-AJ120s spinel aggregate (Mg0A40a spinel) 100 parts by weight Active particles (MgO, V2O, spinel) 20 parts by weight Dextrin 4 parts by weight Water (purified) Water) 4 parts by weight After mixing, this mixture was pressed at a molding pressure of 200 kli/Crn2, molded into a mold with a diameter of 60 mtxφ and a wall thickness of 2×φ, dried and fired at a maximum temperature of 1400'C. The temperature increase rate is 100℃/hr
After aging at the maximum temperature for 5 hours, the temperature was lowered to room temperature by natural cooling to obtain a sintered body.

実施例2゜ 骨材は実施例1.に用いたMg0−AltOsスピネル
を用い、結合剤の活性粒子は実施例1.に用いたものを
骨材(MgO・AJ、 O,スピネル)100重量部に
対して40重量部添加した。プレス成形するための各材
料の配合を次に示す。
Example 2゜The aggregate was the same as Example 1. The Mg0-AltOs spinel used in Example 1 was used, and the active particles of the binder were the same as in Example 1. 40 parts by weight of the material used in the above were added to 100 parts by weight of aggregate (MgO.AJ, O, spinel). The composition of each material for press molding is shown below.

骨材(Mg()AI!203スピネル)   100重
量部活性粒子(MgOA40sスピネル)    40
重量部デキストリン             4重量
部水(精製水)           5重量部この配
合物を混合し実施例1.と同じ成形圧力で、同じ形状に
成形し、最高温度1300℃で焼成した。
Aggregate (Mg()AI!203 spinel) 100 parts by weight Active particles (MgOA40s spinel) 40
Parts by weight Dextrin 4 parts by weight Water (purified water) 5 parts by weight This formulation was mixed and prepared in Example 1. It was molded into the same shape under the same molding pressure and fired at a maximum temperature of 1300°C.

昇温速度は100℃/hr、最高温度で5時間熟成後、
自然放冷による冷却法で常温まで降下させ、焼結体を得
た。
The temperature increase rate was 100℃/hr, and after aging at the maximum temperature for 5 hours,
The temperature was lowered to room temperature by a cooling method using natural cooling, and a sintered body was obtained.

実施例3゜ 押出品を次の要領で製造した。配合は次に示す通りであ
る。
Example 3 An extruded product was produced in the following manner. The formulation is as shown below.

骨材(MgO・h120.スピネル)   100重量
部活性粒子(MgO・hltosスピネル)   30
重量部可塑糊糊付           52重量部骨
材と活性子のMgO・)d120sスピネルは調整法を
実施例1.と同様な方法で行ない構成主原料として用い
た。粒子径もほぼ実施例1.と同じである。
Aggregate (MgO・h120. Spinel) 100 parts by weight Active particles (MgO・hltos spinel) 30
Parts by Weight Plastic Glue Paste 52 Parts by Weight Aggregate and Activator MgO・)d120s spinel was prepared using Example 1. It was prepared in the same manner as above and used as the main constituent material. The particle size is also similar to that of Example 1. is the same as

可塑横材は小麦粉15重量部、水(精製水)78重量部
、アンモニア水(試薬として市販されているもの)7重
量部を配合し、混合しながら、小麦原料130重量部に
52重量部混入して、混練機で混練、餅状に調整した。
The plastic cross material is made by blending 15 parts by weight of wheat flour, 78 parts by weight of water (purified water), and 7 parts by weight of aqueous ammonia (commercially available as a reagent), and while mixing, 52 parts by weight are mixed into 130 parts by weight of the wheat raw material. The mixture was then kneaded using a kneader to form a rice cake shape.

この混練物を真空押出機で外径10+mφ内径8朋φの
円型パイプを押出し、150朋の長さに切断した。乾燥
させてから9最高温度1450℃、昇温速度800℃ま
で70℃/br、800℃から1450℃まで100℃
/ h r 。
This kneaded product was extruded into a circular pipe with an outer diameter of 10 m and an inner diameter of 8 mm using a vacuum extruder and cut into a length of 150 mm. 9 Maximum temperature after drying 1450℃, heating rate 70℃/br up to 800℃, 100℃ from 800℃ to 1450℃
/hr.

1450℃で。時間熟成後、自然放冷して焼結体を得た
At 1450℃. After aging for a period of time, the mixture was allowed to cool naturally to obtain a sintered body.

実施例3゜ 骨材の粒度な+220  (JI、SR6001−19
73に基づく分級分布)に分級し用いた。成形法はプレ
ス法で配合は次の通シである。
Example 3゜Grain size of aggregate +220 (JI, SR6001-19
It was classified and used according to the classification distribution based on 73. The molding method is a press method and the formulation is as follows.

骨材(Mg O−AJ2 o、スピネル+220)  
100重量部活性粒子CMgO”klzOsスピネル)
   40重量部水(精製水)           
4重量部デキストリン            3重量
部レスした。形状は直径Zoomφ肉厚10+mφの円
板形状である。乾燥後、最高温度1500℃、昇温速度
は150℃/hr1最高温度で5時間熟成後、自然放冷
により冷却、焼結体を得た。
Aggregate (Mg O-AJ2 o, spinel +220)
100 parts by weight active particles CMgO"klzOs spinel)
40 parts by weight water (purified water)
4 parts by weight of dextrin and 3 parts by weight were added. The shape is a disc with a diameter of Zoomφ and a wall thickness of 10+mφ. After drying, the mixture was aged for 5 hours at a maximum temperature of 1500°C and a temperature increase rate of 150°C/hr1, and then cooled by natural cooling to obtain a sintered body.

実施例5゜ Mg 0−Al、o、スピネルを分級操作によシ平均粒
子径約20μmの粉体を製造した。粒度分布はシャを骨
材として使用し、下記の配合で混練し、押出成形品を作
成した。
Example 5 A powder having an average particle diameter of about 20 μm was produced by classifying Mg 0-Al, O, and spinel. The particle size distribution was determined by using Sha as an aggregate and kneading it in the following formulation to create an extrusion molded product.

骨材(20μm粒子のMg()A40gスピネル)10
0重量部活性粒子(MgO”fiJgosスピネル) 
   30重量部可塑糊糊付            
   52重量部可塑糊材上実施例3.と同様な方法で
作成したもので、押出形状は外径50mwφ内径30龍
φである。長さは押出法のため、任意に設定出来るが、
テスト用サンプルとしては150+mの長さに切断して
テストに供した。
Aggregate (Mg()A40g spinel with 20μm particles) 10
0 parts by weight active particles (MgO”fiJgos spinel)
30 parts by weight plastic glue included
52 parts by weight on plastic glue Example 3. It was made in the same manner as above, and the extruded shape has an outer diameter of 50 mwφ and an inner diameter of 30 mm. Since the length is an extrusion method, it can be set arbitrarily, but
A test sample was cut into a length of 150+m and used for testing.

活性粒子のMgO・AJ203スピネルは共沈法で作成
し、0.211mの平均粒子径に近似した粉体に調整し
た。
The MgO AJ203 spinel active particles were prepared by a coprecipitation method and adjusted to a powder having an average particle diameter of 0.211 m.

押出成形後、乾燥プロセスを経て焼成した。最高温度1
350℃、昇温速度80℃/hrで1400℃で5時間
熟成した。熟成完了後、自然放冷により冷却、焼結体を
得た。
After extrusion molding, it was fired after a drying process. Maximum temperature 1
The mixture was aged at 350°C for 5 hours at 1400°C at a heating rate of 80°C/hr. After the ripening was completed, the product was cooled by natural cooling to obtain a sintered body.

(発明の効果) 活性粒子で作られた結合橋は入シ組んだ結晶粒界を有し
、結合橋は強固になる。又、骨材と接触している活性粒
子との粒界は骨材粒子によって併合されていく過程を経
て骨材粒子の凸凹面にそって結合橋側の結晶は成長し、
表面エネルギーの減少と共に、骨材と結合橋は同一結晶
に似た形をとって安定した構造となる。結合橋は多孔質
体の強度を支えるために最も重要で活性粒子の純度が影
響する。結合橋を高純度化物質で作り上げることにより
、骨材との粒界に濃縮されて来るであろう不純物濃度を
下げる効果がある。このようにして製造され引向0−A
A!20sスピネルのろ過材はア々ミナより融点が10
0℃以上高く、結合エネルギーの高い材料の性質を生か
すことが出来るため、アルカリ性液等の薬液に冒されな
い画期的な効果を生む。
(Effect of the invention) The bond bridge made of active particles has intricate grain boundaries, and the bond bridge becomes strong. In addition, the grain boundaries between the active particles that are in contact with the aggregate are merged by the aggregate particles, and the crystals on the bonding bridge side grow along the uneven surfaces of the aggregate particles.
As the surface energy decreases, the aggregate and bonding bridges become a stable structure resembling the same crystal. Bonding bridges are the most important for supporting the strength of porous materials, and are influenced by the purity of active particles. By constructing the bond bridge with a highly purified material, it has the effect of lowering the concentration of impurities that would otherwise be concentrated at the grain boundaries with the aggregate. Manufactured in this way, orientation 0-A
A! 20s spinel filter material has a melting point of 10
Because it is able to take advantage of the properties of materials with high bonding energy at temperatures above 0°C, it produces revolutionary effects that are unaffected by chemical solutions such as alkaline solutions.

【図面の簡単な説明】[Brief explanation of the drawing]

焼結プロセスを第1図から第2図、第3図と順に追って
昇温、熟成の熱履歴による過程をモデル化して図示した
ものである。 1・・・xMgO・’IAlto3で作られている骨材
粒子、2・・・xMgO・yAl、O5で構成されてい
る活性粒子の結合剤、 3・・・骨材1と結合剤2で囲まれて出来る気孔。 特許出願人  三井研削砥石株式会社 第1図 第2図 第3図
The sintering process is sequentially illustrated in FIGS. 1, 2, and 3 by modeling the process of heating and aging due to the thermal history. 1... Aggregate particles made of xMgO . Pores formed by Patent applicant: Mitsui Grinding Wheel Co., Ltd. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] アルカリ成分を含む粉状、液状、ガス状の物質のろ過に
関し、一般式xMgO・yAl_2O_3で示される組
成で構成される焼結多孔体の結晶構造が95%以上のM
gO・Al_2O_3スピネルで構成され、結合剤にx
MgO・yAl_2O_3の活性化物質を用いて焼結さ
せることを特徴とする耐アルカリ性ろ過材。
Regarding the filtration of powdery, liquid, and gaseous substances containing alkaline components, the crystal structure of the sintered porous body composed of the general formula xMgO・yAl_2O_3 is 95% or more.
Composed of gO・Al_2O_3 spinel, with x as a binder
An alkali-resistant filter material characterized by being sintered using an activated substance of MgO.yAl_2O_3.
JP15042188A 1988-06-18 1988-06-18 Alkali resistant filter medium Pending JPH01317515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15042188A JPH01317515A (en) 1988-06-18 1988-06-18 Alkali resistant filter medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15042188A JPH01317515A (en) 1988-06-18 1988-06-18 Alkali resistant filter medium

Publications (1)

Publication Number Publication Date
JPH01317515A true JPH01317515A (en) 1989-12-22

Family

ID=15496572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15042188A Pending JPH01317515A (en) 1988-06-18 1988-06-18 Alkali resistant filter medium

Country Status (1)

Country Link
JP (1) JPH01317515A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5126910A (en) * 1974-08-29 1976-03-05 Matsushita Electric Ind Co Ltd

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5126910A (en) * 1974-08-29 1976-03-05 Matsushita Electric Ind Co Ltd

Similar Documents

Publication Publication Date Title
JP5741760B2 (en) Manufacturing method of ceramic honeycomb filter
US4295892A (en) Cordierite ceramic honeycomb and a method for producing the same
CA1059160A (en) Method of preparing crack-free monolithic polycrystalline cordierite substrates
US4877670A (en) Cordierite honeycomb structural body and method of producing the same
EP1911732B1 (en) Process for producing ceramic honeycomb structure
EP0630677B1 (en) Ceramic filter for a dust-containing gas and method for its production
US4152166A (en) Zircon-containing compositions and ceramic bodies formed from such compositions
KR20030059169A (en) Lithium aluminosilicate ceramic
JP3381948B2 (en) Method for producing highly active calcium oxide porous body
US4248637A (en) Microporous material especially for use in the ceramic industry
US4069058A (en) Porous silicon oxynitride refractory shapes
JPH0651596B2 (en) Method for manufacturing cordierite honeycomb structure
JPH0585814A (en) Production of cordierite honeycomb structure
JP2000109374A (en) Production of porous mullite product
JPH01317515A (en) Alkali resistant filter medium
EP0201319B1 (en) Method of producing cordierite ceramics
JPS62182158A (en) Cordierite honeycom structure and manufacture
JP3928673B2 (en) Cordierite ceramic sintered body, composition therefor and production method therefor
US3421914A (en) Process for making porous light-weight zirconia bodies
JPH01320277A (en) Porous body of mgo-al2o3 spinel
JPH0368411A (en) Cordierite-based gas filter and its production
JP2823140B2 (en) Method for producing cordierite porous body
JPH09153369A (en) High-temperature sealing material and manufacture thereof
JPH061654A (en) Manufacture of calcia clinker
JPH0925184A (en) Ceramic porous film and its production