JPH01317143A - Production of concrete and production of concrete molded product therefrom - Google Patents

Production of concrete and production of concrete molded product therefrom

Info

Publication number
JPH01317143A
JPH01317143A JP14633388A JP14633388A JPH01317143A JP H01317143 A JPH01317143 A JP H01317143A JP 14633388 A JP14633388 A JP 14633388A JP 14633388 A JP14633388 A JP 14633388A JP H01317143 A JPH01317143 A JP H01317143A
Authority
JP
Japan
Prior art keywords
concrete
cement
molded product
ice
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14633388A
Other languages
Japanese (ja)
Other versions
JP2617115B2 (en
Inventor
Takeji Okada
岡田 武二
Noboru Ishikawa
登 石川
Yoji Kanamori
洋史 金森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP14633388A priority Critical patent/JP2617115B2/en
Publication of JPH01317143A publication Critical patent/JPH01317143A/en
Application granted granted Critical
Publication of JP2617115B2 publication Critical patent/JP2617115B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/40Moulds; Cores; Mandrels characterised by means for modifying the properties of the moulding material
    • B28B7/44Moulds; Cores; Mandrels characterised by means for modifying the properties of the moulding material for treating with gases or degassing, e.g. for de-aerating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/007Producing shaped prefabricated articles from the material by freezing the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/02Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form
    • B28B3/022Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form combined with vibrating or jolting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/40Moulds; Cores; Mandrels characterised by means for modifying the properties of the moulding material
    • B28B7/42Moulds; Cores; Mandrels characterised by means for modifying the properties of the moulding material for heating or cooling, e.g. steam jackets, by means of treating agents acting directly on the moulding material

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE:To obtain a high-strength concrete in good workability in cold districts, the polar regions, etc., by kneading cement, aggregate and finely granulated ice smaller in size than cement. CONSTITUTION:When concrete is to be produced in cold districts, the polar regions, etc., a mixer is first charged with cement, fine aggregate, coarse aggregate and finely granulated ice smaller in size than cement and, if needed, an admixture followed by agitation and kneading to make concrete. Thence, a closed hollow mold 1 formed in conformity with the shape of the molded product to be made is charged with the resultant concrete followed by pressurization by inserting a relevant device 3 as well as application of vibration on both the mold 1 and concrete with a vibrator 4. Furthermore, pressurized air is introduced through an air feed pipe 2 into the mold to apply pressure on the concrete along with heating by a heating means 5 to melt the granular ice followed by curing said concrete, thus obtaining the objective concrete molded product.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、寒冷地、極地、さらには地球圏外において
コンクリートを製造する方法及びコンクリート成型品を
製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method for producing concrete and a method for producing concrete molded products in cold regions, polar regions, and even outside the earth's sphere.

「従来の技術及びその課題」 人類の行動半径の拡大、あるいは工期短縮等の要求によ
り、従来余り試みられてぃながった寒冷地、極地等の過
酷環境下でのコンクリート構造物の構築が近年検討され
ている。
"Conventional technology and its challenges" Due to the expansion of the range of human activities and the demand for shorter construction times, construction of concrete structures in harsh environments such as cold regions and polar regions, which have not been attempted in the past, has become possible. It has been considered in recent years.

寒冷地、極地においてコンクリートを製造し、あるいは
コンクリートを打設することでコンクリート構造物又は
コンクリートブロック等のコンクリ−1・成型品を製造
する際、考慮すべき主な点については以下に挙げるとお
りである。
The main points to consider when manufacturing concrete or casting concrete to manufacture concrete structures or concrete molded products such as concrete blocks in cold or polar regions are listed below. be.

■ セメントと水との水和反応は周囲の温度に左右され
るため、所要の強度発現までに長期間を要し、養生時間
が長期となる。
■ Because the hydration reaction between cement and water is affected by the surrounding temperature, it takes a long time to develop the required strength, resulting in a long curing time.

■ コンクリート打設中又は養生初期に気温が低い(お
およそ4°C以下)と、コンクリート温度が低下してコ
ンクリート中の水分が凍結し、これが余剰水となって悪
影響を与える。
■ If the temperature is low (approximately 4°C or less) during concrete placement or in the early stage of curing, the concrete temperature will drop and the water in the concrete will freeze, resulting in excess water and having negative effects.

一方、近年の宇宙技術の進歩により、月面等の地球圏外
での人類の生存も夢でなく、現実的な検討段階に突入し
つつある。この場合、宇宙構造物の材料としてのコンク
リートは、熱容量の大きさ、熱・放射線に対する遮断性
能の高さ等の利点を有するため、好適な材料であるとい
える。この際、低重力、真空、超低温等の条件下におい
ても地球上と同等の特性を有するコンクリートを製造、
構築する技術の開発が待ち望まれる。
On the other hand, due to recent advances in space technology, the possibility of human survival outside the Earth's sphere, such as on the moon, is no longer a dream, but is entering the stage of realistic consideration. In this case, concrete is a suitable material for the space structure because it has advantages such as large heat capacity and high ability to block heat and radiation. At this time, we will produce concrete that has properties equivalent to those on Earth even under conditions such as low gravity, vacuum, and ultra-low temperatures.
The development of the technology to build it is eagerly awaited.

この発明は前記事情に鑑みてなされたもので、寒冷地、
極地、あるいは地球圏外において高品質のコンクリート
を製造し、あるいはコンクリート成型品を製造しうるコ
ンクリート製造方法及びコンクリート成型品製造方法の
提供を目的としている。
This invention was made in view of the above circumstances.
The purpose of the present invention is to provide a method for producing concrete and a method for producing concrete molded products that can produce high-quality concrete or concrete molded products in polar regions or outside the Earth's sphere.

「課題を解決するための手段」 前述した課題を解決するために、この発明は以下のよう
な手段を採用したことを特徴とするものである。
"Means for Solving the Problems" In order to solve the above-mentioned problems, the present invention is characterized by employing the following means.

すなわち、第1の請求項に係るコンクリート製造方法は
、セメントと、骨材と、前記セメントより粒径の小さい
微粒子化氷粒とを混合してコンクリートを製造すること
を特徴としている。
That is, the concrete manufacturing method according to the first aspect is characterized in that concrete is manufactured by mixing cement, aggregate, and micronized ice grains having a particle size smaller than that of the cement.

また、第2の請求項に係るコンクリート成型品製造方法
は、セメントと、骨材と、前記セメントより粒径の小さ
い微粒子化氷粒との混合物を密閉型の成型容器内に入れ
、前記混合物を加圧しつつこれに振動を与え、さらにこ
の混合物を密閉状態で圧気手段により加圧しながら加熱
することでコンクリート成型品を製造することを特徴と
している。
Further, the method for producing a concrete molded product according to the second claim includes placing a mixture of cement, aggregate, and micronized ice grains smaller in particle size than the cement in a closed molding container, and then pouring the mixture into a closed molding container. The method is characterized in that a concrete molded product is manufactured by applying vibration to the mixture while pressurizing it, and then heating the mixture while pressurizing it with a compressed air means in a closed state.

さらに、第3の請求項に係るコンクリート成型品製造方
法は、第2の請求項に係る製造方法において、前記混合
物に電磁波を照射することでこの混合物を加熱すること
を特徴としている。
Furthermore, a method for manufacturing a concrete molded product according to a third aspect of the present invention is characterized in that, in the manufacturing method according to the second aspect, the mixture is heated by irradiating the mixture with electromagnetic waves.

「実施例」 以下、この発明のコンクリート成型品製造方法の実施例
について図面を参照して説明する。
"Example" Hereinafter, an example of the method for manufacturing a concrete molded product of the present invention will be described with reference to the drawings.

(i)コンクリート製造 セメント、細骨材、粗骨材、微粒子化された氷粒、及び
必要な混和剤をミキサー内に投入し、ミキサーによりこ
れら全攪拌、混練することでコンクリートを製造する。
(i) Concrete production Cement, fine aggregate, coarse aggregate, micronized ice particles, and necessary admixtures are put into a mixer, and all of these are stirred and kneaded by the mixer to produce concrete.

これらコンクリート構成材料のうち、セメント、細骨材
、粗骨材及び混和剤は一般のコンクリートに使用されて
いるもので良く、何等特殊な特性を有することは要求さ
れない。また、月面でコンクリートを製造する際には、
混和剤を除くこれらを地球から搬送する必要はない。す
なわち、細骨材、粗骨材は月面の岩石を適宜破砕して製
造でき、−方、月面の岩石にはセメント成分が多量に含
まれていることから、このセメント成分を分離・抽出す
ることでセメントを製造することができる。
Among these concrete constituent materials, cement, fine aggregate, coarse aggregate, and admixtures may be those used in general concrete, and are not required to have any special properties. Also, when producing concrete on the moon,
There is no need to transport them from Earth, except for admixtures. In other words, fine aggregate and coarse aggregate can be produced by appropriately crushing lunar rocks. On the other hand, since lunar rocks contain a large amount of cement components, it is necessary to separate and extract this cement component. Cement can be manufactured by doing this.

前記微粒子化されIζ氷は、その粒径がセメント粒子の
粒径より小さいもの(例えば0.1μm〜5.0μm程
度)とされている。このような氷は、例えば零度以下の
寒冷雰囲気中にノズル等で水を1気圧下の密閉容器内に
9霧すれば得ることがで=4− きる。当然、コンクリート製造中の気温が零度以下であ
れば、単に水を1気圧下の密閉容器内に噴霧するのみで
氷粒を得ることができる。さらに言えば、微粒子化され
た氷粒を得る手段については、周知の手段から適宜選択
されれば良く、何等限定されない。
The particle size of the micronized Iζ ice is smaller than the particle size of cement particles (for example, about 0.1 μm to 5.0 μm). Such ice can be obtained, for example, by spraying water into a closed container under 1 atm using a nozzle in a cold atmosphere below zero degrees. Of course, if the temperature during concrete production is below zero, ice particles can be obtained simply by spraying water into a closed container under 1 atmosphere. Furthermore, the means for obtaining micronized ice particles may be appropriately selected from well-known means and is not limited in any way.

なお、月面で氷の原料となる水を得るには、次のような
手段によれば良い。すなわち、酸素については、月面の
岩石の大部分が酸化物であるから、これを分解して得れ
ば良い。水素については、月面上で水素及び水素化合物
の存在が現時点で確認されておらず、従って、これにつ
いては地球から月面上に搬入すれば良い。そして、これ
ら酸素及び水素を反応させることで水を得ることができ
る。
The following methods can be used to obtain water, which is the raw material for ice on the moon. In other words, oxygen can be obtained by decomposing oxides, since most of the rocks on the moon are oxides. Regarding hydrogen, the existence of hydrogen and hydrogen compounds on the lunar surface has not been confirmed at this time, so it is sufficient to transport it from Earth to the lunar surface. Water can then be obtained by reacting these oxygen and hydrogen.

また、これを氷粒にする場合、月面上の日陰の地点の気
温が約−160℃にも達すること、及び月面上が真空、
低重力であることから、前述の如く1気圧下の密閉容器
内に噴霧することで、地球上に比して粒径の平均した氷
粒を容易に得ることができる。
In addition, if this were to be turned into ice grains, the temperature at a shaded spot on the moon would reach approximately -160°C, and the moon would be in a vacuum.
Because of the low gravity, ice particles with an average particle size compared to those on Earth can be easily obtained by spraying into a closed container under 1 atm as described above.

そして、前述したコンクリートの構成材料たるセメント
、細骨材、粗骨材、微粒子化された氷粒等を混練するミ
キサーも、周知のコンクリート混練用ミキサーであれば
良く、何等特殊な機能等は要求されない。ただし、月面
上においてコンクリートを混練する際、低重力下では前
記構成材料の飛散が心配されるので、密閉型のミキサー
を用いることが望ましい。また、月面上の日中は約+1
20°Cにも達するので、後述するコンクリート打設を
通して各工程は日陰の低温下で行うこととなる。これ以
外に月面上においてコンクリート混線に悪影響を与える
要因はなく、むしろ、低重力下においては各構成材料の
密度差による材料分離が小さくなる利点がある。
The mixer for mixing the aforementioned concrete constituent materials such as cement, fine aggregate, coarse aggregate, and micronized ice particles may be any well-known mixer for mixing concrete, and no special functions are required. Not done. However, when mixing concrete on the lunar surface, it is desirable to use a closed mixer because there is a concern that the constituent materials may scatter under low gravity. Also, during the day on the lunar surface, approximately +1
Since the temperature can reach up to 20°C, each process, including concrete pouring, which will be described later, must be carried out in the shade at a low temperature. Other than this, there are no other factors that adversely affect concrete crosstalk on the lunar surface; rather, under low gravity, there is an advantage that material separation due to density differences between constituent materials becomes smaller.

(ij)コンクリート打設 図面に示すように、密閉された型枠内に前述の工程によ
り製造されたコンクリートを打設する。
(ij) Concrete pouring As shown in the drawing, the concrete manufactured by the above-mentioned process is poured into a sealed formwork.

図面において、符号lは製造すべきコンクリート成型品
(例えば柱、馨、プレキャストコンクリート板、コンク
リートプロ・ンク)の形状に合わせて形成された密閉中
空状の型枠であり、この型枠1には、その上部にコンク
リート投入口(図示略)が設けられていると共に、送気
管2が連通されて設けられている。この送気管2の先端
は圧縮空気等の気体を送出する圧気手段(図示略)に接
続されている。また、型枠1には、その内部の気圧が一
定以上になった段階でこの圧力を外方に逃がす安全弁(
図示略)及び型枠1全体を振動させるパイブレーク4が
取り付けられている。そして、この型枠1内には、前述
の工程により製造されたコンクリートCが投入口を介し
て投入、打設されている。
In the drawings, reference numeral 1 indicates a closed hollow formwork formed to match the shape of the concrete molded product to be manufactured (for example, pillars, gates, precast concrete plates, concrete blocks). , a concrete inlet (not shown) is provided at the upper part thereof, and an air supply pipe 2 is provided in communication therewith. The tip of the air supply pipe 2 is connected to a pneumatic means (not shown) for delivering gas such as compressed air. The formwork 1 also has a safety valve (
(not shown) and a pie break 4 that vibrates the entire formwork 1. Concrete C manufactured by the above-described process is poured into the formwork 1 and placed through an inlet.

コンクリートCを型枠1内に投入、打設した状態で、投
入口より加圧装置3を挿入して加圧(例えば2 kgf
/ cm2)する。これと同時に、前記パイブレーク4
を作動させることで型枠1、及びコンクリートCに振動
を与え、前述のコンクリートC加圧と相俟ってコンクリ
ートCを下方に締め固める。さらに、前述の圧気手段及
び送気管2により圧縮空気等の気体を型枠1内に導入す
ることで、コンクリートCを所定圧(例えば2気圧)に
まで加圧する。加熱手段5によりコンクリートCを加熱
することで前述の氷粒を溶解させると共に、コンクリー
トCの温度を水−セメント水和反応が容易となる温度(
通常2000程度)にまで加温する。
With the concrete C poured into the formwork 1 and poured, pressurize it by inserting the pressurizing device 3 from the inlet to pressurize it (for example, 2 kgf).
/ cm2). At the same time, the pie break 4
is activated to give vibration to the formwork 1 and the concrete C, and together with the above-mentioned pressurization of the concrete C, the concrete C is compacted downward. Furthermore, the concrete C is pressurized to a predetermined pressure (for example, 2 atmospheres) by introducing gas such as compressed air into the formwork 1 using the above-mentioned pressurized air means and the air pipe 2. By heating the concrete C with the heating means 5, the ice particles mentioned above are melted, and the temperature of the concrete C is adjusted to a temperature at which the water-cement hydration reaction becomes easy (
(usually about 2000℃).

この加熱手段5は周知の加熱手段であれば何等その種類
、方式等に限定はないが、この実施例では、マイクロ波
電子管によりマイクロ波をコンクリートCに向って照射
することでこれを加熱するマイクロ波加熱手段5を用い
ている。
The heating means 5 is not limited in type or method as long as it is a well-known heating means, but in this embodiment, a microwave electron tube is used to irradiate microwaves toward the concrete C to heat it. A wave heating means 5 is used.

このようにしてコンクリートCの加熱を行った後は、前
記圧気手段によるコンクリートC加圧及び加熱手段5に
よるコンクリートC加温を中止し、コンクリートCが硬
化して所定強度が発揚するまで養生させる。そして、コ
ンクリートC硬化後に型枠1を脱型することで、所定形
状のコンクリート成型品を得ることかできる。
After heating the concrete C in this way, the pressurization of the concrete C by the air pressure means and the heating of the concrete C by the heating means 5 are stopped, and the concrete C is cured until it hardens and reaches a predetermined strength. Then, by removing the formwork 1 after the concrete C has hardened, a concrete molded product having a predetermined shape can be obtained.

従って、この実施例では、コンクリートCの練り混ぜ水
の代わりにセメント粒子より粒径の小さい微粒子化した
氷粒を用いているので、コンクリ一トC混練後にこの氷
粒を溶解させる作業が簡易化される。これと共に、セメ
ント粒子表面が微粒子化した氷粒により覆われることと
なり、ミキサー内に投入された氷粒の殆どがセメントと
の水和反応に用いられ、余剰水が生じるおそれが少ない
Therefore, in this example, micronized ice particles having a particle size smaller than cement particles are used instead of mixing water for concrete C, so that the work of melting the ice particles after mixing concrete C is simplified. be done. At the same time, the surfaces of the cement particles are covered with micronized ice particles, and most of the ice particles introduced into the mixer are used for the hydration reaction with the cement, so there is little risk of excess water being generated.

従って、氷が比較的容易に入手できる寒冷地、極地にお
いて、この氷をコンクリート構成材料として使用するこ
とができる。
Therefore, this ice can be used as a concrete constituent material in cold regions and polar regions where ice is relatively easily available.

一方、月面上は真空であるから水は蒸発するが、月面上
の日陰の温度(約−160′c)にある氷は蒸発(昇華
)しないため、氷の状態で練り混ぜればコンクリートを
製造することができる。この場合も、氷を微粒子化する
ことで、製造されたコンクリートC中に余剰水が生じる
おそれが少なく、大変好ましい。
On the other hand, water evaporates on the lunar surface because of the vacuum, but ice in the shade on the lunar surface (approximately -160'c) does not evaporate (sublimate), so if you mix it in an icy state, you can make concrete. can be manufactured. In this case as well, by pulverizing the ice, there is less risk of excess water being generated in the manufactured concrete C, which is very preferable.

また、コンクリートC打設中は、このコンクリートcを
加圧装置3により加圧しつつパイブレーク4によりこれ
に振動を与えているので、各コンクリート構成材料間の
間陣にある気体を容易にかつ確実に追い出して密実なコ
ンクリートcを打設、成型することができる。また、加
圧、加振動径に密閉状態で圧気手段により加圧しながら
加熱手段5によりこのコンクリートC中の氷粒を溶解さ
せて必要温度にまで加温しているので、養生初期におい
て氷粒を確実に消滅させることができると共に、水−セ
メント水和反応を促進せしめて、高強度なコンクリート
Cを打設、成形することができる。特に、月面上は低重
力かつ超低温であり、放置した状態でコンクリートを打
設すれば空隙の多い強度不足なコンクリートとなりうる
ので、このような効果は必要かつ不可欠なものである。
In addition, during pouring of concrete C, the concrete c is pressurized by the pressurizing device 3 and vibrated by the pie break 4, so that the gas in the spaces between the concrete constituent materials can be easily and reliably removed. It is possible to cast and form dense concrete c by expelling the concrete. In addition, since the heating means 5 melts the ice grains in the concrete C and heats it to the required temperature while applying pressure with the compressed air means in a closed state to the applied vibration diameter, the ice grains are melted in the concrete C at the initial stage of curing. In addition to being able to reliably eliminate it, the water-cement hydration reaction is promoted, and high-strength concrete C can be cast and formed. In particular, such effects are necessary and essential, as the lunar surface has low gravity and extremely low temperatures, and if concrete is poured while left unused, the concrete may lack strength with many voids.

よって、以上述べたようにこの実施例によれば、寒冷地
、極地、あるいは月面上等の地球圏外において高品質の
コンクリートを製造し、あるいはコンクリート成型品を
製造することができる。
Therefore, as described above, according to this embodiment, high quality concrete or concrete molded products can be manufactured in cold regions, polar regions, or outside the earth's sphere such as on the moon.

また、この実施例では、前述の如くセメント粒子より粒
径の小さい微粒子化した氷粒を用いているので、ミキサ
ーでの混線時に氷粒以外のコンクリート構成材料粒子間
の間隙に氷粒が容易に入り込んでゆく。従って、氷粒(
すなわち水分)がコンクリート中に満遍なく分散され、
コンクリートの混練作業が大変簡易化される。また逆に
、従来練り混ぜを容易とするために必要としていた過剰
の水を削減せしめることができ、より高品質のコンクリ
ートを容易に得ることができる。
In addition, in this example, since micronized ice grains with a smaller particle size than cement particles are used as described above, ice grains can easily form in the gaps between particles of concrete constituent materials other than ice grains during crosstalk in the mixer. I'm getting into it. Therefore, ice grains (
In other words, water) is evenly distributed throughout the concrete,
Concrete mixing work is greatly simplified. Conversely, it is possible to reduce the amount of excess water conventionally required to facilitate mixing, making it easier to obtain higher quality concrete.

なお、この発明のコンクリート製造方法及びコンクリ−
1・成型品製造方法は、その細部が前記実施例に限定さ
れず、種々の変形例が可能である。
In addition, the concrete manufacturing method and concrete of this invention
1. The details of the method for manufacturing a molded product are not limited to the above embodiments, and various modifications are possible.

「発明の効果」 以上詳細に説明したように、この発明では、コンクリー
トの練り混ぜ水の代わりにセメントより粒径の小さい微
粒子化氷粒を用いているので、コンクリート混練後にこ
の氷粒を溶解させる作業が簡易化されると共に、セメン
ト粒子表面が微粒子化氷粒により覆われることとなり、
ミキサー内に投入された氷粒の殆々゛がセメントとの水
利反応に用いられ、余剰水が生じるおそれが少ない。
"Effects of the Invention" As explained in detail above, in this invention, micronized ice particles having a particle size smaller than cement are used instead of mixing water for concrete, so the ice particles are dissolved after concrete is mixed. This simplifies the work, and the surface of the cement particles is covered with micronized ice particles.
Most of the ice particles put into the mixer are used for the water utilization reaction with cement, so there is little risk of surplus water being produced.

また、コンクリート打設、成型中は、このコンクリート
を加圧しつつこれに振動を与えているので、各コンクリ
ート樗成材料間の間隙にある気体を容易にかつ確実に追
い出して密実なコンクリートを打設、成型することかで
きる。また、密閉状態で圧気手段により加圧しながら加
熱しているので、養生初期において氷粒を確実に消滅さ
せることができると共に、水−セメント水利反応を促進
せしめて、高強度なコンクリートを打設、成形すること
ができる。
In addition, during concrete pouring and shaping, the concrete is pressurized and vibrated, so gas in the gaps between each concrete mortar material is easily and reliably expelled, resulting in dense concrete pouring. It can be set and molded. In addition, since heating is carried out under pressure using air pressure means in a sealed state, ice grains can be reliably extinguished in the early stage of curing, and the water-cement irrigation reaction can be promoted, allowing high-strength concrete to be cast. Can be molded.

よって、この発明によれば、寒冷地、極地、あるいは月
面上等の地球圏外において高品質のコンクリートを製造
し、あるいはコンクリート成型品を製造することができ
る。
Therefore, according to the present invention, high-quality concrete or concrete molded products can be manufactured in cold regions, polar regions, or outside the earth's sphere, such as on the moon.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明の一実施例であるコンクリート成型品製
造方法に使用される型枠の構成を示す図である。 1・・・・・・型枠(成型容葵)、2・・・・・・送気
管、3・・・・・・パイブレーク、4・・・・・・加熱
手段。
The drawing is a diagram showing the structure of a formwork used in a method for manufacturing a concrete molded product, which is an embodiment of the present invention. 1... Formwork (molding container), 2... Air pipe, 3... Pie break, 4... Heating means.

Claims (3)

【特許請求の範囲】[Claims] (1)セメントと、骨材と、前記セメントより粒径の小
さい微粒子化氷粒とを混合してコンクリートを製造する
ことを特徴とするコンクリート製造方法。
(1) A method for producing concrete, which comprises producing concrete by mixing cement, aggregate, and micronized ice particles having a particle size smaller than that of the cement.
(2)セメントと、骨材と、前記セメントより粒径の小
さい微粒子化氷粒との混合物を密閉型の成型容器内に入
れ、前記混合物を加圧しつつこれに振動を与え、さらに
この混合物を密閉状態で圧気手段により加圧しながら加
熱することでコンクリート成型品を製造することを特徴
とするコンクリート成型品製造方法。
(2) A mixture of cement, aggregate, and micronized ice particles having a particle size smaller than that of the cement is placed in a sealed molded container, and the mixture is vibrated while being pressurized. A method for manufacturing a concrete molded product, characterized in that the concrete molded product is manufactured by heating while pressurizing the concrete molded product in a closed state using air pressure means.
(3)前記混合物に電磁波を照射することでこの混合物
を加熱することを特徴とする特許請求の範囲第2項記載
のコンクリート成型品製造方法。
(3) The method for manufacturing a concrete molded product according to claim 2, characterized in that the mixture is heated by irradiating the mixture with electromagnetic waves.
JP14633388A 1988-06-14 1988-06-14 Method for producing concrete and method for producing concrete molded product Expired - Lifetime JP2617115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14633388A JP2617115B2 (en) 1988-06-14 1988-06-14 Method for producing concrete and method for producing concrete molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14633388A JP2617115B2 (en) 1988-06-14 1988-06-14 Method for producing concrete and method for producing concrete molded product

Publications (2)

Publication Number Publication Date
JPH01317143A true JPH01317143A (en) 1989-12-21
JP2617115B2 JP2617115B2 (en) 1997-06-04

Family

ID=15405316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14633388A Expired - Lifetime JP2617115B2 (en) 1988-06-14 1988-06-14 Method for producing concrete and method for producing concrete molded product

Country Status (1)

Country Link
JP (1) JP2617115B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002036523A1 (en) * 2000-11-03 2002-05-10 Messer Griesheim Gmbh Method and device for the production of concrete
CN110744689A (en) * 2019-11-20 2020-02-04 贵州彬腾越新型建材有限公司 A mould for producing air entrainment brick

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002036523A1 (en) * 2000-11-03 2002-05-10 Messer Griesheim Gmbh Method and device for the production of concrete
CN110744689A (en) * 2019-11-20 2020-02-04 贵州彬腾越新型建材有限公司 A mould for producing air entrainment brick

Also Published As

Publication number Publication date
JP2617115B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
JPH05238850A (en) Production of gypsum building materials
JPH0380403B2 (en)
JPH01317143A (en) Production of concrete and production of concrete molded product therefrom
US4229393A (en) Method of producing sand-lime bricks with a low bulk density
CN109836099A (en) Non-evaporating pressure ceramsite concrete wall panel of one kind and preparation method thereof
JP3061730B2 (en) Porous concrete and method for producing molded body thereof
JPH11268969A (en) Porous concrete
JP4072782B2 (en) Wet refractory material manufacturing method, wet refractory material manufacturing apparatus, and wet refractory material spraying apparatus
JPH05194057A (en) Composite solid product of polystyrene/foam cement, and its production
US20040217505A1 (en) Apparatus and method for production of synthetic lightweight aggregate.
JPH05319952A (en) Communicating porous body
JPH02192915A (en) Method and apparatus for manufacturing high-density cement material
JP2000191353A (en) Production of glass aggregate and glass aggregate obtained thereby
RU2270091C2 (en) Method for making concrete and ferroconcrete products, manufacturing line for making them
JP4434388B2 (en) Coal ash plate manufacturing method
JP4382937B2 (en) Method for producing coal-ash quality artificial aggregate
JP2517175B2 (en) Lightweight concrete panel manufacturing method
JPH0640759A (en) Production of high-strength light-weight concrete molded body and concrete molded body
JPS623057A (en) Manufacture of cement set body
RU2228264C2 (en) Method for manufacture of cellular concrete articles
JPH0414231B2 (en)
JPH05133103A (en) Method and device for placing concrete
CN117756470A (en) C30 precast concrete member prepared from IV-grade recycled aggregate and preparation method thereof
JPH06135775A (en) Production of high strength lightweight concrete molded body
JP2000072498A (en) Colored aggregate and production of colored aggregate