JPH01316607A - Navigation system - Google Patents

Navigation system

Info

Publication number
JPH01316607A
JPH01316607A JP3908489A JP3908489A JPH01316607A JP H01316607 A JPH01316607 A JP H01316607A JP 3908489 A JP3908489 A JP 3908489A JP 3908489 A JP3908489 A JP 3908489A JP H01316607 A JPH01316607 A JP H01316607A
Authority
JP
Japan
Prior art keywords
navigation device
navigation
difference
self
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3908489A
Other languages
Japanese (ja)
Inventor
Hiroshi Nakai
弘 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP3908489A priority Critical patent/JPH01316607A/en
Publication of JPH01316607A publication Critical patent/JPH01316607A/en
Pending legal-status Critical Current

Links

Landscapes

  • Navigation (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

PURPOSE:To accurately perform drift correction on measuring values obtained at the time of self-contained navigation so as to eliminate the variation of an offset error in a short time produced at the time of radio navigation by combining the radio navigation and self-contained navigation. CONSTITUTION:A self-contained navigation system 3 performs drift correction by using a measured result of a radio navigation system 2 or an output result of a Kalman filter 7 selected by means of a measuring value switching means 5 as a new inferred value. A measuring value difference calculating means 4 calculates the difference between the measuring values of the systems 2 and 3 and the means 5 selectively gives either one of the measuring values of the systems 2 and 3 to the filter 7 in accordance with the magnitude of the difference calculated by the means 4. In other words, the measuring value of the radio navigation is used as the measured result in the normal state where the difference between the measuring values of the systems 2 and 3 is small and the measuring value by the self-contained navigation is used as the measuring value when the difference is large. Then the drift produced at the time of the self-contained navigation is eliminated by the measuring result of the radio navigation or the output result of the filter 7.

Description

【発明の詳細な説明】 Tal産業上の利用分野 この発明は、電波航法と自立航法を組み合わせたいわゆ
るハイブリッド航法による航法装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application of Tal This invention relates to a navigation device using so-called hybrid navigation, which combines radio navigation and self-contained navigation.

tb+発明の概要 この発明に係る航法装置は、電波航法装置と自立航法装
置を用いて自立航法による測定値のドリフト補正を的確
に行い、また電波航法による測定値の短時間におけるオ
フセット誤差の変動を除去した航法装置に関する。
tb+ Summary of the Invention The navigation device according to the present invention uses a radio navigation device and a self-contained navigation device to accurately correct the drift of measured values by self-contained navigation, and also corrects short-term offset error fluctuations in measured values by radio navigation. Regarding removed navigation equipment.

(C)従来の技術 航空機や船舶の航法装置として、従来より複数種の航法
手段を組み合わせて、それぞれの欠点を補うことによっ
て位置や速度などの測定精度を高めたいわゆるハイブリ
ッド航法が採用されている。また、測定された時系列デ
ータから現在の状態(位置、速度など)を推測するため
にカルマンフィルタなどを用いてフィルタリングが行わ
れている。
(C) Conventional technology So-called hybrid navigation, which combines multiple types of navigation methods and compensates for the shortcomings of each to improve the accuracy of measuring position, speed, etc., has been adopted as a navigation system for aircraft and ships. . Additionally, filtering is performed using a Kalman filter or the like in order to estimate the current state (position, velocity, etc.) from the measured time series data.

従来、ハイブリッド航法にカルマンフィルタを適用した
例として次のものが挙げられる。
Conventionally, the following is an example of applying a Kalman filter to hybrid navigation.

(1)INS(慣性航法装置)とGPS(全世界測位シ
ステム) (21I N Sとオメガ (31)N Sと航空衛星システム (4)オメガとNN5S (5)ロランCρ−ρ航法と衛星航法 (6)ロランCとジャイロおよび電磁ログ(71)N 
SとロランC (8)オメガとジャイロおよび電磁ログ・曳航ログ・ド
ツプラスピードログなと。
(1) INS (Inertial Navigation System) and GPS (Global Positioning System) (21I NS and Omega (31) NS and Aeronautical Satellite System (4) Omega and NN5S (5) Loran Cρ-ρ navigation and satellite navigation ( 6) Loran C, gyro and electromagnetic log (71)N
S and Loran C (8) Omega, gyro, electromagnetic log, towing log, Dotsupura speed log, etc.

−iにジャイロとログまたはINSなどによる自立航法
の場合、位置誤差が時間の経過に伴い発散するが上記例
にもあるように、位置誤差が時間に無関係である電波航
法と組み合わせることによって精度を向上させている。
- In the case of independent navigation using a gyro and a log or INS, the position error diverges over time, but as in the example above, accuracy can be improved by combining it with radio navigation, where the position error is independent of time. Improving.

(d)発明が解決しようとする課題 従来の電波航法と自立航法を組み合わせたハイブリッド
航法装置においては、自立航法を基準とし、自立航法に
よる累積誤差を必要な時点で電波航法の測定結果により
補正する方法が採られている。ところが一般に電波航法
の誤差は時間経過に関係なくほぼ測定であるが、次のよ
うな電波伝搬速度(時間)の測定誤差が生じる。
(d) Problems to be solved by the invention In a hybrid navigation device that combines conventional radio navigation and self-contained navigation, self-contained navigation is used as a reference, and the cumulative error caused by self-contained navigation is corrected at necessary times using the measurement results of radio navigation. method is adopted. However, although errors in radio navigation are generally measured regardless of the passage of time, the following measurement errors in radio wave propagation speed (time) occur.

■地球を単純な回転楕円体と近似したため、電波伝搬路
長が実際と異なる。
■Because the earth is approximated as a simple spheroid, the radio wave propagation path length differs from the actual one.

■伝搬経路の媒体が仮定したものと異なる。例えば海上
伝搬を仮定していて、途中に陸地がある場合に理論電波
伝搬速度が実際と異なる。
■The medium of the propagation path is different from the one assumed. For example, if we assume ocean propagation and there is land on the way, the theoretical radio wave propagation speed will differ from the actual speed.

■電波伝搬路上の大地の導電率の変化などによる伝搬速
度の標準値からの偏差がある。
■There is a deviation from the standard value of the propagation speed due to changes in the conductivity of the ground on the radio wave propagation path.

■受信点の推定位置が正しくないため電波伝搬路長が実
際と異なる。
■Because the estimated position of the receiving point is incorrect, the radio wave propagation path length differs from the actual one.

このようなオフセット誤差は直接的に予測することがで
きず、従来の航法装置においてはオフセット誤差の有効
な除去方法が採られていない。
Such offset errors cannot be predicted directly, and conventional navigation devices do not have an effective method for removing offset errors.

この発明の目的は、電波航法と自立航法を組み合わせて
自立航法による測定値のドリフト補正を的確に行うとと
もに、電波航法による短時間におけるオフセット誤差の
変動を有効に除去して航法精度を高めた、航空機や船舶
あるいは車両等に搭載可能な航法装置を提供することに
ある。
The purpose of this invention is to combine radio navigation and self-contained navigation to accurately correct the drift of measured values by self-contained navigation, and to effectively eliminate fluctuations in offset errors caused by radio navigation in a short period of time to improve navigation accuracy. The purpose of the present invention is to provide a navigation device that can be mounted on an aircraft, ship, vehicle, or the like.

(e)課題を解決するための手段 この発明の請求項1に係る航法装置は、電波航法により
測定点の位置と速度を測定する電波航法装置と、 自立航法により測定点の位置と速度を測定する自立航法
装置と、 両肌法装置による測定値の差を検出するとともに、その
差が予め定められた値を超えるとき、自立航法装置によ
る測定結果をフィルタに与え、前記差が予め定めた値を
超えないとき、電波航法装置による測定結果をフィルタ
に与える測定値選択手段と、 電波航法装置による測定結果またはフィルタの出力結果
を自立航法装置の新たな推測値として補正するドリフト
補正手段と、から構成したことを特徴としている。
(e) Means for Solving the Problems A navigation device according to claim 1 of the present invention includes a radio navigation device that measures the position and speed of a measurement point by radio navigation, and a radio navigation device that measures the position and speed of a measurement point by self-contained navigation. A self-contained navigation device detects the difference between the measurement values obtained by both skin measurement devices, and when the difference exceeds a predetermined value, the measurement result by the self-contained navigation device is applied to the filter, and the difference is determined to be a predetermined value. , a measurement value selection means for supplying the measurement result by the radio navigation device to the filter, and a drift correction means for correcting the measurement result by the radio navigation device or the output result of the filter as a new estimated value of the autonomous navigation device. It is characterized by its composition.

また、この発明の請求項2に係る航法装置は、電波航法
により測定点の位置と速度を測定する電波航法装置と、 自立航法により測定点の位置と速度を測定する自立航法
装置と、 両肌法装置による測定値の差を検出するとともに、その
差が予φ定められた値を超えるとき、自立航法装置によ
る測定結果をフィルタに与え、前記差が予め定めた値を
超えないとき、電波航法装置による測定結果をフィルタ
に与える測定値選択手段と、 自立航法装置による測定結果またはフィルタの出力結果
を電波航法装置の新たな推測値として補正するオフセッ
ト補正手段と、から構成したことを特徴としている。
Further, the navigation device according to claim 2 of the present invention includes: a radio navigation device that measures the position and speed of a measurement point by radio navigation; a self-contained navigation device that measures the position and speed of a measurement point by self-contained navigation; When the difference in the measured values by the self-contained navigation device is detected, and the difference exceeds a predetermined value, the measurement result by the self-contained navigation device is applied to the filter, and when the difference does not exceed the predetermined value, radio navigation is performed. The present invention is characterized by comprising: a measurement value selection means for supplying the measurement result by the device to the filter; and an offset correction means for correcting the measurement result by the self-contained navigation device or the output result of the filter as a new estimated value of the radio navigation device. .

さらに、この発明の請求項3に係る航法装置は、電波航
法により測定点の位置と速度を測定する電波航法装置と
、 自立航法により測定点の位置と速度を測定する自立航法
装置と、 両肌法装置による測定値の差を検出するとともに、その
差が予め定められた値を超えると)、自立航法装置によ
る測定結果をフィルタに与え、前記差が予め定めた値を
超えないとき、電波航法装置による測定結果をフィルタ
に与える測定値選択手段と、 前記両肌法装置による測定値の差を検出するとともに、
その差が予め定められた値を超えるとき、自立航法装置
の測定結果またはフィルタの出力結果によって電波航法
装置による測定値のオフセットを補正し、前記差が予め
定めた値を超えないとき、電波航法装置による測定結果
または前記フィルタの出力結果によって自立航法装置の
測定値のドリフトを補正する測定値補正手段と、から構
成したことを特徴としている。
Furthermore, the navigation device according to claim 3 of the present invention includes: a radio navigation device that measures the position and speed of a measurement point by radio navigation; a self-contained navigation device that measures the position and speed of a measurement point by self-contained navigation; When the difference in the measured values by the self-contained navigation device is detected (and the difference exceeds a predetermined value), the measurement result by the self-contained navigation device is applied to the filter, and when the difference does not exceed the predetermined value, the radio navigation a measurement value selection means for supplying the measurement results by the device to the filter; and detecting a difference between the measurement values by the two skin method devices;
When the difference exceeds a predetermined value, the offset of the measurement value by the radio navigation device is corrected by the measurement result of the self-contained navigation device or the output result of the filter, and when the difference does not exceed the predetermined value, the radio navigation It is characterized by comprising a measured value correction means for correcting the drift of the measured value of the self-contained navigation device based on the measurement result by the device or the output result of the filter.

(f1作用 この発明に係る航法装置においては、電波航法装置は電
波航法により測定点の位置と速度を測定(推測)し、自
立航法装置は自立航法により測定点の位置と速度を測定
(推測)する、そして測定値選択手段は、両肌法装置に
よる測定値の差を検出するとともに、その差が予め定め
た値を超えるとき、自立航法装置による測定結果をフィ
ルタに与え、測定値の差が予め定めた値を超えないとき
、電波航法装置による測定結果をフィルタに与える。
(f1 effect) In the navigation device according to the present invention, the radio navigation device measures (estimates) the position and speed of the measurement point using radio navigation, and the autonomous navigation device measures (estimates) the position and speed of the measurement point using self-contained navigation. The measurement value selection means detects the difference between the measurement values obtained by both skin measurement devices, and when the difference exceeds a predetermined value, the measurement value selection means applies the measurement result obtained by the self-contained navigation device to the filter, and detects the difference between the measurement values obtained by the two skin measurement devices. When the predetermined value is not exceeded, the measurement result by the radio navigation device is given to the filter.

したがって、電波航法装置と自立航法装置の測定値の差
が小さい通常状態では、誤差の発散しない電波航法の測
定値が測定結果として用いられ、両肌法装置による測定
値の差が大きい場合は自立航法による測定値が測定結果
として用いられる。
Therefore, under normal conditions where the difference between the measured values of the radio navigation device and the independent navigation device is small, the measured value of the radio navigation without divergence of error is used as the measurement result, and when the difference between the measured values of both the skin navigation devices is large, the Measured values from navigation are used as measurement results.

そしてこの発明の請求項1に係る航法装置では、自立航
法によるドリフトが電波航法による測定結果またはフィ
ルタの出力結果によって除去される。
In the navigation device according to claim 1 of the present invention, the drift caused by self-contained navigation is removed by the measurement result by radio navigation or the output result of the filter.

また、この発明の請求項2に係る航法装置では、電波航
法の短時間におけるオフセット誤差の変動が、自立航法
による測定結果またはフィルタの出力結果によって除去
される。
Furthermore, in the navigation device according to claim 2 of the present invention, fluctuations in the offset error during a short period of time in radio navigation are removed by the measurement results by self-contained navigation or the output results of the filter.

さらに、この発明の請求項3に係る航法装置では、測定
値補正手段が、前記両肌法装置による測定値の差を検出
するとともに、その差が予め定められた値を超えるとき
、自立航法装置の測定結果またはフィルタの出力結果に
よって電波航法装置による測定値のオフセットを補正し
、前記差が予め定めた値を超えないとき、電波航法装置
による測定結果または前記フィルタの出力結果によって
自立航法装置の測定値のドリフトを補正する。したがっ
て、自立航法装置のドリフト補正および電渡航法装置の
短時間におけるオフセット誤差の変動が共に自動的に補
正される。
Furthermore, in the navigation device according to claim 3 of the present invention, the measured value correction means detects a difference between the measured values by the two skin measurement devices, and when the difference exceeds a predetermined value, the self-contained navigation device The offset of the measured value by the radio navigation device is corrected based on the measurement result of the radio navigation device or the output result of the filter, and when the difference does not exceed a predetermined value, the offset of the measurement value of the autonomous navigation device is corrected based on the measurement result of the radio navigation device or the output result of the filter. Correct for drift in measurements. Therefore, both the drift correction of the self-contained navigation device and the short-term offset error fluctuation of the electric navigation device are automatically corrected.

(a実施例 第2図はこの発明の実施例である航法装置の機能ブロッ
ク図である。図において2はGPS、NN5S、オメガ
、ロラン、または航空衛星システムなどを利用して測定
点の位置と速度を測定する電波航法装置である。また、
3は対地速度を測定するドツプラソナーまたは対水速度
を測定するドツプラログを備え、その測定値とジャイロ
コンパス1の方位データに基づいて測定点の位置と速度
を推測する自立航法装置である。この自立航法装置3は
測定値切換手段5によって選択された電波航法装置によ
る測定結果またはカルマンフィルタフの出力結果を新た
な推測値とすることによってドリフト補正を行う。4は
、電波航法装置2の測定値と自立航法装置3の測定値と
の差を計算する測定値差計算手段であり、5はこの測定
値差の大小に応じて電波航法装置2の測定値または自立
航法装置3の測定値の何れか一方を選択的にフィルタ7
へ与える測定値切換手段である。6はフィルタフに与え
られる測定値の誤差分散を求める手段である。さらに7
は測定値や測定誤差分散などによって測定値の位置およ
び速度の最確値を求めるカルマンフィルタである。
(A Embodiment) Fig. 2 is a functional block diagram of a navigation device which is an embodiment of the present invention. It is a radio navigation device that measures speed.
3 is an independent navigation device that is equipped with a Doppler sonar for measuring ground speed or a Doppler log for measuring water speed, and estimates the position and speed of a measurement point based on the measured value and the azimuth data of the gyro compass 1. The self-contained navigation device 3 performs drift correction by using the measurement result by the radio navigation device selected by the measurement value switching means 5 or the output result of the Kalman filter as a new estimated value. 4 is a measurement value difference calculation means for calculating the difference between the measurement value of the radio navigation device 2 and the measurement value of the independent navigation device 3; 5 is a measurement value difference calculation means for calculating the difference between the measurement value of the radio navigation device 2 and the measurement value of the autonomous navigation device 3; Alternatively, the filter 7 selectively filters either one of the measured values of the autonomous navigation device 3.
This is a means for switching measured values given to Reference numeral 6 denotes means for determining error variance of the measured values given to the filter. 7 more
is a Kalman filter that calculates the most probable values of the position and velocity of the measured value based on the measured value and measurement error variance.

第1図は上記航法装置の測定値と航跡との関係を示して
いる。図において○印は電波航法による測定値、Δ印は
自立航法による測定値であり、2点鎖線は推定された最
確値による航跡を示している。また(S)はスタートポ
イントであり、初回の測定値は電波航法による測定値A
Oを採用している。−回目の電波航法による測定値はA
I、自立航法による測定値はB1であるが、このときの
両測定値の差が小さいため、電波航法による測定値A1
を測定値として採用している。自立航法装置はこのA 
l −B 1間のドリフトを補正し、この例ではA1か
ら再び推測を行う。第2回目の電波航法による測定値は
A2、自立航法による測定値はB2であるが、この場合
、両測定値の差が大きいため、自立航法による測定値B
2をフィルタに与える測定値として採用している。以降
同様にして電波航法による測定値と自立航法による測定
値のいずれか一方を、両測定値の差の大小によってその
都度選択していく。
FIG. 1 shows the relationship between the measured values of the navigation device and the track. In the figure, the ○ marks are the measured values by radio navigation, the Δ marks are the measured values by self-contained navigation, and the two-dot chain line shows the track based on the estimated most probable value. Also, (S) is the starting point, and the first measurement value is the measurement value A by radio navigation.
We are using O. -The measured value by radio navigation is A.
I. The measured value by self-contained navigation is B1, but since the difference between the two measured values is small, the measured value by radio navigation is A1.
is used as the measured value. The autonomous navigation device is this A
Correct the drift between l - B 1 and re-estimate from A1 in this example. The second measured value by radio navigation is A2, and the measured value by self-contained navigation is B2, but in this case, because the difference between the two measured values is large, the measured value by self-contained navigation is B2.
2 is adopted as the measured value given to the filter. Thereafter, in the same manner, either the measured value by radio navigation or the measured value by self-contained navigation is selected each time depending on the magnitude of the difference between the two measured values.

このような航法装置は1.具体的には電波航法装置と自
立航法装置および両肌法装置のデータを読み込み、フィ
ルタリングを行うマイクロプロセッサから構成すること
ができる。その場合のマイクロプロセッサの行う処理に
ついて次に説明する。
Such navigation equipment is 1. Specifically, it can be constructed from a microprocessor that reads data from a radio navigation device, an autonomous navigation device, and both skin law devices and performs filtering. The processing performed by the microprocessor in this case will be described next.

まず自立航法として、ジャイロコンパスとドツプラソナ
ーまたはドツプラログを用いたこの発明の実施例の場合
、航法装置の物理的内容を的確に表現する数学モデルは
つぎの(1)〜(5)式となる。
First, in the case of an embodiment of the present invention that uses a gyro compass and a Doppler sonar or a Doppler log as independent navigation, the mathematical model that accurately represents the physical contents of the navigation device is the following equations (1) to (5).

X= (K I K−1) =Φ・X (K−1)に−1)・−−一−−−・−・−
−−−一一−−−−・(1)P(KIK−1> =Φ・P (K−1)に−1)ΦT4Q・・・・・(2
)G (K) =P (K I K−1)  ・P(KIK−1)+R
)−1・・・・−・・・・−−−−−−・−・−・−・
・・・・・・・・・−・−・・・−・−(3)X(KI
K) =  <I−G  (K))  ・ X(KIK−1)
+G  (K)  ・ Z(Ki−・−−−−・−・−
・−一−−−−−・−・−・(4)P(KIK) =  (1−G  (K))  ・ P(KIK−1)
  ・−(5)ここで に単位行列 Q;外乱の共分散行列雑音 R:観測値の共分散行列雑音すなわち測定誤差分散 G(Klフィルタゲインすなわち重み X:状態ベクトル X(KIK−1)   二 Z(1),Z(21,・ 
・ Z(K−1)を用いたX(KIK−1)の推定値X
 (K I K) : Z(1)、 Z(2+、・・・
Z (K)を用いたX (K + K)の推定値 P (KIK−1):X (KIK−1)の推定誤差分
散 P (KIK):X (KIK)の推定誤差分散Z (
K)  :観測値 Φ:遷移マトリクス χH:選択された測定値の緯度 χ、:選択された測定値の経度 υH:選択された測定値の北方向の速度υ、:選択され
た測定値の東方向の速度XN ;電波航法による緯度 XE :電波航法による経度 vN :電波航法による北方向の速度 ■、:電波航法による東方向の速度 たとえば、時刻に−1の状態ベクトルの推定値X (K
−1)に−1)から、時刻にの状態ベクトルの推定値X
(KIK−1)を求めるには(1)式から 第3図は上記マイクロプロセッサの処理手順を示すフロ
ーチャートである。まず外乱の大きさにより定まる共分
散行列雑音Qに測定の値として予め定めた推測値を設定
する(nl)、つづいて行列演算を行うための遷移マト
リクスΦを計算する(n2)、さらに電波航法装置より
緯度XN+経度XE+北方向の速度vNoおよび東方向
の速度■oを読み込み、これを状態ベクトルの初期値と
する(n3−n4)。つづいて推定誤差分散の初期値を
推定値として設定する(n5−n6)。
X= (K I K-1) = Φ・X (K-1) -1)・--1---・-・-
−−−1−−−−・(1) P(KIK−1> =Φ・P (K−1) −1) ΦT4Q・・・・・・(2
)G (K) = P (K I K-1) ・P (KIK-1) + R
)-1・・・・−・・−−−−−−・−・−・−・
・・・・・・・・・−・−・・・−・−(3)X(KI
K) = <I-G (K)) ・X(KIK-1)
+G (K) ・Z (Ki−・−−−−・−・−
・−1−−−−・−・−・(4) P(KIK) = (1−G (K)) ・P(KIK−1)
・-(5) Here, identity matrix Q; covariance matrix noise of disturbance R: covariance matrix noise of observed values, that is, measurement error variance G (Kl filter gain, that is, weight X: state vector X (KIK-1) 2 Z (1),Z(21,・
・ Estimated value X of X (KIK-1) using Z (K-1)
(K I K): Z(1), Z(2+,...
Estimated value P (KIK-1) of X (K + K) using Z (K): Estimated error variance P (KIK) of X (KIK-1): Estimated error variance Z (
K): Observation value Φ: Transition matrix χH: Latitude of the selected measurement value χ, : Longitude of the selected measurement value υH: Northward velocity υ of the selected measurement value, : East of the selected measurement value Speed in the direction XN; Latitude by radio navigation
-1) to -1) to the estimated value of the state vector at time X
(KIK-1) is obtained from equation (1). FIG. 3 is a flowchart showing the processing procedure of the microprocessor. First, a predetermined estimated value is set as a measurement value for the covariance matrix noise Q determined by the magnitude of the disturbance (nl), then a transition matrix Φ for performing matrix calculations is calculated (n2), and then radio navigation. The latitude XN + longitude XE + northward speed vNo and eastward speed ■o are read from the device, and these are used as the initial values of the state vector (n3-n4). Next, the initial value of the estimation error variance is set as the estimated value (n5-n6).

その後測定タイミングを待ち、測定タイミングとなれば
、まず電波航法装置と自立航法装置からそれぞれ測定値
を読み込み、両側定値の差を計算する(n7〜n1o)
。測定値の差が予め定めた値未満であるとき、電波航法
による測定値を観測値として採用する(nil−n12
)。もし測定値の差が予め定めた値であるなら自立航法
による測定値を観測値とする(n13)、その後上記(
1)〜(5)式に示したフィルタ計算を行う。すなわち
、まずn4で求めた初期値から(1)式の演算を行うこ
とによりX(KIK−1)を求める(n14)。
After that, wait for the measurement timing, and when the measurement timing comes, first read the measured values from the radio navigation device and the autonomous navigation device, and calculate the difference between the fixed values on both sides (n7 to n1o)
. When the difference between the measured values is less than a predetermined value, the measured value by radio navigation is adopted as the observed value (nil-n12
). If the difference between the measured values is a predetermined value, the measured value by self-contained navigation is taken as the observed value (n13), and then the above (
1) Perform filter calculations shown in equations (5). That is, first, X(KIK-1) is obtained by calculating the equation (1) from the initial value obtained at n4 (n14).

つづいてn6で定めた値を初期値として(2)式を演算
することによってP(KIK−1)を求める(n15)
。さらに測定誤差分tlkRを求め、(3)式の演算に
よってフィルタゲインG (K)を求める(n16→n
17)、さらに(5)式によってP(KIK)を求める
(n18)、その後、n12またはn13にて定められ
た観測値をZ (K)として(4)式の演算を行うこと
によって最確推定値X(KIK)を求めこれを出力する
(n 19→n20)。
Next, calculate P(KIK-1) by calculating equation (2) using the value determined in n6 as the initial value (n15)
. Furthermore, the measurement error tlkR is determined, and the filter gain G (K) is determined by calculating equation (3) (n16→n
17), further calculate P(KIK) using equation (5) (n18), and then calculate the most probable estimate by using equation (4) with the observed value determined in n12 or n13 as Z (K). Find the value X (KIK) and output it (n19→n20).

その後つぎの測定タイミングまで待ち、測定タイミング
となれば同様の処理を繰り返す(n20−n7)。
Thereafter, the process waits until the next measurement timing, and when the measurement timing comes, the same process is repeated (n20-n7).

第4図はこの発明の他の実施例である航法装置の機能ブ
ロック図である。第2図に示した航法装置と異なる点は
、電波航法による測定結果のオフセットを補正する場合
、自立航法による測定結果またはフィルタリングの結果
すなわち推定された最確位置を基準にしてオフセットを
補正するようにした点である。
FIG. 4 is a functional block diagram of a navigation device according to another embodiment of the present invention. The difference from the navigation device shown in Figure 2 is that when correcting the offset of the measurement result by radio navigation, the offset is corrected based on the measurement result by autonomous navigation or the result of filtering, that is, the estimated most probable position. This is the point I made.

第5図は更に他の実施例に係る航法装置の機能ブロック
図である。同図において、8は電波航法装置2の測定値
と自立航法装置3の測定値との差の大小に応じて電波航
法装置の測定値または自立航法装置の測定値を選択的に
補正する切換手段である、具体的には両肌法装置による
測定値の差が予め定められた値を超えるとき、前記切換
手段8は自立航法装置の測定結果またはフィルタの出力
結果を電波航法装置へ与、える。これにより電波航法装
置は測定値のオフセットを補正する。前記差が予め定め
た値を超えないとき、前記切換手段8は電波航法装置の
測定結果またはフィルタの出力結果を自立航法装置へ与
える。これにより自立航法装置は測定値のドリフトを補
正する。
FIG. 5 is a functional block diagram of a navigation device according to yet another embodiment. In the figure, reference numeral 8 indicates a switching means for selectively correcting the measured value of the radio navigation device or the measured value of the self-contained navigation device depending on the magnitude of the difference between the measured value of the radio navigation device 2 and the measured value of the self-contained navigation device 3. Specifically, when the difference between the measured values by both skin measurement devices exceeds a predetermined value, the switching means 8 provides the measurement result of the autonomous navigation device or the output result of the filter to the radio navigation device. . This causes the radio navigation device to correct the offset of the measured value. When the difference does not exceed a predetermined value, the switching means 8 provides the measurement result of the radio navigation device or the output result of the filter to the autonomous navigation device. This allows the self-contained navigation system to correct for drift in the measured values.

上述の実施例によればシュミレーションの結果、自立航
法の誤差発散が抑えられるとともに、電波航法によるオ
フセット誤差が除去されることにより航法精度は約10
%向上した。
According to the above embodiment, the simulation results show that the error divergence in self-contained navigation is suppressed, and the offset error due to radio navigation is removed, so that the navigation accuracy is approximately 10%.
% improved.

(h1発明の効果 以上のようにこの発明の航法装置によれば、自立航法単
独の場合に生じる誤差発散(累#2誤差)がなく、しか
も電波航法による短時間におけるオフセット誤差の変動
が、ドリフト補正された自立航法の測定結果により抑制
される。このた′めたとえば単なる低域フィルタを用い
た場合に生じる応答の遅れ等もなく、高い航法精度が得
られる。
(h1 Effects of the Invention As described above, according to the navigation device of the present invention, there is no error divergence (cumulative #2 error) that occurs when independent navigation is used alone, and furthermore, short-term offset error fluctuations due to radio navigation are caused by drift. This is suppressed by the corrected self-contained navigation measurement results.Therefore, there is no delay in response that would occur if, for example, a simple low-pass filter is used, and high navigation accuracy can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例である航法装置の動作を説明
するための図、第2図は同装置の機能ブロック図、第3
図は同装置の処理手順を表すフローチャートである。第
4図と第5図は他の実施例に係る航法装置の機能ブロッ
ク図である。
FIG. 1 is a diagram for explaining the operation of a navigation device that is an embodiment of the present invention, FIG. 2 is a functional block diagram of the same device, and FIG.
The figure is a flowchart showing the processing procedure of the device. FIGS. 4 and 5 are functional block diagrams of navigation devices according to other embodiments.

Claims (3)

【特許請求の範囲】[Claims] (1)電波航法により測定点の位置と速度を測定する電
波航法装置と、 自立航法により測定点の位置と速度を測定する自立航法
装置と、 両航法装置による測定値の差を検出するとともに、その
差が予め定められた値を超えるとき、自立航法装置によ
る測定結果をフィルタに与え、前記差が予め定めた値を
超えないとき、電波航法装置による測定結果をフィルタ
に与える測定値選択手段と、 電波航法装置による測定結果またはフィルタの出力結果
を自立航法装置の新たな推測値として補正するドリフト
補正手段と、 からなる航法装置。
(1) A radio navigation device that measures the position and speed of a measurement point using radio navigation, an independent navigation device that measures the position and speed of a measurement point using autonomous navigation, and detects the difference between the measurements by both navigation devices, When the difference exceeds a predetermined value, the measurement result by the self-contained navigation device is given to the filter, and when the difference does not exceed the predetermined value, the measurement value selection device is given the measurement result by the radio navigation device to the filter. A navigation device comprising: , a drift correction means for correcting a measurement result by a radio navigation device or an output result of a filter as a new estimated value of an autonomous navigation device;
(2)電波航法により測定点の位置と速度を測定する電
波航法装置と、 自立航法により測定点の位置と速度を測定する自立航法
装置と、 両航法装置による測定値の差を検出するとともに、その
差が予め定められた値を超えるとき、自立航法装置によ
る測定結果をフィルタに与え、前記差が予め定めた値を
超えないとき、電波航法装置による測定結果をフィルタ
に与える測定値選択手段と、 自立航法装置による測定結果またはフィルタの出力結果
を電波航法装置の新たな推測値として補正するオフセッ
ト補正手段と、 からなる航法装置。
(2) A radio navigation device that measures the position and speed of a measurement point using radio navigation, an independent navigation device that measures the position and speed of a measurement point using autonomous navigation, and detects the difference between the measurements by both navigation devices, When the difference exceeds a predetermined value, the measurement result by the self-contained navigation device is given to the filter, and when the difference does not exceed the predetermined value, the measurement value selection device is given the measurement result by the radio navigation device to the filter. , offset correction means for correcting the measurement result by the self-contained navigation device or the output result of the filter as a new estimated value of the radio navigation device;
(3)電波航法により測定点の位置と速度を測定する電
波航法装置と、 自立航法により測定点の位置と速度を測定する自立航法
装置と、 両航法装置による測定値の差を検出するとともに、その
差が予め定められた値を超えるとき、自立航法装置によ
る測定結果をフィルタに与え、前記差が予め定めた値を
超えないとき、電波航法装置による測定結果をフィルタ
に与える測定値選択 手段と、 前記両航法装置による測定値の差を検出するとともに、
その差が予め定められた値を超えるとき、自立航法装置
の測定結果またはフィルタの出力結果によって電波航法
装置による測定値のオフセットを補正し、前記差が予め
定めた値を超えないとき、電波航法装置による測定結果
または前記フィルタの出力結果によって自立航法装置の
測定値のドリフトを補正する測定値補正手段と、 からなる航法装置。
(3) A radio navigation device that measures the position and speed of a measurement point using radio navigation, an independent navigation device that measures the position and speed of a measurement point using autonomous navigation, and detects the difference between the measurements by both navigation devices, When the difference exceeds a predetermined value, the measurement result by the self-contained navigation device is applied to the filter, and when the difference does not exceed the predetermined value, the measurement result by the radio navigation device is applied to the filter. , detecting the difference between the measured values by the two navigation devices,
When the difference exceeds a predetermined value, the offset of the measurement value by the radio navigation device is corrected by the measurement result of the self-contained navigation device or the output result of the filter, and when the difference does not exceed the predetermined value, the radio navigation A navigation device comprising: a measurement value correction means for correcting a drift in a measurement value of the self-contained navigation device based on a measurement result by the device or an output result of the filter.
JP3908489A 1988-03-30 1989-02-17 Navigation system Pending JPH01316607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3908489A JPH01316607A (en) 1988-03-30 1989-02-17 Navigation system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-76874 1988-03-30
JP7687488 1988-03-30
JP3908489A JPH01316607A (en) 1988-03-30 1989-02-17 Navigation system

Publications (1)

Publication Number Publication Date
JPH01316607A true JPH01316607A (en) 1989-12-21

Family

ID=26378409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3908489A Pending JPH01316607A (en) 1988-03-30 1989-02-17 Navigation system

Country Status (1)

Country Link
JP (1) JPH01316607A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5422639A (en) * 1992-09-16 1995-06-06 Xanavi Informatics Corporation Navigation equipment which determines current position dependent on difference between calculated value of self-contained navigation and measured value of radio navigation
JPH0814923A (en) * 1994-06-30 1996-01-19 Aisin Seiki Co Ltd On-vehicle positioning apparatus
US6081230A (en) * 1994-11-29 2000-06-27 Xanavi Informatics Corporation Navigation system furnished with means for estimating error of mounted sensor
JP2004069536A (en) * 2002-08-07 2004-03-04 Matsushita Electric Ind Co Ltd Data calibration device and method
KR100541485B1 (en) * 2002-10-07 2006-01-10 엘지전자 주식회사 Navigation guidance for car and method for car navigation guidance using the same
JP2006317241A (en) * 2005-05-12 2006-11-24 Furuno Electric Co Ltd Positioning device and positioning method
JP2007155471A (en) * 2005-12-05 2007-06-21 Alpine Electronics Inc Vehicle position estimator and vehicle position estimating method
JP2008082931A (en) * 2006-09-28 2008-04-10 Honeywell Internatl Inc Method and apparatus for real time location survey by means of inertial navigation
JP2009019992A (en) * 2007-07-12 2009-01-29 Alpine Electronics Inc Position detection device and position detection method
JP2015094626A (en) * 2013-11-11 2015-05-18 東京計器株式会社 File for global navigation satellite system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5422639A (en) * 1992-09-16 1995-06-06 Xanavi Informatics Corporation Navigation equipment which determines current position dependent on difference between calculated value of self-contained navigation and measured value of radio navigation
JPH0814923A (en) * 1994-06-30 1996-01-19 Aisin Seiki Co Ltd On-vehicle positioning apparatus
US6081230A (en) * 1994-11-29 2000-06-27 Xanavi Informatics Corporation Navigation system furnished with means for estimating error of mounted sensor
JP2004069536A (en) * 2002-08-07 2004-03-04 Matsushita Electric Ind Co Ltd Data calibration device and method
KR100541485B1 (en) * 2002-10-07 2006-01-10 엘지전자 주식회사 Navigation guidance for car and method for car navigation guidance using the same
JP2006317241A (en) * 2005-05-12 2006-11-24 Furuno Electric Co Ltd Positioning device and positioning method
JP2007155471A (en) * 2005-12-05 2007-06-21 Alpine Electronics Inc Vehicle position estimator and vehicle position estimating method
JP2008082931A (en) * 2006-09-28 2008-04-10 Honeywell Internatl Inc Method and apparatus for real time location survey by means of inertial navigation
JP2009019992A (en) * 2007-07-12 2009-01-29 Alpine Electronics Inc Position detection device and position detection method
US8510044B2 (en) 2007-07-12 2013-08-13 Alpine Electronics, Inc. Position sensing device and method
JP2015094626A (en) * 2013-11-11 2015-05-18 東京計器株式会社 File for global navigation satellite system

Similar Documents

Publication Publication Date Title
JP5301762B2 (en) Carrier phase relative positioning device
CN108594272B (en) Robust Kalman filtering-based anti-deception jamming integrated navigation method
JP2003232845A (en) Detection device of azimuth and attitude of moving body
Xu et al. A novel adaptive filtering for cooperative localization under compass failure and non-gaussian noise
US8560234B2 (en) System and method of navigation based on state estimation using a stepped filter
CN109343095B (en) Vehicle-mounted navigation vehicle combined positioning device and combined positioning method thereof
CA2580539A1 (en) Improved gps accumulated delta range processing for navigation applications
US9223029B2 (en) Positioning device and storage medium
JPH09178508A (en) Unit being used with two antennas on movable platform, method for determining orientation of head of mobile and method for executing determination
JP2009192325A (en) Satellite navigation/estimated navigation integration positioning device
CN110057365A (en) A kind of depth AUV dive localization method latent greatly
CN107677272A (en) A kind of AUV collaborative navigation methods based on nonlinear transformations filtering
US20110153266A1 (en) Augmented vehicle location system
CN106896386A (en) GLONASS inter-frequency deviation precise Estimation Methods
CN101395443A (en) Hybrid positioning method and device
WO2013080183A9 (en) A quasi tightly coupled gnss-ins integration process
JPH01316607A (en) Navigation system
JP2009085882A (en) Azimuth detection device
KR101221931B1 (en) Method and device for creating satellite measurement of ship using inertial sensor in weak signal environment
CN107132562B (en) Method and device for realizing Kalman filtering positioning
KR101723751B1 (en) Controlling apparatus and method of navigation of a satellite
CN113959434B (en) Adjustable SINS, DVL, USBL integrated navigation method
CN105841717B (en) A kind of Strapdown Inertial Navigation System course error rapid correction method
JP6546730B2 (en) Satellite signal receiver
JPH0868849A (en) Navigation system for vessel