JPH01315177A - Superconductive optoelectronic element and device thereof - Google Patents

Superconductive optoelectronic element and device thereof

Info

Publication number
JPH01315177A
JPH01315177A JP63201655A JP20165588A JPH01315177A JP H01315177 A JPH01315177 A JP H01315177A JP 63201655 A JP63201655 A JP 63201655A JP 20165588 A JP20165588 A JP 20165588A JP H01315177 A JPH01315177 A JP H01315177A
Authority
JP
Japan
Prior art keywords
superconducting
source
photoconductive
area
optoelectronic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63201655A
Other languages
Japanese (ja)
Other versions
JPH0581196B2 (en
Inventor
Taizou Masumi
眞隅 泰三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP63201655A priority Critical patent/JPH01315177A/en
Priority to US07/320,131 priority patent/US4990487A/en
Priority to CA000593077A priority patent/CA1310391C/en
Priority to EP89302357A priority patent/EP0332448B1/en
Priority to DE68926471T priority patent/DE68926471T2/en
Publication of JPH01315177A publication Critical patent/JPH01315177A/en
Publication of JPH0581196B2 publication Critical patent/JPH0581196B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To effectively use an optical property of characteristic of the material in relation to a superconductive area by forming a source area and a drain area of superconductive material and constituting a gate area by superconductive and photoconductive material which exhibits photoconductivity at the critical temperature of superconductive material. CONSTITUTION:A photoconductive gate area 2 composed of superconductive and photoconductive material of Ca-Sr-Bi-Cu-O oxide expressed by Ca2-X-SrX- BiY-y-Cuy-O and a source area 3 and a drain area 4 which face each other by sandwiching the gate area 2 and are composed of superconductivity material. Further a bias source arranged between the source area 3 and the drain area 4 is provided. Output current corresponding to the quantity at light which is projected on the gate area between the source and the drain can be taken out. Thereby a super conductive optoelectronic element such as optical switching element, an optical detector and an optical amplifying element which can rapidly responce without power loss can be realized.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、超伝導材料と、その臨界温度以下の温度で並
行して光伝導現象を示す超伝導性オプトエレクトロニク
ス材料とを結合した、従来の超伝導性エレクトロニクス
素子の概念の枠を超えた新規な“超伝導オプトエレクト
ロニクス素子パ及び“°超伝導オプトエレクトロニクス
装置“に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a conventional method that combines a superconducting material and a superconducting optoelectronic material that exhibits a photoconductive phenomenon in parallel at a temperature below its critical temperature. The present invention relates to a new "superconducting optoelectronic device" and "superconducting optoelectronic device" that go beyond the concept of superconducting electronic devices.

(従来の技術) 超伝導材料の開発に伴い種々の超伝導材料が見い出され
ており、例えば、Y −Ba −Cu −0系酸化物や
Ca−3r−Bi−Cu−0系酸化物超伝導材料が見い
出されている。しかしながら、現在の超伝導材料の開発
は、臨界温度を高めることが目的とされ、光学的性質の
解明、特にその利用がなされていないのが現状である。
(Prior art) With the development of superconducting materials, various superconducting materials have been discovered, such as Y-Ba-Cu-0 based oxides and Ca-3r-Bi-Cu-0 based oxide superconductors. material has been found. However, the current development of superconducting materials is aimed at increasing the critical temperature, and the current situation is that their optical properties have not been elucidated or particularly utilized.

この理由は、超伝導性と、光吸収性並びに光伝導性等と
は相反する物性であると考えられており、BCS理論の
ギャップエネルギー以上の波数の光を照射することによ
り超伝導体の安定性が破壊されるものと考えられていた
ことによる。さらに、これまでに開発された超伝導材料
は主として金属やそれらの合金であり、光学的に有益な
性質を有する超伝導材料は、いまだに判明していない。
The reason for this is that superconductivity is thought to be contradictory to physical properties such as light absorption and photoconductivity, and by irradiating light with a wave number higher than the gap energy of the BCS theory, the superconductor can be stabilized. This is because sexuality was thought to be destroyed. Furthermore, the superconducting materials developed so far are mainly metals and their alloys, and no superconducting material with optically useful properties has yet been discovered.

しかしながら、最近の高温超伝導酸化物材料と、その臨
界温度以下の温度で特有な光学的性質を有する超伝導性
光伝導材料とを組み合せれば、超伝導配線などを背景に
持ちなから撮像素子は勿論のこと、電力損失のないスイ
ッチング素子や光演算素子を実現でき、光論理演算や空
間並列型光演算が可能になり、低電力で作動する高速演
算装置を実現することができる。
However, if recent high-temperature superconducting oxide materials are combined with superconducting photoconductive materials that have unique optical properties at temperatures below their critical temperature, it will be possible to create an image sensor with superconducting wiring, etc. Of course, switching elements and optical arithmetic elements without power loss can be realized, optical logical operations and spatially parallel optical operations can be realized, and high-speed arithmetic devices that operate with low power can be realized.

(発明が解決しようとする課題) 上述したように、現在の超伝導の研究は臨界温度の上昇
を主目的としている。しかしながら、本発明者は、超伝
導に関する種々の実験及び解析の結果、例えばY−Ba
−Cu−0系酸化物、Ca−5r−Bi−Cu−Q系酸
化物及びBa−Pb−B1−0系酸化物がこれらの酸化
物と関連する超伝導材料の臨界温度以下で並行して光伝
導性を生ずると云う予期し得ない顕著な効果を有するこ
とを見い出した。すなわち、これら酸化物は、常温では
電気的絶縁性を呈するが、これら酸化物と関連する超伝
導材料の転移温度以下の温度においては入射光量に応じ
たキャリヤが発生し、その伝導率が変化する光伝導性を
有していることが判明した。従って、例えば超伝導性光
伝導状態にあるCa−5r−Bi−Cu−0系酸化物と
、これと関連する超伝導状態にあるCa−5r−Bi−
Cu−0系酸化物とを組み合せることにより電力損失の
ない有益な超伝導オプトエレクトロニクス素子を構成す
ることができる。ここで、超伝導オプトエレクトロニク
ス素子とは、超伝導性材料とその臨界温度以下の温度で
光伝導性を有する同系列の超伝導性光伝導材料とを組み
合せた光電素子をいうものとする。
(Problems to be Solved by the Invention) As mentioned above, current research on superconductivity is mainly aimed at increasing the critical temperature. However, as a result of various experiments and analyzes regarding superconductivity, the present inventor has found that, for example, Y-Ba
-Cu-0 based oxide, Ca-5r-Bi-Cu-Q based oxide and Ba-Pb-B1-0 based oxide in parallel below the critical temperature of the superconducting material related to these oxides. It has been found that it has the unexpected and significant effect of producing photoconductivity. In other words, these oxides exhibit electrical insulating properties at room temperature, but at temperatures below the transition temperature of the superconducting materials related to these oxides, carriers are generated depending on the amount of incident light, and their conductivity changes. It was found that it has photoconductivity. Therefore, for example, a Ca-5r-Bi-Cu-0 based oxide in a superconducting photoconductive state and a Ca-5r-Bi-Cu-0-based oxide in a related superconducting state.
By combining it with Cu-0-based oxides, useful superconducting optoelectronic devices without power loss can be constructed. Here, the superconducting optoelectronic device refers to a photoelectric device that combines a superconducting material and a superconducting photoconductive material of the same series that has photoconductivity at a temperature below its critical temperature.

従って、本発明の目的は、従来技術とその問題点を解決
しようとするものでなく、本発明者が新たに見い出した
超伝導性光伝導材料、すなわち超伝導領域につながる材
料の特有の光学的性質を有効に利用した超伝導オプトエ
レクトロニクス素子を提供するものである。
Therefore, the purpose of the present invention is not to solve the prior art and its problems, but to utilize the unique optical characteristics of the superconducting photoconductive material newly discovered by the present inventors, that is, the material that leads to the superconducting region. The present invention provides a superconducting optoelectronic device that effectively utilizes the properties of the present invention.

(問題を解決するための手段) 本発明による超伝導オプトエレクトロニクス素子は、基
板上に形成され、超伝導性光伝導材料から成る光伝導性
ゲートjJ域と、この光伝導性ゲート領域をはさんで互
いに対向し、超伝導性材料より成るソース領域及びドレ
イン領域と、これらソース領域とドレイン領域との間に
配置したバイアス源とを具え、前記光伝導性ゲート領域
に入射する光量に応じてソース−ドレイン間電流が制御
されるように構成したことを特徴とするものである。
(Means for Solving the Problem) A superconducting optoelectronic device according to the present invention is formed on a substrate, and includes a photoconductive gate region jJ made of a superconducting photoconductive material, and a photoconductive gate region sandwiched therebetween. a source region and a drain region made of a superconducting material and facing each other, and a bias source disposed between the source region and the drain region; - It is characterized by being configured so that the current between the drains is controlled.

(作 用) 本発明者は、各種超伝導性材料についてその超伝導性並
びに光学的性質について実験解析を行なった結果、種々
の超伝導材料においては、その転移温度以下の温度にお
いて超伝導性と並行して光伝導性を呈することを見い出
した。すなわち、例えば(,1−3r−Bi−Cu−0
系酸化物においては、その転移温度以下においてSrの
含有量に応じて超伝導性から光伝導性に移行することが
判明した。
(Function) As a result of experimental analysis of the superconductivity and optical properties of various superconducting materials, the present inventor found that various superconducting materials exhibit superconductivity at temperatures below their transition temperature. It was also discovered that the material exhibits photoconductivity. That is, for example, (,1-3r-Bi-Cu-0
It has been found that the superconductivity of oxides changes from superconductivity to photoconductivity below the transition temperature depending on the Sr content.

第1図はCa−5r−Bi−Cu−0系酸化物における
超伝導性及び光伝導性を示す実験結果であり、第1図(
a)は本発明者が基準物質と考えるBi201の光応答
の温度依存性を示し、第1図(b)はCat−X−3r
X−Bi、−Cu、−Oz (x =O)の光応答の温
度依存性を示し、第1図(c)はCaz−、−Sr、 
−Bi、−Cuz −0,x =1)の抵抗率の温度依
存性を示す。
Figure 1 shows experimental results showing superconductivity and photoconductivity in Ca-5r-Bi-Cu-0 based oxides.
Figure 1 (a) shows the temperature dependence of the photoresponse of Bi201, which the inventor considers as a reference material, and Figure 1 (b) shows the temperature dependence of the photoresponse of Bi201, which the inventor considers as a reference material.
Figure 1(c) shows the temperature dependence of the photoresponse of X-Bi, -Cu, -Oz (x = O).
-Bi, -Cuz -0, x = 1) shows the temperature dependence of resistivity.

本発明者は、一般式Cat−X−5rx−Biy−y 
−Cu、 −0で表わされるCa−5r−Bi−Cu−
0系酸化物について種々の実験及びその解析を行なった
結果、2≦X≦3.3≦Y≦4.0くy≦2.4≦2≦
9の条件においてS、の含有量Xが1≦X≦2において
超伝導性を呈し、0≦×≦1の範囲において光伝導性を
呈することを見出した。すなわち、Ca−5゜−Bi−
Cu−0系酸化物においてはSrの含有量Xが、1≦X
≦2の範囲においては超伝導性を呈し、Xがそれよりも
小さくなると超伝導性は消滅は、代わりにその転移温度
以下の温度において光伝導性を呈することになる。この
ように、一部構成原子の含有量の変化により転移温度以
下の温度において超伝導性から光伝導性に移行する特有
の性質を有する材料を、゛°超伝導性光伝導材料゛°と
称するものとする。
The inventor has the general formula Cat-X-5rx-Biy-y
-Cu, Ca-5r-Bi-Cu- represented by -0
As a result of various experiments and analyzes on 0-based oxides, we found that 2≦X≦3.3≦Y≦4.0, y≦2.4≦2≦
It was found that under the conditions of 9, the content X of S exhibits superconductivity in the range of 1≦X≦2, and exhibits photoconductivity in the range of 0≦×≦1. That is, Ca-5゜-Bi-
In the Cu-0-based oxide, the Sr content X is 1≦X
In the range of ≦2, it exhibits superconductivity, and when X becomes smaller than that, the superconductivity disappears, and instead it exhibits photoconductivity at a temperature below its transition temperature. In this way, materials that have the unique property of transitioning from superconductivity to photoconductivity at temperatures below the transition temperature due to changes in the content of some constituent atoms are called ``superconducting photoconductive materials.'' shall be taken as a thing.

第2図(a)及び(b)は基準物質であるBizOiと
Caz−、−5r、−Bi、−Cut−Oz (x=O
)の4.2Kにおける波長依存性を示す。基準物質であ
るBi201とCaz−0−Srx−Bil−Cut−
Oz (x=0)とはほぼ対応した波長依存性を示し、
 650 nmより短波長側に移行することに従って光
応答性が徐々に増大し、650nmより長波長側ではほ
ぼ一定の光応答性を示している。このような転移温度以
下の温度で光伝導性を有する材料と、転移温度以下の温
度で超伝導性を有する材料とを結合すれば、臨界温度以
下の温度において超伝導性と光伝導性を併有する有用な
超伝導オプトエレクトロニクス素子を実現することがで
きる。従って、ゲート領域を超伝導性光伝導材料で構成
し、ソース及びドレイン領域を超伝導性材料で構成すれ
ば、ソース−ドレイン間においてゲート領域に入射する
光量に応じた出力電流を取り出すことができ、これによ
り電力損失のない高速応答できる光スイツチング素子、
光検出器、光増幅素子等の゛超伝導オプトエレクトロニ
クス素子°′を実現することができる。
Figures 2 (a) and (b) show the reference materials BizOi and Caz-, -5r, -Bi, -Cut-Oz (x=O
) shows the wavelength dependence at 4.2K. Reference materials Bi201 and Caz-0-Srx-Bil-Cut-
Oz (x=0) shows a wavelength dependence that almost corresponds to
The photoresponsiveness gradually increases as the wavelength shifts from 650 nm to the shorter wavelength side, and the photoresponsiveness is almost constant at wavelengths longer than 650 nm. By combining a material that has photoconductivity at a temperature below the transition temperature with a material that has superconductivity at a temperature below the transition temperature, it is possible to combine superconductivity and photoconductivity at temperatures below the critical temperature. It is possible to realize a useful superconducting optoelectronic device having the following properties. Therefore, if the gate region is made of a superconducting photoconductive material and the source and drain regions are made of superconducting materials, it is possible to extract an output current between the source and drain that corresponds to the amount of light incident on the gate region. , an optical switching element capable of high-speed response without power loss,
Superconducting optoelectronic devices such as photodetectors and optical amplification devices can be realized.

次に、Y−Ba−Cu−0系酸化物について説明する。Next, Y-Ba-Cu-0 based oxide will be explained.

第3図(a) 〜(b)はY−Ba−Cu−0系酸化物
の超伝導性及び光伝導性の実験結果であり、第3図(a
)はY3−X−Bax−Cu3−Oz (x=0)の光
応答の温度依存性を示し、第3図(b)はY3−x−B
a、−Cut−Og ((X=1)の光応答の温度依存
性を示し、第3図(c)はY3−x−Ba、−Cut−
011(x=1. x=2)の暗抵抗率の温度依存性を
示す。一般式Y3−X−Ba+t−Cu、−Ozで表さ
れるV−Ba−Cu−0系酸化物においては、Baの含
有lx及び酸素の含有i1zに応じて超伝導性から光伝
導性に移行し、■≦×≦2.6.5≦2≦7の範囲にお
いて超伝導性を呈し、0≦X≦1.7.0≦2≦7.5
、又はx=2.6.0≦2≦6.5の範囲においてその
転移温度以下の温度で光伝導性を呈することを見出した
。第3図(a)及び(b)に示すように、Y31−Ba
X−Cu、−Os系においてx=O及びx=1において
その臨界温度以下の温度において光伝導性を呈している
ことが明確に理解することができる。
Figures 3(a) and 3(b) show the experimental results of superconductivity and photoconductivity of Y-Ba-Cu-0 based oxides.
) shows the temperature dependence of the photoresponse of Y3-X-Bax-Cu3-Oz (x=0), and Fig. 3(b) shows the temperature dependence of the photoresponse of Y3-X-Bax-Cu3-Oz (x=0).
Figure 3(c) shows the temperature dependence of the photoresponse of Y3-x-Ba, -Cut-Og ((X = 1)).
011 (x=1. x=2) shows the temperature dependence of dark resistivity. In the V-Ba-Cu-0 type oxide represented by the general formula Y3-X-Ba+t-Cu, -Oz, it shifts from superconductivity to photoconductivity depending on the Ba content lx and the oxygen content i1z. ■Exhibits superconductivity in the range of ■≦×≦2.6.5≦2≦7, and 0≦X≦1.7.0≦2≦7.5
, or in the range of x=2.6.0≦2≦6.5, it has been found that it exhibits photoconductivity at a temperature below its transition temperature. As shown in FIGS. 3(a) and (b), Y31-Ba
It can be clearly understood that in the X-Cu, -Os system, when x=O and x=1, photoconductivity is exhibited at a temperature below its critical temperature.

第4図は同系列材料のT・77Kにおける光伝導応答の
励起光波長依存性を示す。第4図から明らかなように、
臨界温度以下の温度において420〜640nmの励起
光波長域で特有な光伝導性を有していることが理解でき
る。第5図は同系列材料のλ−470nmにおける励起
光強度依存性を示す。第5図に示すように、このY3−
X−Cut−L系材料は、入射光強度に対応して光電流
が増加している。これらの結果により、Y、−8−Ba
オーCu、−0,系の超伝導材料において0≦X≦1の
場合は超伝導性光伝導材料を構成し、1≦X≦2の範囲
において超伝導性材料を構成することになる。
FIG. 4 shows the excitation light wavelength dependence of the photoconductive response of the same series materials at T.77K. As is clear from Figure 4,
It can be seen that it has a unique photoconductivity in the excitation light wavelength range of 420 to 640 nm at a temperature below the critical temperature. FIG. 5 shows the excitation light intensity dependence at λ-470 nm for the same series materials. As shown in Figure 5, this Y3-
In the X-Cut-L material, the photocurrent increases in response to the intensity of incident light. Based on these results, Y, -8-Ba
In the case of 0≦X≦1 in the Au-Cu, -0,-based superconducting material, a superconducting photoconductive material is constituted, and in the range of 1≦X≦2, a superconducting material is constituted.

次に、Ba−Pb−B1−0系酸化物について説明する
Next, the Ba-Pb-B1-0 type oxide will be explained.

第6図(a)及び(b)は基準物質であるBi2O2と
Ba1− pb、−,4iX−ogの光応答の温度依存
性を示し、第7図(a)及び(b)はそれらの波長依存
性を示す。
Figures 6(a) and (b) show the temperature dependence of the photoresponses of reference materials Bi2O2 and Ba1-pb,-,4iX-og, and Figures 7(a) and (b) show their wavelengths. Show dependencies.

Ba−Pb−B1−0系酸化物においては、0.20≦
X≦0.35.2.81≦2≦3の範囲で超伝導性を呈
し、X≦0.35.2.7≦2≦2.81の範囲で光伝
導性を呈することが判明した。
In Ba-Pb-B1-0 type oxide, 0.20≦
It was found that it exhibited superconductivity in the range of X≦0.35.2.81≦2≦3 and exhibited photoconductivity in the range of X≦0.35.2.7≦2≦2.81.

次に、La2−Cu1−0.系酸化物について説明する
Next, La2-Cu1-0. The system oxide will be explained.

第8図はLaz−C+g−0,系酸化物の光伝導性の温
度依存性を示す実験結果であり、第8図(a)は2=3
.88における光応答特性を示し、第8図(b)は2=
3.92における光応答特性を示し、第8図(c)はz
=3.88及びz =3.92における暗抵抗の温度依
存特性を示す。La2−Cu、−01系酸化物において
は2=3.92において約30に以下の温度で超伝導性
を呈することが知られている。一方、第8図に示すよう
に、酸素含有量を少なくすることにより超伝導性から光
伝導性に移行することが判明した。また、第9図に示す
ようにz=3.88 (第9図(b))及び2=3.9
2 (第9図(C))において450 nun〜650
舗の波長域において光伝導性を呈することが判明した。
Figure 8 shows experimental results showing the temperature dependence of photoconductivity of Laz-C+g-0, and Figure 8(a) shows 2=3
.. 88, and FIG. 8(b) shows the photoresponse characteristics at 2=
Figure 8(c) shows the photoresponse characteristics at 3.92.
The temperature dependence characteristics of dark resistance at z = 3.88 and z = 3.92 are shown. It is known that La2-Cu, -01-based oxides exhibit superconductivity at temperatures below about 30°C when 2=3.92. On the other hand, as shown in FIG. 8, it has been found that reducing the oxygen content causes a transition from superconductivity to photoconductivity. Also, as shown in Figure 9, z = 3.88 (Figure 9 (b)) and 2 = 3.9
2 (Figure 9(C)), 450 nun to 650
It was found that the material exhibits photoconductivity in a certain wavelength range.

第10図はz −3,88における入射光量−光伝導応
答の関係を示すグラフである。第10図から明らかなよ
うに、入射光量に応じて光電流が増加するのが明瞭に観
測される。
FIG. 10 is a graph showing the relationship between the amount of incident light and the photoconductive response at z -3,88. As is clear from FIG. 10, it is clearly observed that the photocurrent increases depending on the amount of incident light.

(実施例) 第11図は本発明による超伝導オプトエレクトニクス素
子の一例の構成を示す線図的断面図である。
(Example) FIG. 11 is a diagrammatic cross-sectional view showing the structure of an example of a superconducting optoelectronic device according to the present invention.

本例では、超伝導フォトトランジスタ(VG≧0)とし
て利用する例について説明する。5rTiO+より成る
基板1を用い、この基板1上に光伝導性ゲート領域2を
形成する。ゲート領域2は、幅0.2μm〜1.0mで
厚さ1〜10μmの光伝導性Cat−Bi、−Cu。
In this example, an example of use as a superconducting phototransistor (VG≧0) will be described. A substrate 1 made of 5rTiO+ is used, on which a photoconductive gate region 2 is formed. The gate region 2 is made of photoconductive Cat-Bi, -Cu with a width of 0.2 μm to 1.0 m and a thickness of 1 to 10 μm.

−07層で構成する。このCaz−Bit−Cuz−O
x NはQa+−5r1−Cu+−oZより成る超伝導
材料の臨界温度以下の温度で540〜740nmの励起
光波長域で特有な光伝導性をそなえている。。ゲート領
域2の両側にソース領域3及びドレイン領域4を形成す
る。
- Consists of 07 layers. This Caz-Bit-Cuz-O
xN has a unique photoconductivity in the excitation light wavelength range of 540 to 740 nm at a temperature below the critical temperature of the superconducting material made of Qa+-5r1-Cu+-oZ. . A source region 3 and a drain region 4 are formed on both sides of the gate region 2.

これらソース領域3及びドレイン領域4を、臨界温度1
05−115 (K)で超伝導性を示すCat −Sr
+−Bit−Cuオー08材料層で構成する。さらに、
ゲート9M域2、ソース領域3及びドレイン領域4上に
光学的に透明で電気的絶縁性を有する厚さ1μ階のSi
O□層5を形成し、この上にネサガラス層6を形成する
。ネサガラス上の電極とソース領域3との間にバイアス
源v6を接続すると共にソース領域3とドレイン領域4
との間にバイアス’tJ V s o及び出力抵抗Rを
接続する。なお、Caz−に−5rX−Bit−Cuz
−oZの組成をX=O−)1に連続的に変化させて光伝
導性Ca−B1−Cu−0系領域2から超伝導性Ca−
5r−Cu−0系碩域3,4を構成することも可能であ
る。
The source region 3 and drain region 4 are heated to a critical temperature of 1
Cat-Sr exhibiting superconductivity at 05-115 (K)
+-Bit-CuO08 material layer. moreover,
On the gate 9M region 2, the source region 3, and the drain region 4, a 1 μm thick optically transparent and electrically insulating Si layer is formed.
An O□ layer 5 is formed, and a Nesa glass layer 6 is formed thereon. A bias source v6 is connected between the electrode on the Nesa glass and the source region 3, and the source region 3 and the drain region 4
A bias 'tJ V s o and an output resistor R are connected between. In addition, Caz-ni-5rX-Bit-Cuz
- By continuously changing the composition of oZ to X=O-
It is also possible to configure 5r-Cu-0-based regions 3 and 4.

上述した構成の超伝導オプトエレクトロニクス素子をC
a−5r−Bi−Cu−0材料層の臨界温度105−1
15(に)以下の温度に冷却し、励起波長域の光を照射
すると、入射光量に応じたキャリアがゲート9M域2に
生成される。生成されたキャリアはソースドレイン間バ
イアスVSOによって加速され電流となり出力抵抗Rに
出力電圧が発生する。尚、光生成キャリアは照射光量及
びバイアス源■。に応じて生成密度が定まるから、目的
に応じてvGを適切に設定することができる。このよう
に構成すれば、入射光量に応じた出力特性を得ることが
でき、従って超伝導光スイツチング素子を実現すること
ができる。特にソース領域及びドレイン領域を超伝導材
料で構成しているので、動作時の発熱を伴なわない本質
的な超伝導オプトエレクトロニクス素子を実現すること
ができる。
The superconducting optoelectronic device having the above structure is
Critical temperature of a-5r-Bi-Cu-0 material layer 105-1
When it is cooled to a temperature of 15 or less and irradiated with light in the excitation wavelength range, carriers are generated in the gate 9M region 2 according to the amount of incident light. The generated carriers are accelerated by the source-drain bias VSO and become a current, which generates an output voltage at the output resistor R. Note that the photogenerated carriers are determined by the amount of irradiation light and the bias source ■. Since the generation density is determined according to , vG can be appropriately set according to the purpose. With this configuration, it is possible to obtain output characteristics that correspond to the amount of incident light, and therefore a superconducting optical switching element can be realized. In particular, since the source region and the drain region are made of a superconducting material, it is possible to realize an essential superconducting optoelectronic device that does not generate heat during operation.

第12図は、第11図に示す超伝導オプトエレクトロニ
クス素子をアレイ状に集積化した例を示す線図である。
FIG. 12 is a diagram showing an example in which the superconducting optoelectronic elements shown in FIG. 11 are integrated into an array.

本発明による超伝導オプトエレクトロニクス素子を1次
元又は2次元アレイ状に高密度に集積化すれば、素子間
の適切な超伝導配線をも背景にしながら動作時の発熱作
用を最小に抑制した撮像素子を実現できると共に、空間
的に並列演算を行なう光コンピュータの信号検出などの
主要部分を実現することができる。また用いる光源の波
長選択による多重チャネル化の可能性も考えられる。
If the superconducting optoelectronic elements according to the present invention are integrated at high density in a one-dimensional or two-dimensional array, an image sensor can be created that minimizes heat generation during operation while also having appropriate superconducting wiring between the elements. In addition, it is possible to realize the main parts such as signal detection of an optical computer that performs spatially parallel calculations. It is also possible to create multiple channels by selecting the wavelength of the light source used.

第13図は本発明による超伝導オプトエレクトロニクス
素子を用いて、空間並列光コンピュータにおける投影相
関光学系での光演算を行なう例を示す線図である。アレ
イ状光源IOから複数の光信号を並列してマスクパター
ン11に向けて投射する。
FIG. 13 is a diagram showing an example of optical calculation in a projection correlation optical system in a spatially parallel optical computer using the superconducting optoelectronic device according to the present invention. A plurality of optical signals are projected in parallel from an array light source IO toward a mask pattern 11.

マスクパターン11には演算処理内容に応じた符号化像
情報がマスク状に形成されており、マスクパターン11
を通過した複数の光ビームはスクリーン12を経て複合
マスク光素子アレイ13の対応する各素子にそれぞれ並
列に入射する。各光素子にはマスクスクリーンによって
変調された符号化信号が形成されるので、各光素子から
の光電出力信号から演算結果が求められる。光素子アレ
イ13の各素子を本発明による超伝導オプトエレクトロ
ニクス素子で構成すれば、動作時の発熱を最小に抑制し
た状態で並列光演算を行なうことができる。
The mask pattern 11 has encoded image information formed in a mask shape according to the content of arithmetic processing, and the mask pattern 11
The plurality of light beams that have passed through the screen 12 are incident on corresponding elements of the composite mask optical element array 13 in parallel. Since a coded signal modulated by a mask screen is formed in each optical element, a calculation result is determined from the photoelectric output signal from each optical element. By constructing each element of the optical element array 13 with a superconducting optoelectronic element according to the present invention, parallel optical operations can be performed while minimizing heat generation during operation.

尚、上述した実施例では、3端子素子を例にして説明し
たが、2端子素子として利用することもできる。すなわ
ち、VC=Oで生成されたキャリアは超伝導性光伝導に
よる超伝導近接効果を有しているから、この超伝導オプ
トエレクトロニクス素子は光の照射に基く超伝導ジョセ
フソン接合素子としても作用させ得ること予測される。
In the above-described embodiments, a three-terminal element was used as an example, but it can also be used as a two-terminal element. In other words, since the carriers generated in VC=O have a superconducting proximity effect due to superconducting photoconduction, this superconducting optoelectronic device can also act as a superconducting Josephson junction device based on light irradiation. Expected to get.

この2端子素子は、“超伝導性光伝導性制御ジョセフソ
ン接合素子”として位置付けることができる。この場合
には、ゲート幅と入射光量とを適切に選択する必要があ
る。
This two-terminal device can be positioned as a “superconducting photoconductivity controlled Josephson junction device”. In this case, it is necessary to appropriately select the gate width and the amount of incident light.

さらに、上述した実施例では、Ca−3r−Bi−Cu
−0系材料を用いたがBa−Pb−B1−0 、La−
Cu−0、Y−Ba−CuO系材料のような別の超伝導
光伝導性材料系を用いることもできる。例えば、ゲート
領域をBaIPbo、5Bio、s (hの材料で構成
し、ソース及びドレイン領域を超伝導性を有するBal
 Pbo、o、s Bio、zsO1材料で構成すれば
、同様な効果を有する超伝導光伝導オプトエレクトロニ
クス素子を実現することができる。
Furthermore, in the above-mentioned embodiment, Ca-3r-Bi-Cu
-0 series materials were used, but Ba-Pb-B1-0, La-
Other superconducting photoconductive material systems can also be used, such as Cu-0, Y-Ba-CuO based materials. For example, the gate region is made of BaIPbo, 5Bio, s (h material), and the source and drain regions are made of superconducting Bal material.
A superconducting photoconductive optoelectronic device having similar effects can be realized by using Pbo, o, s Bio, and zsO1 materials.

上述したふ超伝導性光伝導現象は、以下の機構に基づく
ものと考えられる。第2図(a)及び(b)に示した光
伝導のスペクトル応答Q(λ、T)はCat−x−Sr
x−Biz−、−Cuy−Ox系の試料の内部に、原子
的な意味でBi、01と類似する領域が存在しているこ
とを暗示している。Bi2O3による光吸収並びに光伝
導性は、未だ実験的にも励起子理論によってもあまり詳
しく解明されてはいない。しかし恐らく陽イオン殻内で
の電荷移動型Frenkel型励起子の典型的な例であ
ろう。ここでのQ(λ、T)における微細構造の位置は
Bi2O3そのものの基礎吸収端の構造とよく一致して
いる。我々はいくつかの際立った恐らく励起子によるも
のであろうと考えられる微細構造を認めることすら出来
る。たとえば旧20ユ と類似してCaz−Bi 1−
Cuz−03の光伝導応答スペクトルのλ# 623n
m近傍にBi2O2のある系列励起子のn=2状態に対
応するものと考えられる構造が認められる。そこで、C
a−5r−Bi−Cu−0系の物質の内部には無視する
ことのできない、少なくとも有限の比率でのBi2O3
に類似する相が存在する。そして、そこではそれぞれの
結晶構造に若干の相異をもつものの、光によって励起さ
れた伝導電子と正孔が確かに動きまわれる状態にある(
第14図(a)参照)。
The superconducting photoconduction phenomenon described above is thought to be based on the following mechanism. The photoconductive spectral response Q (λ, T) shown in FIGS. 2(a) and (b) is Cat-x-Sr
This suggests that a region similar to Bi, 01 in an atomic sense exists inside the x-Biz-, -Cuy-Ox sample. Light absorption and photoconductivity by Bi2O3 have not yet been elucidated in detail either experimentally or by exciton theory. However, it is probably a typical example of a charge-transfer type Frenkel exciton within a cation shell. The position of the fine structure at Q(λ, T) here closely matches the structure of the fundamental absorption edge of Bi2O3 itself. We can even see some distinct fine structures, probably due to excitons. For example, similar to the old 20 units, Caz-Bi 1-
λ# 623n of photoconductive response spectrum of Cuz-03
A structure considered to correspond to the n=2 state of a series exciton with Bi2O2 in the m vicinity is observed. Therefore, C
Inside the a-5r-Bi-Cu-0 system material, Bi2O3 exists in at least a finite proportion that cannot be ignored.
There are phases similar to . Although there are slight differences in their crystal structures, conduction electrons and holes excited by light are certainly in a state of movement (
(See FIG. 14(a)).

標準的なタイプのBi 203結晶内の伝導電子と正孔
は、“小さいポーラロン”を形成していると考られる。
The conduction electrons and holes in standard type Bi 203 crystals are thought to form "small polarons".

しかし、絶縁体的試料において、“°光伝導性Q(λ、
T)の出現“′が、“超伝導性の出現°“と明確に関係
していて、あたかも超伝導性が光伝導性の現象のうらに
潜在しているかのように見える。そこでポーラロンの効
果についていえば、それがLOフォノンとの相互作用に
もとづく“大きなポーラロン”であろうと、或いはヤー
ンテラー効果による″“小さなボーラロンパであろうと
、または両者にもとすく中間結合の領域のものであろう
と、とにかく第1図(a) 〜(c)及び第2図(a)
 (b)に示されるように、゛電子分極によるポーラロ
ン効果°゛とともに少なくとも潜在的にはポーラロン効
果は重要なものであろう。それらポーラロン効果は、コ
ヒーレントに混成した形での素励起としての複合した効
果をもっていると思われる。ここで我々は電子分極によ
るポーラロンに特別の注意を払う必要があり、それは別
名“励起子ポーラロン゛′とも呼ばれているものである
。ここでの実験結果を見ると、ポーラロンや励起子の間
に密接な関係があることが認められた。
However, in an insulating sample, “°photoconductivity Q(λ,
The appearance of T) is clearly related to the appearance of superconductivity, and it appears as if superconductivity is hidden behind the phenomenon of photoconductivity.Therefore, the polaron effect For that matter, whether it is a "large polaron" based on interaction with the LO phonon, a "small boularonpa" due to the Jahn-Teller effect, or something in the region of intermediate coupling between both, Anyway, Figures 1 (a) to (c) and Figure 2 (a)
As shown in (b), the polaron effect is at least potentially important as well as the "polaron effect due to electronic polarization". These polaron effects are thought to have a complex effect as elementary excitations in a coherently hybridized form. Here we need to pay special attention to polarons due to electronic polarization, which are also called "exciton polarons." Looking at the experimental results here, we find that polarons and exciton It was recognized that there is a close relationship between

第14図(a)に示すように、これらのポーラロンや励
起子は、どれも酸素の(2p)とBiの(6s)の混成
価電子状態から後に(2p) 6(6s) ’の配置で
°“正孔”(白丸印)を残して、LOフォノンとも相互
作用をしながら主としてBiの(6p)伝導帯への帯間
遷移によって(6p) ’の伝導電子がつくり出された
ものである。しかし、Ca−3r−Bi−Cu−0系の
ポーラロンは光学的励起でも、CaをSrで置換するこ
とでもつくり出すことができる(第14図(b)参照、
この場合×=1で超伝導体に移行している)。Bi(6
s)と0(2P)の混成帯内の正孔は帯間または帯内い
ずれの遷移によっても多体系の基底状態からつくり出す
ことができるから、電子間の相関効果は勿論きわめて重
要である。我々はBi’+とBt 4 +、(uZ+と
Cu”の間の動的な価電子揺動もさることながら、Cu
’。
As shown in Figure 14(a), these polarons and excitons all change from the (2p) and (6s) hybrid valence states of oxygen to the (2p) 6(6s) ' configuration. ° Conduction electrons of (6p)' are created mainly by interband transition to the (6p) conduction band of Bi while interacting with LO phonons, leaving behind "holes" (white circles). . However, Ca-3r-Bi-Cu-0 system polarons can be created by optical excitation or by replacing Ca with Sr (see Figure 14(b)).
In this case, it has transitioned to a superconductor when ×=1). Bi(6
Since holes in the s) and 0(2P) hybrid band can be created from the many-body ground state by either interband or intraband transitions, the correlation effect between electrons is of course extremely important. We investigated not only the dynamic valence electron fluctuations between Bi'+ and Bt 4 +, (uZ+ and Cu), but also the
'.

とCu”、特にBi”+とBi’+の間の動的な価電子
揺動にも一層注意を払わなければならない。それゆえ、
高臨界温度をもつ超伝導機構に対しては、その大小を問
わずポーラロンの集合、特に励起子と密接に関係した集
合の潜在的役割を考える理由は充分存在するる。ポーラ
ロンと励起子の集合はバイポーラロン、ポーラロン励起
子の集合、および/または最もありそうなのは動的な電
子−フォノン相互作用と同様に動的な電子相関にもとづ
く、“励起子媒介のバイポーラロン°゛であると思われ
る。
More attention must also be paid to the dynamic valence electron fluctuation between Bi''+ and Bi'+, and especially between Bi''+ and Bi'+. therefore,
For superconducting mechanisms with high critical temperatures, there are good reasons to consider the potential role of collections of polarons, both large and small, especially those closely related to excitons. Polaron and exciton ensembles can be bipolarons, polaron exciton ensembles, and/or “exciton-mediated bipolarons” based on dynamic electron correlations as well as, most likely, dynamic electron-phonon interactions. It seems that it is.

第2図(b)に示すように、Ca−5r−Bi−Cu−
0系での光伝導応答Q(λ、T)は第2図(a)に示す
旧20゜の光伝導応答のスペクトルに極めて類似してい
る。
As shown in FIG. 2(b), Ca-5r-Bi-Cu-
The photoconductive response Q(λ, T) in the zero system is very similar to the spectrum of the old 20° photoconductive response shown in FIG. 2(a).

したがって、ここでの素励起の研究は厖大なキャリアー
密度の差にもかかわらず、超伝導基底状態の性質を啓示
していると考られる。さらに、第14図(a)の素励起
状態(絶縁体)においても、第14図(b)の基底状態
(超伝導体)におけるジョセフソン効果と同様な減少の
出現が予測できる。我々の知識の及ぶ限りでは、これら
が高臨界温度をもち反磁性を確かに示すことが知られて
いるCa−5r−Bi−Cu−0系の超伝導性に登場す
るポーラロンと励起子による機構の最初の明確な実験的
証拠である。
Therefore, the study of elementary excitations here is thought to reveal the nature of the superconducting ground state, despite the huge difference in carrier density. Furthermore, even in the elementary excited state (insulator) of FIG. 14(a), it can be predicted that a decrease similar to the Josephson effect in the ground state (superconductor) of FIG. 14(b) will appear. To the best of our knowledge, the mechanism of polarons and excitons that appears in the superconductivity of the Ca-5r-Bi-Cu-0 system, which is known to have a high critical temperature and certainly exhibit diamagnetic properties. This is the first clear experimental evidence that

(発明の効果) 以上説明したように本発明によれば、ソース領域及びド
レイン領域を超伝導材料で構成し、ゲーHI域を上記超
伝導材料の臨界温度で光伝導性を呈するパ超伝導性光伝
導材料°′で構成しているから、動作時のジュール熱等
の発熱作用を最小に抑制した本質的な意味での゛超伝導
オプトエレクトロニクス素子”たとえば“超伝導性光伝
導制御ジョセフソン接合素子゛′、゛′超伝導フォトト
ランジスタ゛′などを実現することができる。また、本
発明による素子を2次元アレイ状に高密度に集積化した
場合、電極部及びリード部等が完全反磁性を持つから、
これら相互間の電磁的相互作用や外部磁界による影響を
受けず、ノイズの発生伝達を有効に抑制することができ
る。従って、熱的及び電磁的に最良の条件下で動作でき
る光素子アレイを実現でき、例えば高速演算速度を持つ
空間並列光演算装置のような本質的にすぐれた゛°超伝
導オプトエレクトロニクス装置゛を実現が可能である。
(Effects of the Invention) As explained above, according to the present invention, the source region and the drain region are made of a superconducting material, and the Ga HI region is made of a superconducting material that exhibits photoconductivity at the critical temperature of the superconducting material. Because it is composed of a photoconductive material, it is essentially a superconducting optoelectronic device that minimizes heat generation effects such as Joule heat during operation, such as a superconducting photoconductive Josephson junction. It is possible to realize devices such as ``device'', ``superconducting phototransistor'', and the like. Furthermore, when the elements according to the present invention are integrated at high density in a two-dimensional array, the electrode portions, lead portions, etc. have complete diamagnetic properties.
Noise generation and transmission can be effectively suppressed without being affected by electromagnetic interaction between them or external magnetic fields. Therefore, it is possible to realize an optical element array that can operate under the best thermal and electromagnetic conditions, and to realize essentially superior "superconducting optoelectronic devices" such as spatially parallel optical processing devices with high processing speeds. is possible.

これらの効果は “超伝導オプトエレクトロニクス”と
いう最先端の科学技術分野を拓く可能性がある。
These effects have the potential to open up a cutting-edge scientific and technological field called "superconducting optoelectronics."

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(c)はCa−5r−Bi−Cu−0系
酸化物の光伝導性及び光伝導性を示すグラフ、 第2図(a)及び(b)はCa−5r−Bi−Cu−0
系酸化物の光伝導応答の波長依存性を示すグラフ、第3
図(a)〜(c)はY−Ba−Cu−0系酸化物の光伝
導性及び超伝導性を示すグラフ、 第4図(a) 〜(c)はY−Ba−Cu−0系酸化物
の光伝導応答の波長依存性を示すグラフ、 第5図はY−Ba−Cu−0系酸化物の入射光強度と光
伝導応答のとの関係を示すグラフ、 第6図(a)及び(b)は基準物質Bi、0.及びBa
−Pb−B1−0系酸化物の光伝導応答の温度依存性を
それぞれ示すグラフ、 第7図(a)及び(b)にBa−Pb−B1−0系酸化
物の光応答の波長依存性を示すグラフ、 第8図(a)〜(c)はLa−Cu−0系酸化物の光伝
導性及び超伝導性を示すグラフ、 第9図(a) 〜(c)はLa−Cu−0系酸化物の光
伝導応答の波長依存性を示すグラフ、 第10図はLa−Cu−0系酸化物の入射光強度と光伝
導応答との関係を示すグラフ、 第11図は本発明による超伝導オプトエレクトロニクス
素子の一例の構成を示す線図的断面図、第12図は本発
明による超伝導オプトエレクトロニクス装置の一例の構
成を示す線図、 第13図は本発明による超伝導オプトエレクトロニクス
素子アレイを用いた空間並列演算装置の構成を示す線図
である。 第14図(a)及び(b)はcaZ−X−Sr、−B1
3−y−Cuy−0,系のx=0 (絶縁体)及びx=
1 (超伝導体)のエネルギー(E)と状態密度N(E
)との関係をそれぞれ示す模式図である。 1・・・基板       2・・・ゲート領域3・・
・ソース8U 域4・・・ドレイン領域■9・・・ゲー
トバイアス源 VSa・・・ソース−ドレイン間バイアス源特許出願人
 東 京 大 学 長 第1図 0  20  40  6θ  110  /θθ f
20 140丁(K) 第2図 線長(nm’) 第3図 丁(K) 第4図 5皮長(nm ) 第6図 0 20 40 60  BOtoo tzO下(K) 第7図 1刷し’;:’−CeV) シ皮長(nm) T(K) 第9図 波長(nm) 第10図 024   6f3 房刀起光5貧度(相えすイ直) 第11図 第12図 (a) 秋枯密危N (E) − 図 (b) 状植宏痕N(E)− 手 vt   補  正  書(方式)%式% 1、事件の表示 昭和63年特許願第201655号 2、発明の名称 超伝導オプトエレクトロニクス素子及び超伝導オプトエ
レクトロニクス装置 3、補正をする者 事件との関係  特許出願人 東  京  大  学  長 4、代理人 5、補正命令の日付 1、明細書第22頁第16行〜第23頁第12行を次の
通りに訂正する。 「 第1図はCa−3r−Bi−Cu−0系酸化物の光
伝導性及び光伝導性を示すグラフ、 第2図はCa−3r−Bi−Cu−0系酸化物の光伝導
応答の波長依存性を示すグラフ、 第3図はY−Ba−Cu−0系酸化物の光伝導性及び超
伝導性を示すグラフ、 第4図はY−Ba−Cu−0系酸化物の光伝導応答の波
長依存性を示すグラフ、 第5図はY−Ba−Cu−0系酸化物の入射光強度と光
伝導応答との関係を示すグラフ、 第6図は基準物質Biz(h及びBa−Pb−B1−0
系酸化物の光伝導応答の温度依存性をそれぞれ示すグラ
フ、 第7図はBa−Pb−B1−0系酸化物の光応答の波長
依存性を示すグラフ、 第8図はLa−Cu−0系酸化物の光伝導性及び超伝導
性を示すグラフ、」
Figures 1 (a) to (c) are graphs showing the photoconductivity and photoconductivity of Ca-5r-Bi-Cu-0 based oxides, Figure 2 (a) and (b) are Ca-5r- Bi-Cu-0
Graph showing the wavelength dependence of the photoconductive response of oxides, 3rd
Figures (a) to (c) are graphs showing the photoconductivity and superconductivity of Y-Ba-Cu-0 based oxides, and Figure 4 (a) to (c) are graphs showing Y-Ba-Cu-0 based oxides. A graph showing the wavelength dependence of the photoconductive response of oxides. Figure 5 is a graph showing the relationship between the incident light intensity and the photoconductive response of Y-Ba-Cu-0 based oxides. Figure 6 (a) and (b) is the reference material Bi, 0. and Ba
- Graphs showing the temperature dependence of the photoconductive response of Pb-B1-0 series oxides. Figures 7 (a) and (b) show the wavelength dependence of the photoconductive response of Ba-Pb-B1-0 series oxides. Graphs showing the photoconductivity and superconductivity of La-Cu-0 based oxides, Figures 9(a)-(c) are graphs showing the photoconductivity and superconductivity of La-Cu- A graph showing the wavelength dependence of the photoconductive response of the 0-based oxide. FIG. 10 is a graph showing the relationship between the incident light intensity and the photoconductive response of the La-Cu-0 based oxide. FIG. A schematic cross-sectional view showing the configuration of an example of a superconducting optoelectronic device, FIG. 12 is a diagram showing the configuration of an example of a superconducting optoelectronic device according to the present invention, and FIG. 13 is a diagrammatic cross-sectional view showing the configuration of an example of a superconducting optoelectronic device according to the present invention. FIG. 2 is a diagram showing the configuration of a spatially parallel arithmetic device using an array. Figure 14 (a) and (b) are caZ-X-Sr, -B1
3-y-Cuy-0, system x=0 (insulator) and x=
1 (superconductor) energy (E) and density of states N (E
) is a schematic diagram showing the relationship between the two. 1...Substrate 2...Gate region 3...
・Source 8U region 4...Drain region ■9...Gate bias source VSa...Source-drain bias source Patent applicant University of Tokyo President Figure 1 0 20 40 6θ 110 /θθ f
20 140 pieces (K) Figure 2 Line length (nm') Figure 3 Line length (K) Figure 4 Figure 5 Skin length (nm) Figure 6 0 20 40 60 BOtoo tzO bottom (K) Figure 7 First printing ';:'-CeV) Skin length (nm) T (K) Fig. 9 Wavelength (nm) Fig. 10 024 6f3 Fusato Kiko 5 anomaly (Aesui Nao) Fig. 11 Fig. 12 (a ) Autumn wilt secret danger N (E) - Figure (b) Shape of planting hole N (E) - Hand VT amendment (method) % formula % 1. Indication of the incident 1988 Patent Application No. 201655 2. Invention Name of superconducting optoelectronic device and superconducting optoelectronic device 3, Relationship with the case of the person making the amendment Patent applicant: President of the University of Tokyo 4, attorney: 5, date of amendment order: 1, specification, page 22, item 16 Correct line 12 of page 23 as follows: "Figure 1 is a graph showing the photoconductivity and photoconductivity of Ca-3r-Bi-Cu-0 based oxide, and Figure 2 is a graph showing the photoconductive response of Ca-3r-Bi-Cu-0 based oxide. Graph showing wavelength dependence. Figure 3 is a graph showing photoconductivity and superconductivity of Y-Ba-Cu-0 based oxide. Figure 4 is photoconductivity of Y-Ba-Cu-0 based oxide. A graph showing the wavelength dependence of the response. Figure 5 is a graph showing the relationship between the incident light intensity and the photoconductive response of Y-Ba-Cu-0 based oxide. Pb-B1-0
Graphs showing the temperature dependence of the photoconductive response of Ba-Pb-B1-0 system oxides, Figure 8 is a graph showing the wavelength dependence of the photoconductive response of Ba-Pb-B1-0 system oxides, and Figure 8 is a graph showing the wavelength dependence of the photoconductive response of Ba-Pb-B1-0 system oxides. Graph showing photoconductivity and superconductivity of oxides based on

Claims (1)

【特許請求の範囲】 1、基板上に形成され、超伝導性光伝導材料から成る光
伝導性ゲート領域と、この光伝導性ゲート領域をはさん
で互いに対向し、超伝導性材料より成るソース領域及び
ドレイン領域と、これらソース領域とドレイン領域との
間に配置したバイアス源とを具え、前記光伝導性ゲート
領域に入射する光量に応じてソース−ドレイン間電流が
制御されるように構成したことを特徴とする超伝導オプ
トエレクトロニクス素子。 2、前記光伝導性ゲート領域を、 一般式Y_3_−_x−Ba_x−Cu_y−O_zこ
こで、0≦x≦1、y=3、7.0≦z≦7.5の組成
又はx=2、y=3、6.0≦z≦6.5の組成の超伝
導性光伝導材料で構成し、前記ソース及びドレイン領域
を、 一般式Y_3_−_x−Ba_x−Cu_y−O_zこ
こで、1≦x≦2、y=3、6.5≦z≦7の組成の超
伝導性材料で構成したことを特徴とする請求項1に記載
の超伝導オプトエレクトロニクス素子。 3、前記光伝導性ゲート領域を、 一般式La_2_−Cu_1_−O_z、ここで、3.
86≦z≦3.92の組成の超伝導性光伝導材料で構成
し、前記ソース及びドレイン領域を、 一般式La_2_−Cu_1_−O_z、ここで、3.
92<z=4.02組成の超伝導材料で構成したことを
特徴とする請求項1に記載の超伝導オプトレエクトロニ
クス素子。 4、前記光伝導性ゲート領域を、 一般式Ca_X_x−Sr_xBi_Y_−_y−Cu
_y−O_z、ここで、2≦X≦3、0≦x<1、3≦
Y≦4、0<y≦2、4≦z≦9の組成の超伝導性光伝
導材料で構成し、前記ソース及びドレイン領域を、 一般式Ca_X_x−Sr_x−Bi_Y_−_y−C
u_y−O_z、ここで、2≦X≦3、1≦x≦2、3
≦Y≦4、0<y≦2、4≦z≦9の組成の超伝導材料
で構成したことを特徴とする請求項1に記載の超伝導オ
プトエレクトロニクス素子。 5、前記光伝導性ゲート領域を、 一般式Ba_1−Pb_1_−_x−Bi_x−O_z
ここで、x≦0.35、2.7≦z≦3の組成の超伝導
性光伝導材料で構成し、前記ソース及びドレイン領域を
、 一般式 Ba_1−Pb_1_−_x−Bi_x−O_
z、ここで、0.20≦x≦0.35、2.81≦z≦
3の組成の超伝導材料で構成したことを特徴とする請求
項1に記載の超伝導オプトエレクトロニクス素子。 6、請求項1から5までのいずれか1項に記載の超伝導
オプトエレクトロニクス素子を2次元アレイ状に集積化
したことを特徴とする超伝導オプトエレクトロニクス装
置。
[Claims] 1. A photoconductive gate region formed on a substrate and made of a superconducting photoconductive material, and a source made of a superconducting material facing each other with the photoconductive gate region sandwiched therebetween. and a bias source disposed between the source and drain regions, the source-drain current being controlled in accordance with the amount of light incident on the photoconductive gate region. A superconducting optoelectronic device characterized by: 2. The photoconductive gate region is defined by the general formula Y_3_-_x-Ba_x-Cu_y-O_z, where 0≦x≦1, y=3, 7.0≦z≦7.5, or x=2, The source and drain regions are formed of a superconducting photoconductive material having a composition of y=3 and 6.0≦z≦6.5, and the source and drain regions have the general formula Y_3_−_x−Ba_x−Cu_y−O_z, where 1≦x 2. The superconducting optoelectronic device according to claim 1, wherein the superconducting optoelectronic device is made of a superconducting material having a composition of ≦2, y=3, and 6.5≦z≦7. 3. The photoconductive gate region has the general formula La_2_-Cu_1_-O_z, where 3.
86≦z≦3.92, the source and drain regions have the general formula La_2_-Cu_1_-O_z, where 3.
The superconducting optorelectronic device according to claim 1, characterized in that it is made of a superconducting material having a composition of 92<z=4.02. 4. The photoconductive gate region has the general formula Ca_X_x-Sr_xBi_Y_-_y-Cu
_y−O_z, where 2≦X≦3, 0≦x<1, 3≦
The source and drain regions are made of a superconducting photoconductive material having a composition of Y≦4, 0<y≦2, 4≦z≦9, and the source and drain regions have the general formula Ca_X_x-Sr_x-Bi_Y_-_y-C
u_y−O_z, where 2≦X≦3, 1≦x≦2, 3
2. The superconducting optoelectronic device according to claim 1, wherein the superconducting optoelectronic device is made of a superconducting material having a composition of ≦Y≦4, 0<y≦2, and 4≦z≦9. 5. The photoconductive gate region is defined by the general formula Ba_1-Pb_1_-_x-Bi_x-O_z
Here, the source and drain regions are made of a superconducting photoconductive material having a composition of x≦0.35 and 2.7≦z≦3, and the source and drain regions are expressed by the general formula Ba_1-Pb_1_-_x-Bi_x-O_
z, where 0.20≦x≦0.35, 2.81≦z≦
3. The superconducting optoelectronic device according to claim 1, wherein the superconducting optoelectronic device is made of a superconducting material having a composition according to claim 3. 6. A superconducting optoelectronic device, characterized in that the superconducting optoelectronic elements according to any one of claims 1 to 5 are integrated into a two-dimensional array.
JP63201655A 1988-03-11 1988-08-12 Superconductive optoelectronic element and device thereof Granted JPH01315177A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63201655A JPH01315177A (en) 1988-03-11 1988-08-12 Superconductive optoelectronic element and device thereof
US07/320,131 US4990487A (en) 1988-03-11 1989-03-07 Superconductive optoelectronic devices
CA000593077A CA1310391C (en) 1988-03-11 1989-03-08 Superconductive optoelectronic devices
EP89302357A EP0332448B1 (en) 1988-03-11 1989-03-09 Superconductive optoelectronic devices
DE68926471T DE68926471T2 (en) 1988-03-11 1989-03-09 Superconducting optoelectronic devices

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5784488 1988-03-11
JP63-57844 1988-03-11
JP63201655A JPH01315177A (en) 1988-03-11 1988-08-12 Superconductive optoelectronic element and device thereof

Publications (2)

Publication Number Publication Date
JPH01315177A true JPH01315177A (en) 1989-12-20
JPH0581196B2 JPH0581196B2 (en) 1993-11-11

Family

ID=13067285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63201655A Granted JPH01315177A (en) 1988-03-11 1988-08-12 Superconductive optoelectronic element and device thereof

Country Status (1)

Country Link
JP (1) JPH01315177A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020091850A1 (en) 1992-10-23 2002-07-11 Cybex Corporation System and method for remote monitoring and operation of personal computers

Also Published As

Publication number Publication date
JPH0581196B2 (en) 1993-11-11

Similar Documents

Publication Publication Date Title
EP0332448B1 (en) Superconductive optoelectronic devices
Balasubramanian et al. Thin‐film‐based integrated high‐transition‐temperature superconductor devices
Tassini et al. First-order-type effects in YBa 2 Cu 3 O 6+ x at the onset of superconductivity
JPH01315177A (en) Superconductive optoelectronic element and device thereof
JPH06318738A (en) Superconductive conjugated photoconductive substance bi-srca(lay)-cu-o material, manufacture thereof and superconducting optoelectronic device using same
Little et al. Electronic and Phonon Contributions to the Pairing in the Cuprates
US5462916A (en) Superconductive optoelectronic devices with the basic substance Bi2 O3 of superconductive-conjugate photoconductivity
US5151409A (en) Superconducting composition comprising ln-th-cu-o, wherein ln is pr, nd, pm, sm, eu, gd, er or mixtures thereof
US5244870A (en) Superconductive optoelectronic device with the basic substance Cu2 O of superconductive-conjugate photoconductivity
US5121173A (en) Proximity effect very long wavlength infrared (VLWIR) radiation detector
JPH06102549B2 (en) Ca-Sr-Bi-Cu-O-based oxide superconducting photoconductive material and method for producing the same
CA1338852C (en) Superconductive photoconductive-substance of the la-cu-o system and a method for producing the same
US5219831A (en) Superconductive photoconductive-substance of the La-Cu-O system and a method for producing the same
EP0354811B1 (en) Superconductive photoconductive substance of the Ba-Pb-Bi-O group system and a method for producing the same
Chanda et al. Energy Efficient Future Generation Electronics Based on Strongly Correlated Electron Systems
Ariyoshi et al. Terahertz detector based on a superconducting tunnel junction coupled to a thin superconductor film
Tidrow et al. Simplified QWIPs for low-temperature and low-background applications
JPH0196582A (en) Signal detector
Prettl et al. Far infrared response of thin film Bi [sub 2] Sr [sub 2] CaCu [sub 2] O [sub 8] using a free electron laser
Pawar 6. Photoinduced Superconductors
Khurram et al. Effect of paramagnetic Mn ion on the superconductivity of Cu0. 5Tl0. 5Ba2Ca2− xMnxCu3O10− y
Dresselhaus et al. Basic optical studies of high T [sub c] oxide superconductors. Final report, 15 January 1990-14 January 1993
JPH085713B2 (en) Y-Ba-Cu-O-based oxide photoconductive material and method for producing the same
Egami et al. Low Temperature Anomaly of LO Phonons in Lai ssSro 15CUO4 and YBa2Gu307
Fardmanesh Design and modeling for superconducting YBCO infrared detectors

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term