JPH01314655A - Hydraulic pressure controlling method using solenoid valve - Google Patents

Hydraulic pressure controlling method using solenoid valve

Info

Publication number
JPH01314655A
JPH01314655A JP14564188A JP14564188A JPH01314655A JP H01314655 A JPH01314655 A JP H01314655A JP 14564188 A JP14564188 A JP 14564188A JP 14564188 A JP14564188 A JP 14564188A JP H01314655 A JPH01314655 A JP H01314655A
Authority
JP
Japan
Prior art keywords
pressure
liquid
solenoid valve
valve
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14564188A
Other languages
Japanese (ja)
Inventor
Takashi Kunimi
敬 国見
Namio Watanabe
渡辺 南男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akebono Brake Industry Co Ltd
Akebono Research and Development Centre Ltd
Original Assignee
Akebono Brake Industry Co Ltd
Akebono Research and Development Centre Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akebono Brake Industry Co Ltd, Akebono Research and Development Centre Ltd filed Critical Akebono Brake Industry Co Ltd
Priority to JP14564188A priority Critical patent/JPH01314655A/en
Publication of JPH01314655A publication Critical patent/JPH01314655A/en
Pending legal-status Critical Current

Links

Landscapes

  • Regulating Braking Force (AREA)

Abstract

PURPOSE:To make it possible to control liquid pressure by means of a single solenoid valve so as to lower the cost of an anti-lock controller and the like, by connecting a pressure reduction passage which allows pressure liquid to flow therethrough away to a main liquid passage leading to a pressure liquid supplied portion, and interposing a solenoid valve controlled with duty ratio on the lower portion of this pressure reduction passage. CONSTITUTION:In a brake hydraulic pressure controller equipped with an anti-lock and traction controller, a pressure reduction passage 8 which allows pressure liquid inside the pressure liquid supplied portion 1 (a wheel cylinder, etc.) of a wheel braking device to flow therethrough away to a reserver 7 is branchingly connected to a main liquid passage 3 which supplies pressure liquid generated in a liquid pressure source 10 (i.e. a tandem type master cylinder, etc.) to the pressure liquid supplied portion 1. And also a solenoid valve 9 is interposed in a certain place within the area from the branch point of this pressure reduction passage 8 and the main liquid passage 3 to the lower side of the pressure reduction passage 8. And liquid pressure of the pressure liquid supplied portion 1 is controlled by varying the duty ratio of pulse signals applied to the solenoid valve 9.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電磁弁による液圧制御方法に係り、特にアンチ
ロック制御装置やトラクション制御装置に使用する電磁
弁の駆動制御によるブレーキ液圧制御方法むこ関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method of controlling hydraulic pressure using a solenoid valve, and particularly to a method of controlling brake hydraulic pressure by controlling the drive of a solenoid valve used in an anti-lock control device or a traction control device. I'm concerned.

〔従来の技術〕[Conventional technology]

従来、アンチロック制御装置や[・ラクショノ制御装置
等のブレーキ液圧制御装置において、ブレーキ液圧の加
減圧を行うには、通常、常開のビルドバルブと常閉のデ
イケイバルブを別体もしくは3方弁として一体に備え、
加圧はビルドバルブを介して行い、減圧はこのビルドバ
ルブを閉じ、デイケイバルブを開いてリザーバに圧液を
吸収して行うのが基本的手段である。
Conventionally, in brake fluid pressure control devices such as anti-lock control devices and brake control devices, in order to increase or decrease brake fluid pressure, a normally open build valve and a normally closed decay valve are usually separated or 3-way. Prepared as a valve,
The basic method is to pressurize via a build valve, and to reduce pressure by closing the build valve and opening the decay valve to absorb pressurized liquid into the reservoir.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、このような手段では、ビルドバルブとデイケイ
バルブとの2つのバルブを要して不経済であり、また、
たとえ各バルブを3万弁として一体化したとしても、加
圧ルートと減圧ルートの選択のために結局2つの弁部を
内蔵し、構造が複雑になる。
However, this method requires two valves, a build valve and a decay valve, which is uneconomical, and
Even if each valve were integrated into 30,000 valves, two valve parts would be required to select the pressurization route and the pressure reduction route, resulting in a complicated structure.

また、従来のバルブは、開か閉かの2つの選択にとどま
り、圧液の流量調整は不可能で、プレーキ液圧の加減圧
を微妙に調整することはできなかった。
In addition, conventional valves have only two options: open or close, and cannot adjust the flow rate of the pressure fluid, making it impossible to finely adjust the pressure increase or decrease of the brake fluid pressure.

本発明はこのような間顕点に鑑みなされたもので、液圧
の加減圧を1つの弁で可能にするとともに、加減圧の微
妙な調整も可能にすることを技術的課題とするものであ
る。
The present invention was developed in view of the above-mentioned problems, and its technical problem is to enable the adjustment of fluid pressure with a single valve, and also to enable delicate adjustment of the pressure. be.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は前記課題を解決するため、以下の手段とした。 In order to solve the above problems, the present invention takes the following measures.

すなわち、本発明は、液圧源とこの液圧源からの圧液を
受け入れる圧液被供給部とを結ぶ主液路に、圧液被供給
部内の圧液を逃がす減圧路を接続し、この減圧路と前記
主液路の交差点から減圧路の下流側に至る任意の位置に
パルス信号の印加でオン・オフする電磁弁を介挿してお
き、この電磁弁に印加されるパルス信号のデユーティ−
比を変えて、圧液被供給部の液圧を制御することを特徴
とする電磁弁による液圧制御方法である。
That is, the present invention connects a main fluid path connecting a hydraulic pressure source and a pressurized liquid supplied section that receives pressure liquid from this hydraulic pressure source with a depressurization path that releases the pressure liquid in the pressurized liquid supplied section. A solenoid valve that is turned on and off by applying a pulse signal is inserted at an arbitrary position from the intersection of the depressurization path and the main liquid path to the downstream side of the depressurization path, and the duty of the pulse signal applied to this solenoid valve is
This is a hydraulic pressure control method using an electromagnetic valve, which is characterized in that the hydraulic pressure of a pressurized liquid supplied part is controlled by changing the ratio.

〔作用〕[Effect]

本発明の作用を、理解を容易にするため、第1図を参照
して説明する。
For ease of understanding, the operation of the present invention will be explained with reference to FIG.

今、液圧源10から主液路3を介して圧液が供給されて
いるものとする。そして、本発明では、電磁弁9が常閉
型の場合にはパルス信号のデユーティ−比に電磁弁9の
開動作時間/閉動作時間が比例し、電磁弁9が常開型の
場合にはパルス信号のデユーティ−比に電磁弁9の閉動
作時間/開動作時間が比例し、閉動作時間の比率が大き
くなると、液圧源10から供給されている圧)夜が減圧
路8からりサーバ7に逃げる比率か小さくなり、圧液被
供給部1に供給される圧液が多くなって加圧され、閉動
作時間の比率が小さくなると逆の作用で減圧される。
It is now assumed that pressure fluid is being supplied from the hydraulic pressure source 10 through the main fluid path 3. In the present invention, when the solenoid valve 9 is a normally closed type, the opening operation time/closing operation time of the solenoid valve 9 is proportional to the duty ratio of the pulse signal, and when the solenoid valve 9 is a normally open type, The closing operation time/opening operation time of the solenoid valve 9 is proportional to the duty ratio of the pulse signal, and as the ratio of the closing operation time increases, the pressure supplied from the hydraulic pressure source 10 decreases from the pressure reducing path 8. 7, the escape ratio decreases, and the amount of pressurized fluid supplied to the pressurized fluid supplied portion 1 increases, causing it to be pressurized, and when the ratio of the closing operation time decreases, the pressure is reduced by the opposite effect.

〔実施例〕〔Example〕

以下、いわゆるFF車に装備されるアンチロック及びト
ラクション制tall装置付きブレーキ液圧制御装置に
本発明を用いた例を第2図に基づいて説明する。
Hereinafter, an example in which the present invention is applied to a brake fluid pressure control device with an anti-lock and traction control tall device installed in a so-called front-wheel drive vehicle will be described with reference to FIG.

まず、タンデム型マスクシリンダ(M/C)の一方の液
圧発生室からメインケートバルブ2aを介して、圧液被
供給部1としての左前軸ブレーキ装置のホイルシリンダ
(W/C)側と右後輪ブレーキ装置のホイルシリンダ(
W/C)側とに分岐して至る主液路3aが設けられてい
る。そして、右後輪ブし−キ装置のホイルシリンダ(W
/C)側に分岐して至る主液路3a+ には常開のカッ
トバルブ4a、ブロボーショニングバルブ(PCV)が
順次介挿されている。そして、このカットバルブ4aと
プロポーショニングバルブ(PCV)との間からチエツ
ク弁5aを介してマスクシリンダ(M/C)に至る帰還
路6aが接続されている。
First, from one hydraulic pressure generating chamber of the tandem type mask cylinder (M/C) to the wheel cylinder (W/C) side of the left front axle brake device as the pressurized liquid supplied part 1 and the right side through the main gate valve 2a. Wheel cylinder of rear wheel brake system (
A main liquid path 3a is provided which branches to the W/C side. Then, check the wheel cylinder (W) of the right rear wheel brake device.
A normally open cut valve 4a and a blotting valve (PCV) are sequentially inserted into the main liquid path 3a+ branching to the /C) side. A return path 6a is connected from the cut valve 4a and the proportioning valve (PCV) to the mask cylinder (M/C) via the check valve 5a.

また、右後輪ブレーキ装置のホイルシリンダ(W/C)
側に分岐した主液路3a1の途中において、前記カット
バルブ4aよりも上流側にリザーバ7に至る減圧路8a
が接続され、この減圧路8aの途中に本発明に係る電磁
弁9としての常閉のデイケイバルブ9aが介挿されてい
る。そして、リザーバ7に本発明でいう液圧源1oに相
当するポンプ10aが接続されているとともに、ポンプ
1゜aはチエツク弁1’ 1 aを介して左前輪ブレー
キ装置のホイルシリンダ(W/C)との間の主液路3a
に接続されているとともに、リリーフ弁12aを介して
リザーバ7に戻るように接続されている。
In addition, the wheel cylinder (W/C) of the right rear wheel brake system
In the middle of the main liquid path 3a1 branched to the side, there is a pressure reducing path 8a leading to the reservoir 7 on the upstream side of the cut valve 4a.
is connected, and a normally closed decay valve 9a serving as a solenoid valve 9 according to the present invention is inserted in the middle of this pressure reducing path 8a. A pump 10a corresponding to the hydraulic pressure source 1o in the present invention is connected to the reservoir 7, and the pump 1a is connected to a wheel cylinder (W/C) of the left front wheel brake system via a check valve 1'1a. ) Main liquid path 3a between
It is also connected to the reservoir 7 via the relief valve 12a.

そして、以上の構成と同一の液圧回路が、タンデム型マ
スクシリンダ(M/C)の他方の液圧発生室と、右前輪
ブレーキ装置のホイルシリンダ(W/C)、及び、左後
輪ブレーキ装置のホイルシリンダ(W/C)との間に設
けられている。なお、同一の部分は、記号すを添えた同
一の数字で示す。
The same hydraulic pressure circuit as above is connected to the other hydraulic pressure generating chamber of the tandem mask cylinder (M/C), the wheel cylinder (W/C) of the right front wheel brake device, and the left rear wheel brake. It is provided between the foil cylinder (W/C) of the device. In addition, the same parts are indicated by the same numbers with a symbol.

一方、各車輪に設けた車輪速度センサ(S)からの信号
を受けて、車輪ロックのおそれ、あるいは、車輪のスリ
ップ状態を検知し、その検知結果から前記メインゲート
バルブ2a、カットバルブ4a、デイケイバルブ9aを
開閉制御し、あるいは、ポンプを起動・停止するマイク
ロコンピュータによる制御装置(ECU)が設けられて
いる。
On the other hand, in response to a signal from a wheel speed sensor (S) provided on each wheel, a risk of wheel locking or a wheel slip state is detected, and based on the detection results, the main gate valve 2a, cut valve 4a, and decay valve A microcomputer-based control unit (ECU) is provided to control the opening and closing of the pump 9a or to start and stop the pump.

この制御装置(ECU)とデイケイバルブ9aとの間に
は、デイケイバルブ9aを開閉駆動するためにパルス信
号を発するパルス発生器13が設けられ、前記制御装置
(ECU)からの指令でパルス信号のデユーティ−比が
0〜100%の範囲で連続的に可変されるようになって
いる。
A pulse generator 13 is provided between this control unit (ECU) and the Decay valve 9a, and generates a pulse signal to open and close the Decay valve 9a. The ratio is continuously variable in the range of 0 to 100%.

にで、デイケイバルブ9aはパルス信号の周6一 波数が変わることでその動作態様が変わる。In this case, the decay valve 9a detects the period 6 of the pulse signal. The mode of operation changes as the wave number changes.

パルス信号の周波数がデイケイバルブ9aの応答限度周
波数以上である場合、デイケイバルブ9aのバルブgi
PJ(V)はパルス信号に追従して弁座に脱着するので
はなく、パルス信号のデユーティ−比によって決定され
る供給電力の積分値に応じて弁座から離れるストローク
が決定され、そのス1− [コークの程度で、バルブ部
(V)と弁座間の間隔が広狭調節され、その結果、減圧
路8aに向かう液路面積が決定される。つまり、パルス
信号のデユーティ−比に比例して前記液路面積が大小変
化する。従って、この減圧路8aに向かう液路面積が小
さくなる程、液圧被供給部1としてのホイルシリンダ(
1,1/C)の液圧が加圧され、その逆の場合は減圧さ
れる。
When the frequency of the pulse signal is equal to or higher than the response limit frequency of the decay valve 9a, the valve gi of the decay valve 9a
PJ (V) does not attach or detach from the valve seat following a pulse signal, but its stroke away from the valve seat is determined according to the integral value of the supplied power determined by the duty ratio of the pulse signal, and - [Depending on the degree of coke, the distance between the valve portion (V) and the valve seat is adjusted to be wide or narrow, and as a result, the area of the liquid path toward the pressure reducing path 8a is determined. In other words, the liquid path area changes in size in proportion to the duty ratio of the pulse signal. Therefore, the smaller the area of the liquid path toward the pressure reducing path 8a, the smaller the foil cylinder (
1,1/C) is applied, and vice versa, the liquid pressure is reduced.

また、パルス信号の周波数がデイケイバルブ9aの応答
限度周波数以下である場合、デイケイバルブ9aのバル
ブgA(V)はパルス信号に追従して弁座に脱着するの
で、パルス信号のデユーティ−比と同一のパルス信号の
デユーティ−比の時間−7= で開閉が繰り返され、これによって単位時間における圧
液の流量の積分値が大小変化するので、この値が小さい
とき液圧被供給部1としてのホイルシリンダ(W/C)
の液圧が加圧され、大きくなると減圧される。但し、こ
の動作態様では、バルブ部(V)が弁座に着脱するため
、圧液流に脈動が生じる。
In addition, when the frequency of the pulse signal is lower than the response limit frequency of the Decay valve 9a, the valve gA (V) of the Decay valve 9a follows the pulse signal and is attached to and detached from the valve seat, so the pulse signal has the same duty ratio as the pulse signal. The opening and closing are repeated at the time of the duty ratio of the signal - 7=, and as a result, the integral value of the flow rate of the pressure fluid per unit time changes in magnitude, so when this value is small, the foil cylinder as the hydraulic pressure supplied part 1 ( W/C)
The liquid pressure is increased, and when it increases, it is reduced. However, in this mode of operation, since the valve portion (V) is attached to and removed from the valve seat, pulsations occur in the pressure liquid flow.

次に、上記したブレーキ液圧制御装置の動作を説明する
Next, the operation of the brake fluid pressure control device described above will be explained.

まず、アンチロック制御について説明する。First, anti-lock control will be explained.

車軸速度信号を受けて制御装置(ECtJ)が「左前輪
に車輪ロックのおそれがあり」と判断したとする。する
と、制御装置(ECU)からの指令でメインゲートバル
ブ2aが閉じ、ポンプ10aが起動する。
Assume that the control device (ECtJ) receives the axle speed signal and determines that ``there is a risk of wheel lock on the left front wheel.'' Then, the main gate valve 2a is closed by a command from the control device (ECU), and the pump 10a is started.

そして、まず、パルス信号のデユーティ−比が大きく設
定されてデイケイバルブ9aに印加される。すると、デ
イケイバルブ9aを通過してリザーバ7に逃げる圧液の
流量が多くなり、ホイルシリンダ(IJ/C)の液圧が
減圧され、車輪ロックのおそれが回避される。その後、
パルス信号のデユーティ−比が徐々に小さくされ、デイ
ケイバルブ9aを通過してリザーバ7に逃げる圧液の流
量が徐々に少なくなり、これに反比例してホイルシリン
ダ(W/C)の液圧が加圧され、再度ブレーキがかけら
れる。そして、必要に応じて以上の動作が繰り返される
。なお、以上の間、カットバルブ4aは開いたままであ
る。
First, the duty ratio of the pulse signal is set high and applied to the decay valve 9a. Then, the flow rate of the pressurized fluid passing through the decay valve 9a and escaping to the reservoir 7 increases, the fluid pressure in the foil cylinder (IJ/C) is reduced, and the fear of wheel locking is avoided. after that,
The duty ratio of the pulse signal is gradually reduced, the flow rate of the pressurized liquid passing through the decay valve 9a and escaping to the reservoir 7 is gradually reduced, and the liquid pressure of the foil cylinder (W/C) is increased in inverse proportion to this. and the brakes are applied again. The above operations are then repeated as necessary. Note that during the above period, the cut valve 4a remains open.

また、以上の動作は、後輪にロックのおそれが生じたと
きも同様である。
Further, the above operation is the same when there is a possibility that the rear wheels may become locked.

次に、トラクション制御について説明する。Next, traction control will be explained.

車両の発進時もしくは加速時に駆動軸にスリップが生じ
ると、車輪速度センサ(S)からの信号で、制御装置(
ECU)かこれを検知する。
If slip occurs on the drive shaft when the vehicle starts or accelerates, a signal from the wheel speed sensor (S) is sent to the control device (
ECU) or detect this.

すると、制御装置(ECU)からの指令でメインゲート
バルブ2a、カットバルブ4aが閉じ、ポンプ10aが
起動する。
Then, the main gate valve 2a and cut valve 4a are closed by a command from the control device (ECU), and the pump 10a is started.

そして、まず、パルス信号のデユーティ−比が小さく設
定され、前記と同様の作用で駆動軸(前輪)のホイルシ
リンダ(W/C)の液圧が加圧され、車輪スリップが回
避される。その後、パルス信号のデユーティ−比が徐々
に大きくされて駆動軸のホイルシリンダ(W/C)の液
圧が減圧され、ブレーキ制動が解除される。そして、必
要に応じ以上の動作が繰り返される。
First, the duty ratio of the pulse signal is set small, and the hydraulic pressure of the wheel cylinder (W/C) of the drive shaft (front wheel) is increased in the same manner as described above, thereby avoiding wheel slip. Thereafter, the duty ratio of the pulse signal is gradually increased, the hydraulic pressure in the wheel cylinder (W/C) of the drive shaft is reduced, and the brake is released. Then, the above operations are repeated as necessary.

以上、ポンプ10aからの圧液を直接ホイルシリンダ(
fil/C)に印加する場合におけるブレーキ液圧のコ
ントロールに、本発明を利用した例を説明したが、アン
チロック制御装置あるいはトラクション制御装置として
は、マスクシリンダ(M/C)からのブレーキ液圧を液
圧制御装置でコントロールするものあり、本発明を乙の
ようなタイプの装置に適用することも可能である。
As described above, the pressure liquid from the pump 10a is directly transferred to the foil cylinder (
An example in which the present invention is used to control the brake fluid pressure when applied to the mask cylinder (M/C) has been described, but as an anti-lock control device or traction control device, the brake fluid pressure from the mask cylinder (M/C) There is also a type of device that is controlled by a hydraulic pressure control device, and it is also possible to apply the present invention to a device of the type described above.

すなわち、このようなタイプの装置としては、図示しな
いがピストンの移動により容積が変動する加減圧室と前
記ピストンを移動させるためにピストンを境に加減圧室
の反対側に設けた作動液室とを液圧制御装置に備え、加
減圧室を車輪ブレーキのホイルシリンダ1こ接続し、作
動液室を電磁弁を介してポンプやアキュムレータ、ある
いはリザ−バに接続した構造のものを例示できる。そし
て、作動液室内の圧液がリザーバに逃がされるとピスト
ンの移動で加減圧室の容積が大きくなり、ホイルシリン
ダ内の圧液が加減圧室に吸収されてブレーキ液圧が減圧
され、ポンプやアキュムレータからの圧液が作動液室内
に流人してピストンが移動すると加減圧室の容積が小さ
くなって、そこで発生しだ液圧がホイルシリンダに印加
されブレーキ液圧が加圧される。
In other words, this type of device includes, although not shown, a pressurization chamber whose volume changes with the movement of the piston, and a hydraulic fluid chamber provided on the opposite side of the pressurization and depressurization chamber across the piston to move the piston. An example of such a structure is that a hydraulic pressure control device is equipped with a pressure control chamber, a pressurization chamber is connected to one wheel brake wheel cylinder, and a working fluid chamber is connected to a pump, an accumulator, or a reservoir via a solenoid valve. When the pressure fluid in the hydraulic fluid chamber is released to the reservoir, the volume of the pressure reduction chamber increases due to the movement of the piston, and the pressure fluid in the foil cylinder is absorbed into the pressure reduction chamber, reducing the brake fluid pressure. When the pressure fluid from the accumulator flows into the hydraulic fluid chamber and the piston moves, the volume of the pressure adjustment chamber becomes smaller, and the fluid pressure generated there is applied to the foil cylinder to increase brake fluid pressure.

にで、作動液室を本発明の圧液被供給部とみたて、ポン
プやアキュムレータを本発明の液圧源とみたて、電磁弁
を先のようにデユーティ−比の可変できるパルス発生器
で動作制御すると、先の実施例と同様の作用で作動液室
内の液圧を加圧したり減圧したりでき、これによりブレ
ーキ液圧の加減圧制御を行うことができる。
Now, the hydraulic fluid chamber is regarded as the pressurized fluid supplied part of the present invention, the pump and the accumulator are regarded as the hydraulic pressure source of the present invention, and the solenoid valve is a pulse generator with a variable duty ratio as described above. When the operation is controlled, the hydraulic pressure in the hydraulic fluid chamber can be increased or decreased in the same manner as in the previous embodiment, and thereby the brake fluid pressure can be increased or decreased.

〔発明の効果〕〔Effect of the invention〕

本発明では、1つの電磁弁で液圧の加減をコントロール
できるので、経済的である。また、開閉すべき弁部分は
1ケ所であり、従来のようもと2ヶ所必要であった場合
に比べ、故障率が減り、信頼性を確保できる。
The present invention is economical because the hydraulic pressure can be controlled with one solenoid valve. In addition, there is only one valve part to open and close, which reduces the failure rate and ensures reliability compared to the conventional case where two valve parts are required.

また、パルス信号のデユーティ−比を連続的に可変する
ことで、液圧の加減圧を連続的に行え、かつ、微妙な調
整も可能である。
Further, by continuously varying the duty ratio of the pulse signal, the hydraulic pressure can be increased and decreased continuously, and delicate adjustments can also be made.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実現する装置の一例を示しだ液
圧回路図、第2図は本発明を利用したアンチロック及び
トラクション制御装置の一例を示した液圧回路図、第3
図はマイクロコンピュータによる制御装置を中心とした
制御回路のブロック図である。 1・・圧液被供給部、(IJ/C)・・圧液被供給部と
してのホイルシリンダ、3 (3a、  3b、  3
at+  3bT)−−主液路、8 (8a、8b) 
・・減圧路、9・・電磁弁、9a、9b・・電磁弁とし
てのデイケイバルブ、10・・液圧源、10a、10b
・・液圧源としてのポンプ。
FIG. 1 is a hydraulic circuit diagram showing an example of a device for realizing the method of the present invention, FIG. 2 is a hydraulic circuit diagram showing an example of an anti-lock and traction control device using the present invention, and FIG.
The figure is a block diagram of a control circuit centered around a microcomputer-based control device. 1...Pressure liquid supplied part, (IJ/C)...Foil cylinder as pressure liquid supplied part, 3 (3a, 3b, 3
at+ 3bT) -- Main liquid path, 8 (8a, 8b)
...Pressure reduction path, 9.. Solenoid valve, 9a, 9b.. Decay valve as a solenoid valve, 10.. Liquid pressure source, 10a, 10b.
...Pump as a source of hydraulic pressure.

Claims (1)

【特許請求の範囲】[Claims] (1)液圧源とこの液圧源からの圧液を受け入れる圧液
被供給部とを結ぶ主液路に、圧液被供給部内の圧液を逃
がす減圧路を接続し、この減圧路と前記主液路の交差点
から減圧路の下流側に至る任意の位置にパルス信号の印
加でオン・オフする電磁弁を介挿しておき、この電磁弁
に印加されるパルス信号のデューティー比を変えて、圧
液被供給部の液圧を制御することを特徴とする電磁弁に
よる液圧制御方法。
(1) Connect a pressure reduction path that releases the pressure liquid in the pressure liquid supply part to the main liquid path that connects the hydraulic pressure source and the pressure liquid supply part that receives pressure liquid from this pressure source, and connect this pressure reduction path and A solenoid valve that is turned on and off by applying a pulse signal is inserted at an arbitrary position from the intersection of the main liquid path to the downstream side of the pressure reduction path, and the duty ratio of the pulse signal applied to this solenoid valve is changed. A method of controlling hydraulic pressure using a solenoid valve, characterized in that the hydraulic pressure of a part to which pressure liquid is supplied is controlled.
JP14564188A 1988-06-15 1988-06-15 Hydraulic pressure controlling method using solenoid valve Pending JPH01314655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14564188A JPH01314655A (en) 1988-06-15 1988-06-15 Hydraulic pressure controlling method using solenoid valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14564188A JPH01314655A (en) 1988-06-15 1988-06-15 Hydraulic pressure controlling method using solenoid valve

Publications (1)

Publication Number Publication Date
JPH01314655A true JPH01314655A (en) 1989-12-19

Family

ID=15389709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14564188A Pending JPH01314655A (en) 1988-06-15 1988-06-15 Hydraulic pressure controlling method using solenoid valve

Country Status (1)

Country Link
JP (1) JPH01314655A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116936A (en) * 1983-11-28 1985-06-24 Kayaba Ind Co Ltd Hydraulic buffer
JPS61273601A (en) * 1985-05-29 1986-12-03 Kobe Steel Ltd Split controller
JPS6277267A (en) * 1985-09-30 1987-04-09 Nippon Ee B S Kk Hydraulic pressure control device for antiskid device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116936A (en) * 1983-11-28 1985-06-24 Kayaba Ind Co Ltd Hydraulic buffer
JPS61273601A (en) * 1985-05-29 1986-12-03 Kobe Steel Ltd Split controller
JPS6277267A (en) * 1985-09-30 1987-04-09 Nippon Ee B S Kk Hydraulic pressure control device for antiskid device

Similar Documents

Publication Publication Date Title
US6161904A (en) Method and device for controlling a braking system in open loop
US6206489B1 (en) Method and device for check-testing a braking system
US7661769B2 (en) Brake apparatus for a vehicle
US4636009A (en) Hydraulic pressure control device for use in vehicle anti-skid braking system
JPS63151566A (en) Brake control device for vehicle
JPH11222119A (en) Solenoid valve and braking control device
US6648423B1 (en) Hydraulic brake system for regulated and comfortable braking
JP3508458B2 (en) Hydraulic brake control device
JPH01314655A (en) Hydraulic pressure controlling method using solenoid valve
JP4819219B2 (en) Hydraulic brake system for controlled and controllable brake operation
JPH04231244A (en) Brake pressure controller
JPH04231247A (en) Braking pressure controller
JP3067518B2 (en) Brake control device
JP3168180B2 (en) Electric vehicle braking system
JP4017359B2 (en) Anti-skid device
JPH08216857A (en) Antilock brake controller for vehicle
GB1358117A (en) Vehicle anti-skid braking system
US5655818A (en) Anti-skid control device
JPH09254764A (en) Braking force controller for vehicle
JP3412233B2 (en) Hydraulic pressure control device
KR200281977Y1 (en) Brake hydraulic pressure control device
JP2539758Y2 (en) Brake fluid pressure control device
KR0127554B1 (en) The brake system with a.b.s. and t.c.s.
JP2000177563A (en) Braking fluid pressure controller
JPH0834329A (en) Anti lock control system