JPH01313817A - Switch - Google Patents
SwitchInfo
- Publication number
- JPH01313817A JPH01313817A JP14400188A JP14400188A JPH01313817A JP H01313817 A JPH01313817 A JP H01313817A JP 14400188 A JP14400188 A JP 14400188A JP 14400188 A JP14400188 A JP 14400188A JP H01313817 A JPH01313817 A JP H01313817A
- Authority
- JP
- Japan
- Prior art keywords
- relay
- current
- contact
- diode
- thyristor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 claims abstract description 10
- 238000004804 winding Methods 0.000 claims description 36
- 239000004065 semiconductor Substances 0.000 claims description 10
- 230000002457 bidirectional effect Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H9/00—Details of switching devices, not covered by groups H01H1/00 - H01H7/00
- H01H9/54—Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
- H01H9/541—Contacts shunted by semiconductor devices
- H01H9/542—Contacts shunted by static switch means
- H01H2009/545—Contacts shunted by static switch means comprising a parallel semiconductor switch being fired optically, e.g. using a photocoupler
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H9/00—Details of switching devices, not covered by groups H01H1/00 - H01H7/00
- H01H9/54—Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
- H01H9/541—Contacts shunted by semiconductor devices
- H01H9/542—Contacts shunted by static switch means
Landscapes
- Keying Circuit Devices (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明はリレーの接点を用いて電気回路の開閉をおこな
う開閉S置に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a switching device for switching on and off an electric circuit using relay contacts.
従来の技術
リレーの接点の開閉で電流の断続をおこなう場合、抵抗
負荷ならば突入電流と定常電流は同じであるが、白熱電
球負荷でリレー投入時の電流波形は第6図に示すように
なり、この突入電流は定常電流の10〜15倍になる。Conventional technology When switching on and off current by opening and closing the contacts of a relay, the inrush current and steady current are the same for a resistive load, but the current waveform when the relay is turned on for an incandescent bulb load is as shown in Figure 6. , this rush current is 10 to 15 times the steady current.
これは白熱電球のフィラメントの抵抗値が、常温の時は
低い値を示し、通電して高温になると定格電流に対応し
た抵抗値になるためである。同様に、ソレノイド負荷の
突入電流は定常電流の10〜20@にもなる。したがっ
て定常電流の電流定格のリレーを用いると突入電流のた
め接点が溶着してしまう。また、負荷がソレノイドなど
の誘導性負荷の場合は、接点開離時に大きな逆起電圧が
発生して、接点間で放電して接点を傷めてしまう。This is because the resistance value of the filament of an incandescent light bulb exhibits a low value at room temperature, and when it is energized and heated to a high temperature, the resistance value changes to correspond to the rated current. Similarly, the inrush current of the solenoid load is 10 to 20 @ of the steady current. Therefore, if a relay rated for steady current is used, the contacts will weld due to the rush current. Further, if the load is an inductive load such as a solenoid, a large back electromotive voltage is generated when the contacts are opened, and discharge occurs between the contacts, damaging the contacts.
従来では、リレー接点を保護するため第7図に示すよう
に構成されている。負荷1は電源2にリレー接点3を介
して接続されており、リレー接点3を開閉覆ることによ
って負荷1の電流供給を断続する。リレー接点3は直流
リレーの巻線4に電流を流すと閉じる。トランジスタ5
は巻線4の電流の駆動に用いるトランジスタ、ダイオー
ド6は、逆起電力防止用で、これが無いと巻線電流を適
所した時に数100ボルトの逆起電圧が生じてトランジ
スタ5が破損する。リレー接点3には光トリ方形の双方
向性サイリスタ7が並列接続されており、そのトリが用
の発光ダイオード8は巻線4とダイオード6の並列回路
に直列に接続されている。Conventionally, a relay contact is constructed as shown in FIG. 7 in order to protect it. The load 1 is connected to a power source 2 via a relay contact 3, and current supply to the load 1 is interrupted by opening and closing the relay contact 3. Relay contact 3 closes when current is applied to winding 4 of the DC relay. transistor 5
The transistor and diode 6 used to drive the current in the winding 4 are used to prevent back electromotive force, and if these were not present, a back electromotive force of several hundred volts would occur when the winding current was set at the appropriate position, and the transistor 5 would be damaged. An optical triangular bidirectional thyristor 7 is connected in parallel to the relay contact 3, and a light emitting diode 8 for the trigon is connected in series to a parallel circuit of a winding 4 and a diode 6.
第8図は各部の動作タイミングを示プ。第8図(a)に
示づようにトランジスタ5がオンになると、直流電源1
0から巻線4と発光ダイオード8に電流が流れ、リレー
接点3は第8図(b)に示すようにわずか遅れてオンす
る。この遅れは、リレー接点3は磁力によって可vJ鉄
片が妨いて開閉するためて゛あり、開時、閉時ともに巻
S!電流より紡作万れか生じる。一方、双方向性サイリ
スタ7は発光ダイオード8からの赤外光を受けるとサイ
リスタ9が第8図(C)に示すように遅れなくターンオ
ンする。サイリスタ9がONLだ瞬間にはリレー接点3
はまだ閉じていないので、負荷1の突入電流はサイリス
タ9を通して流れ、遅れてリレー接点3が閉じる時には
負荷7の突入電流は第8図((1)に示すように小さく
なっており、はぼ定常電流値に近づいている。リレー接
点3が閉じるとサイリスタ9のT1.T2間の電圧が零
になるので、サイリスタ9はオン状態を保持することは
できないでオフになる。トランジスタ5がオフダると遅
延してリレー接点3が開離する。双方向性サイリスタ7
の発光ダイオード8には、トランジスタ5がオフした時
点ですでに電流が流れなくなっているので、接点開離時
にはサイリスタ9がオンすることはない。Figure 8 shows the operation timing of each part. As shown in FIG. 8(a), when the transistor 5 is turned on, the DC power supply 1
0, current flows through the winding 4 and the light emitting diode 8, and the relay contact 3 turns on with a slight delay as shown in FIG. 8(b). This delay is due to the fact that the relay contact 3 opens and closes due to the magnetic force that prevents the vJ iron piece from opening and closing, and the winding S! A lot of spinning occurs due to electric current. On the other hand, when the bidirectional thyristor 7 receives infrared light from the light emitting diode 8, the thyristor 9 turns on without delay as shown in FIG. 8(C). At the moment when thyristor 9 is ONL, relay contact 3
has not closed yet, the inrush current of load 1 flows through thyristor 9, and when relay contact 3 closes after a delay, the inrush current of load 7 has become small as shown in Figure 8 ((1)), and is almost It is approaching the steady current value. When the relay contact 3 closes, the voltage between T1 and T2 of the thyristor 9 becomes zero, so the thyristor 9 cannot maintain the on state and turns off. The transistor 5 turns off. With a delay, the relay contact 3 opens.Bidirectional thyristor 7
Since current no longer flows through the light emitting diode 8 when the transistor 5 turns off, the thyristor 9 does not turn on when the contact is opened.
なお、負荷電流の開閉を双方向性サイリスタ7のみでお
こなうと、定常電流が数アンペア以上の時には発熱が大
きくなる。しかし、リレー接03を併用すると定常電流
はリレー接点を通るので発熱が妨げる。Note that if the load current is switched only by the bidirectional thyristor 7, heat generation will increase when the steady current is several amperes or more. However, when relay contact 03 is used in combination, the steady current passes through the relay contact, which prevents heat generation.
発明が解決しようとする課題
このような従来の構成では、リレー接点3が開離する時
には双方向性サイリスタ7が動作しないので、銹樽性負
荷の時には接点間で放電して接点を傷めてしまい、リレ
ー寿命が短くなるという問題がある。Problems to be Solved by the Invention In such a conventional configuration, the bidirectional thyristor 7 does not operate when the relay contact 3 opens, so when a barrel-like load is applied, a discharge occurs between the contacts and damages the contacts. , there is a problem that the relay life is shortened.
課題を解決するための手段
本発明の開閉装置は、リレー接点と半導体スイッチとを
並列に接続し、リレー接点を駆動するリレー巻線と、リ
レー巻線電流を検知し、半導体スイッチを制御するリレ
ー巻II電流検知手段と、電源との直列回路に流れる電
流をスイッチ素子でオンオフして前記リレー接点と半導
体スイッチを制御するとともに、前記スイッチ素子の遮
断動作時にリレー巻線が発生する慣性電流が前記リレー
巻l!il電流検知手段を経由して流れるようにダイオ
ードを、リレー巻線とリレー@線電流検知f段の直列回
路に並列接続したことを特徴とづる。Means for Solving the Problems The switchgear of the present invention connects a relay contact and a semiconductor switch in parallel, and includes a relay winding that drives the relay contact, and a relay that detects the relay winding current and controls the semiconductor switch. Volume II The current detecting means and the power source are connected to a series circuit, and a switch element turns on and off the current flowing through the series circuit to control the relay contact and the semiconductor switch. Relay volume l! The present invention is characterized in that a diode is connected in parallel to a series circuit of a relay winding and a relay @line current detection f-stage so that the current flows through the il current detection means.
作用
この構成によると、スイッチ素子をオフしたときにリレ
ー巻線に発生する逆起電力〔慣性電流〕がダイオードに
よって巡回電流となってリレー巻線とリレー巻m電流検
知手段を流れ、半導体スイッチがスイッチ素子のオフし
た直後にもオンする。According to this configuration, the back electromotive force (inertia current) generated in the relay winding when the switch element is turned off is turned into a circulating current by the diode and flows through the relay winding and the relay winding current detection means, and the semiconductor switch is activated. It also turns on immediately after the switch element turns off.
実施例
以下、本発明の実施例を第1図〜第5図に基づいて説明
する。なお、従来例を示す第7図と同様の作用をなすも
のには同一の符号を付けて説明する。Embodiments Hereinafter, embodiments of the present invention will be explained based on FIGS. 1 to 5. Components having the same functions as those in FIG. 7 showing the conventional example will be described with the same reference numerals.
第1図は本発明の開閉装置を示す。リレー接点3と9イ
リスタ9で形成される負荷1の側の回路構成は第7図と
同じであるけれども、リレー巻線4の回路構成が従来と
は異なっている。リレーさ、?J4には、光トリガ形双
方向性サイリスタ7の発光ダイオード8とトランジスタ
5を介して直流電源10から電流が流れる。ぞしてリレ
ー巻線4と発光ダイオード8の直列回路に並列にダイオ
−ドロが接続されている。FIG. 1 shows a switchgear according to the invention. Although the circuit configuration on the load 1 side formed by the relay contacts 3 and 9 iris resistor 9 is the same as that shown in FIG. 7, the circuit configuration of the relay winding 4 is different from the conventional one. Relay? A current flows through J4 from the DC power supply 10 via the light emitting diode 8 of the optically triggered bidirectional thyristor 7 and the transistor 5. A diode wire is connected in parallel to the series circuit of the relay winding 4 and the light emitting diode 8.
このように構成したため次のように動作する。With this configuration, it operates as follows.
第2図(a)に示すようにトランジスタ5がオンづると
、直流型gi10からリレー巻Ia4と発光ダイオード
8には第2図(b)に示づように励磁電流が流れる。こ
の励磁電流はリレー巻$14のインダクタンスによって
決まる時定数で増加する。サイリスレ9は第2図(f)
に示すように直ちにターンオンし、リレー接点3は遅れ
て第2図(e)に示すようにオンする。トランジスタ5
をオフすると、リレー巻sil’lのインダクタンスは
トランジスタ5がオフになってもその直後には電流を流
し続けようとするため、リレ−11i!4→ダイオード
6→発光ダイオード8の閉回路を巡回する電流が流れる
。When the transistor 5 is turned on as shown in FIG. 2(a), an exciting current flows from the DC type gi10 to the relay winding Ia4 and the light emitting diode 8 as shown in FIG. 2(b). This exciting current increases with a time constant determined by the inductance of relay winding $14. Sirisle 9 is shown in Figure 2 (f)
The relay contact 3 is turned on immediately as shown in FIG. 2(e), and the relay contact 3 is turned on with a delay as shown in FIG. 2(e). transistor 5
When the relay winding sil'l is turned off, the inductance of the relay winding sil'l tries to continue flowing current immediately after the transistor 5 is turned off, so the relay 11i! A current flows through the closed circuit of 4→diode 6→light emitting diode 8.
第2図(C)はこの電流を示す。第2図(b)における
電流ItIIt はサイリスタ9がターンオンするため
のスレショート電流値であって、第2図(d)は発光ダ
イオード8にスレショート電流値以上の電流が流れてい
る期間を示している。つまり、トランジスタ5がオンし
、リレー1g14の電流がスレショート電流工1を越え
るとサイリスタ9がターンオンする。接点3が閉じると
サイリスタT1゜12間の電圧が無くなりサイリスタが
オフする。FIG. 2(C) shows this current. The current ItIIt in FIG. 2(b) is the threshold short current value for turning on the thyristor 9, and FIG. 2(d) shows the period during which a current equal to or higher than the threshold short current value flows through the light emitting diode 8. ing. That is, when the transistor 5 is turned on and the current of the relay 1g14 exceeds the thread short circuit 1, the thyristor 9 is turned on. When contact 3 closes, the voltage between thyristors T1 and T12 disappears, turning off the thyristor.
リレー接点3が開離する瞬間にはまだスレショート電流
11以上の巡回電流が流れているため、サイリスタ9は
再びターンオンし、スレショート電流11以下に減衰し
た時〔実際にはスレショート電流以上になった次の交流
電源の電圧が零ボルトを横切る時)にサイリスタ9はオ
フする。At the moment when the relay contact 3 opens, a circulating current with a thread short current of 11 or more is still flowing, so the thyristor 9 is turned on again, and when the thread short current decreases to 11 or less [actually, the thread short current is higher than the thread short current]. When the voltage of the next AC power supply crosses zero volts), the thyristor 9 turns off.
以−Fのように接点3の開閉時に、並列に接続きれたサ
イリスタ9がターンオンすることで突入電流の側路およ
び接点間の放電の防止ができ、リレー接点3の損傷を防
ぐことができる。As shown in F below, when the contacts 3 are opened and closed, the thyristors 9 connected in parallel are turned on, thereby preventing inrush current from bypassing and discharging between the contacts, thereby preventing damage to the relay contacts 3.
第3図番よ別の実施例を示す。これはリレーが小さく、
リレー接点3が開離する瞬間には発光ダイオード8とリ
レー巻線4を流れる電流がサイリスタ9のターンオン電
流以下になってしまう場合に用いる。22はトランジス
タ、23はトランジスタ22のベース・エミッタ間の抵
抗器である。24は電流制限用抵抗器である。第4図を
用いて各部の動作を説明する。第4図(a)はトランジ
スタ5、第4図(b)はリレー接点3の動作を示j0第
4図(C)はリレー巻線4の電流で、第4図(d)に示
すダイオード6の電流と第4図(e)に示すトランジス
タ5を流れる電流の和である第4図(C)において12
はサイリスタ9のターンオンのスレショート電流値を示
す。図で巻線電流27がターンオン電流以下になる時に
は、リレー接点3はまだ閉じている。またリレーがさら
に小さい場合には、リレーの巻線の定常電流もスレショ
ート電流値I2以下のことも有り青る。I3はトランジ
スタ22がオンするためのスレショート電流値である。Figure 3 shows another embodiment. This relay is small,
This is used when the current flowing through the light emitting diode 8 and the relay winding 4 becomes less than the turn-on current of the thyristor 9 at the moment when the relay contact 3 opens. 22 is a transistor, and 23 is a resistor between the base and emitter of the transistor 22. 24 is a current limiting resistor. The operation of each part will be explained using FIG. 4(a) shows the operation of the transistor 5, FIG. 4(b) shows the operation of the relay contact 3, and FIG. 4(C) shows the current of the relay winding 4, and the diode 6 shown in FIG. 4(d). In FIG. 4(C), which is the sum of the current flowing through the transistor 5 and the current flowing through the transistor 5 shown in FIG. 4(e), 12
indicates the threshold current value when the thyristor 9 is turned on. In the figure, when the winding current 27 is below the turn-on current, the relay contacts 3 are still closed. Furthermore, if the relay is even smaller, the steady current in the relay winding may also be less than the thread short current value I2. I3 is a threshold current value for turning on the transistor 22.
抵抗器23の値と巻線電流の積が、トランジスタ22の
ベース・エミッタ間電圧の約0.7ボルトを越えるとト
ランジスタ22はオンする。抵抗器23の値を選ぶこと
によりスレショート電流値I3は自由に設定できる。第
4図(f)にトランジスタ22がインした時に流れる抵
抗器24の電流を示づ。この電流がスレショート電流I
2を越えるように抵抗器24の値を選ぶ。第4図(a)
はサイリスタ9の動作を示し、光光ダイオード8に電流
が流れ、かつリレー接点3が開離している時にサイリス
タ9がオンになる。When the product of the value of resistor 23 and the winding current exceeds the base-emitter voltage of transistor 22, approximately 0.7 volts, transistor 22 turns on. By selecting the value of the resistor 23, the threshold short current value I3 can be freely set. FIG. 4(f) shows the current flowing through the resistor 24 when the transistor 22 is turned on. This current is the thread short current I
The value of resistor 24 is chosen to be greater than 2. Figure 4(a)
indicates the operation of the thyristor 9, and the thyristor 9 is turned on when current flows through the photodiode 8 and the relay contact 3 is open.
このように本実施例でもI点開離時にもサイリスタ9が
オンし、接点間の放電がなくなり接点の損傷を防ぐこと
ができる。In this way, in this embodiment as well, the thyristor 9 is turned on even when the I point is opened, so that no discharge occurs between the contacts, and damage to the contacts can be prevented.
上記各実施例では、半導体スイッチとして光トリガ形双
方向性サイリスタ7を用いたが、交流電源とリレー駆動
用の回路を絶縁する必要が無い場合には第5図に示1よ
うにリレー巻線電流で直接に双方向性サイリスタ25の
ゲートにトリが電流を供給してもよい。In each of the above embodiments, the optically triggered bidirectional thyristor 7 is used as the semiconductor switch, but if there is no need to insulate the AC power supply and the relay driving circuit, the relay winding can be used as shown in FIG. The current may be supplied directly to the gate of the bidirectional thyristor 25 by the bird.
なお、第1図では発光ダイオード8がリレー巻I!il
電流検知手段、第3図と第5図では抵抗器23がリレー
巻線電流検知手段として作用している。In addition, in FIG. 1, the light emitting diode 8 is connected to the relay winding I! il
Current sensing means, in FIGS. 3 and 5, resistor 23 acts as relay winding current sensing means.
発明の効果
以上のように木ブで明によると、リレー巻線とリレー電
流検知手段の直列回路にダイオードを並列接続したため
、スイッチ素子の遮断動作時にリレー巻線が発生するt
fl性電流がリレー電流検知手段を経由して流れ、半導
体スイッチが再びオンして、スイッチ素子のオン動作時
と同じようにリレー接点を保護することができ、リレー
接点の損傷を防いで艮庁命化することができるものであ
る。Effects of the Invention As described above, according to Akira Kibu, because a diode is connected in parallel to the series circuit of the relay winding and relay current detection means, the relay winding occurs when the switch element is cut off.
When the flash current flows through the relay current detection means, the semiconductor switch is turned on again, and the relay contacts can be protected in the same way as when the switch element is turned on, preventing damage to the relay contacts and reducing the risk of damage to the relay contacts. It is something that can be brought to life.
第1図は本発明の開閉WA置の−・実施例の構成図、第
2図は同装置の要部波形図、第3図と第5図は他の実施
例の構成図、第4図は第3図の要部波形図、第6図は白
熱電球負荷に電源を投入した時の突入電流の波形図、第
7図は従来の開閉装置の構成図、第8図は同装置の要部
波形図である。
3・・・リレー接点、4・・・リレー谷線、5・・・ト
ランジスタ(スイッチ素子〕、6・・・ダイオード、7
・・・光トリガ形双方向性サイリスタ、8・・・発光ダ
イオード〔リレー巻線電流検知手段〕、9・・・ナイリ
スタ〔半導体スイッチ]、10・・・直流電源。
代理人 森 本 義 弘
第3図
第Δ図
第S図
第7図
第1図Fig. 1 is a block diagram of an embodiment of the opening/closing WA device of the present invention, Fig. 2 is a waveform diagram of the main part of the same device, Figs. 3 and 5 are block diagrams of other embodiments, and Fig. 4 is a waveform diagram of the main part of Figure 3, Figure 6 is a waveform diagram of the inrush current when power is applied to an incandescent lamp load, Figure 7 is a configuration diagram of a conventional switchgear, and Figure 8 is a diagram of the main parts of the same equipment. FIG. 3... Relay contact, 4... Relay valley wire, 5... Transistor (switch element), 6... Diode, 7
... Optical trigger bidirectional thyristor, 8... Light emitting diode [relay winding current detection means], 9... Nyristor [semiconductor switch], 10... DC power supply. Agent Yoshihiro Morimoto Figure 3 Figure Δ Figure S Figure 7 Figure 1
Claims (1)
レー接点を駆動するリレー巻線と、リレー巻線電流を検
知し、半導体スイッチを制御するリレー巻線電流検知手
段と、電源との直列回路に流れる電流をスイッチ素子で
オンオフして前記リレー接点と半導体スイッチを制御す
るとともに、前記スイッチ素子の遮断動作時にリレー巻
線が発生する慣性電流が前記リレー巻線電流検知手段を
経由して流れるようにダイオードを、リレー巻線とリレ
ー巻線電流検知手段の直列回路に並列接続した開閉装置
。1. A series circuit that connects a relay contact and a semiconductor switch in parallel, and includes a relay winding that drives the relay contact, a relay winding current detection means that detects the relay winding current and controls the semiconductor switch, and a power supply. The relay contact and the semiconductor switch are controlled by turning on and off the current flowing through the switch element, and the inertia current generated by the relay winding when the switch element is cut off flows through the relay winding current detection means. A switchgear in which a diode is connected in parallel to a series circuit of a relay winding and a relay winding current detection means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14400188A JPH01313817A (en) | 1988-06-10 | 1988-06-10 | Switch |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14400188A JPH01313817A (en) | 1988-06-10 | 1988-06-10 | Switch |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01313817A true JPH01313817A (en) | 1989-12-19 |
Family
ID=15352009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14400188A Pending JPH01313817A (en) | 1988-06-10 | 1988-06-10 | Switch |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01313817A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL1016791C2 (en) * | 2000-12-04 | 2002-06-05 | Holec Holland Nv | Hybrid electrical switching device. |
JP2019506131A (en) * | 2016-01-24 | 2019-02-28 | 広州市金矢電子有限公司Guangzhou Kingser Electronics Co., Ltd | Power extinguishing power device drive device and arc extinguishing device |
WO2020183700A1 (en) * | 2019-03-14 | 2020-09-17 | オムロン株式会社 | Control device and solar power generation system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5521663A (en) * | 1978-08-04 | 1980-02-15 | Sadamu Endo | Delay method turning off light emitting diode |
-
1988
- 1988-06-10 JP JP14400188A patent/JPH01313817A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5521663A (en) * | 1978-08-04 | 1980-02-15 | Sadamu Endo | Delay method turning off light emitting diode |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL1016791C2 (en) * | 2000-12-04 | 2002-06-05 | Holec Holland Nv | Hybrid electrical switching device. |
WO2002047100A1 (en) * | 2000-12-04 | 2002-06-13 | Holec Holland N.V. | Hybrid electrical switching device |
US7339288B2 (en) | 2000-12-04 | 2008-03-04 | Eaton Electric N.V. | Hybrid electrical switching device |
US7612471B2 (en) | 2000-12-04 | 2009-11-03 | Eaton Electric N.V. | Hybrid electrical switching device |
JP2019506131A (en) * | 2016-01-24 | 2019-02-28 | 広州市金矢電子有限公司Guangzhou Kingser Electronics Co., Ltd | Power extinguishing power device drive device and arc extinguishing device |
WO2020183700A1 (en) * | 2019-03-14 | 2020-09-17 | オムロン株式会社 | Control device and solar power generation system |
JPWO2020183700A1 (en) * | 2019-03-14 | 2021-12-16 | オムロン株式会社 | Control device and photovoltaic power generation system |
US11886217B2 (en) | 2019-03-14 | 2024-01-30 | Omron Corporation | Control device and solar power generation system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5790354A (en) | Hybrid power switching device | |
US5473202A (en) | Control unit for occupancy sensor switching of high efficiency lighting | |
US4888494A (en) | Electromechanical lamp switching | |
US6621668B1 (en) | Relay circuit means for controlling the application of AC power to a load using a relay with arc suppression circuitry | |
US4598330A (en) | High power direct current switching circuit | |
US5633540A (en) | Surge-resistant relay switching circuit | |
US7612471B2 (en) | Hybrid electrical switching device | |
US6956725B2 (en) | Current controlled contact arc suppressor | |
US5247238A (en) | Battery charger automatic cut-off circuit | |
JPH0447324B2 (en) | ||
JP3099963B2 (en) | 2 relay switching circuit for fluorescent light control device | |
US6281604B1 (en) | Apparatus for controlling AC supply switches | |
JPS61114509A (en) | Superconductive coil device | |
JPH01313817A (en) | Switch | |
US4767944A (en) | Hybrid relay circuit having electromagnetic relay for switching AC power supply | |
JP7185768B2 (en) | relay module | |
WO2000072342A2 (en) | Mercury-free arcless hybrid relay | |
US5946182A (en) | Power supply circuit for an electromagnetic coil having low DC and high AC voltage supply | |
JP2843859B2 (en) | Fluorescent light starter | |
JPH046167Y2 (en) | ||
JPS6130169B2 (en) | ||
US6404267B1 (en) | High side MOSFET drive | |
JPS63102134A (en) | Heater | |
JPH0629804A (en) | Zero cross switching relay | |
JPH10105256A (en) | Switch power source, electronic circuit, and lighting device and oa equipment |