JPH01313735A - Infrared-ray gas detector - Google Patents

Infrared-ray gas detector

Info

Publication number
JPH01313735A
JPH01313735A JP63146139A JP14613988A JPH01313735A JP H01313735 A JPH01313735 A JP H01313735A JP 63146139 A JP63146139 A JP 63146139A JP 14613988 A JP14613988 A JP 14613988A JP H01313735 A JPH01313735 A JP H01313735A
Authority
JP
Japan
Prior art keywords
infrared
optical filter
electro
image sensor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63146139A
Other languages
Japanese (ja)
Inventor
Toshiharu Tanaka
敏晴 田中
Kenichi Shibata
賢一 柴田
Kosuke Takeuchi
孝介 竹内
Seiji Nishikawa
誠司 西川
Kazuhiko Kuroki
黒木 和彦
Shoichi Nakano
中野 昭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63146139A priority Critical patent/JPH01313735A/en
Publication of JPH01313735A publication Critical patent/JPH01313735A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To measure many kinds of gas concentration by one kind of optical filter by providing an optical filter having a band pass characteristic being variable electro-optically. CONSTITUTION:A two-dimensional image sensor 2 is placed on a base 1, and a pyroelectric thin plate 3 is provided on its upper part, by which an infrared- ray image sensor is constituted. On its upper part, an optical filter 10 having a three-layer structure in which an electro-optical element 5 of PLZT, etc., is pinched between two pieces of polarizers 4, 4 is provided. On the upper face of a case 6, an infrared-ray transmission window 7 is provided and from the bottom face, a lead wire 8 is drawn out. In the electro-optical element 5, groove- shaped electrodes 5a, 5b are provided on the lower face side, and that which has superposed an AC modulation voltage on a DC bias is applied through the lead wire 8. Transmissivity of the optical filter 10 depends on an applied voltage, therefore, by selecting a suitable voltage, the optical filter having a passing band in the absorption wavelength of gas to be detected or its vicinity is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、赤外線ガス検出装置に関し、更に詳しくは、
ガスの赤外線吸収特性を利用してこれを透過した赤外線
量を検出することによってガスの濃度を測定することが
できる赤外線ガス検出装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an infrared gas detection device, and more specifically,
The present invention relates to an infrared gas detection device that can measure the concentration of a gas by detecting the amount of infrared rays transmitted through the gas using its infrared absorption characteristics.

〔従来の技術〕[Conventional technology]

第6図は従来の赤外線ガス検出装置の模式的な斜視図で
ある。
FIG. 6 is a schematic perspective view of a conventional infrared gas detection device.

第6図において、2次元マトリクス状に配列された画素
21を備えたCCD(Charge Coupled 
 旦evice)を用いてなるイメージセンサ22の表
面に、各画素21の電極が蒸着形成されている。
In FIG. 6, a CCD (Charge Coupled Device) is equipped with pixels 21 arranged in a two-dimensional matrix.
The electrodes of each pixel 21 are formed by vapor deposition on the surface of an image sensor 22 using a semiconductor device.

その表面には赤外線検出体である焦電薄板23が設けら
れ、焦電薄板23の裏面にはイメージセンサ22の各画
素21の電極に対応してマトリクス状に電極が蒸着され
、さらにIn (インジウム)バンパーが蒸着されて、
各画素21の電極に圧着されている。
A pyroelectric thin plate 23, which is an infrared detector, is provided on the front surface of the pyroelectric thin plate 23, and electrodes are deposited on the back surface of the pyroelectric thin plate 23 in a matrix pattern corresponding to the electrodes of each pixel 21 of the image sensor 22. ) the bumper is deposited,
It is crimped to the electrode of each pixel 21.

上記焦電薄板23の表面は一定の帯域通過特性をもつ光
学フィルタ24で被われている。以上の構成の赤外線ガ
ス検出装置において、上記光学フィルタ24によって濾
波された一定帯域波長の赤外線Aは焦電薄板23上に熱
による歪みを発生させる。歪みが生じた焦電薄板23で
はピエゾ効果による起電力が生じて、上記イメージセン
サ22の各画素21に電荷が蓄積される。
The surface of the pyroelectric thin plate 23 is covered with an optical filter 24 having a certain bandpass characteristic. In the infrared gas detection device having the above configuration, the infrared ray A having a certain wavelength band and filtered by the optical filter 24 generates thermal distortion on the pyroelectric thin plate 23. In the distorted pyroelectric thin plate 23, an electromotive force is generated due to the piezoelectric effect, and charges are accumulated in each pixel 21 of the image sensor 22.

上記各画素21の蓄積電荷量は、焦電薄板23を通過し
た赤外線Aの透過光量に対応した値を有している。蓄積
された電荷はイメージセンサ22内で逐次転送されてビ
デオ信号出力端子25より取り出される。
The amount of accumulated charge in each pixel 21 has a value corresponding to the amount of infrared ray A that has passed through the pyroelectric thin plate 23. The accumulated charges are sequentially transferred within the image sensor 22 and taken out from the video signal output terminal 25.

ところで、一般にガスは固有の波長の赤外線を吸収し、
更にガスの濃度に応じた量の赤外線を吸収するという特
性を有する。従って上記赤外線ガス検出装置において被
検出ガスの赤外線吸収波長を透過させる特性を有する光
学フィルタ24を使用すれば、その波長の赤外線だけが
透過することになり、被検出ガスにより吸収された赤外
線の量を測定することができるので、その吸収量から被
検出ガスの濃度がわかる。
By the way, gases generally absorb infrared rays at specific wavelengths,
Furthermore, it has the property of absorbing infrared rays in an amount that corresponds to the concentration of the gas. Therefore, if the optical filter 24 having the characteristic of transmitting the infrared absorption wavelength of the gas to be detected is used in the above-mentioned infrared gas detection device, only the infrared rays of that wavelength will be transmitted, and the amount of infrared rays absorbed by the gas to be detected will be transmitted. can be measured, so the concentration of the gas to be detected can be determined from the absorbed amount.

上記赤外線ガス検出装置では2次元のイメージセンサを
備えているので、被検出ガスの2次元的な濃度分布をも
検出することが可能である。
Since the infrared gas detection device described above is equipped with a two-dimensional image sensor, it is also possible to detect a two-dimensional concentration distribution of the gas to be detected.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の赤外線ガス検出装置では、光学フィルタ24
の赤外線透過帯域波長は1種類のフィルタでは一定であ
るから、1種類のガス濃度しか測定できない。
In the conventional infrared gas detection device described above, the optical filter 24
Since the infrared transmission band wavelength of is constant for one type of filter, only one type of gas concentration can be measured.

従って、数種類のガスの濃度分布を検出するためには各
々のガスの赤外線吸収波長に応じた複数の検出装置を用
いるか、または複数個の光学フィルタを取り換えて使用
する必要があるという問題がある。
Therefore, in order to detect the concentration distribution of several types of gases, there is a problem in that it is necessary to use multiple detection devices depending on the infrared absorption wavelength of each gas, or to replace and use multiple optical filters. .

本発明は、上記の事情に鑑み、電気光学的に可変な透過
特性をもつ濾波手段により、1種類の光学フィルタで多
種類のガスの濃度を測定することができる赤外線ガス検
出装置を提供することを目的とする。
In view of the above circumstances, it is an object of the present invention to provide an infrared gas detection device capable of measuring the concentration of many types of gases with one type of optical filter using a filtering means having an electro-optically variable transmission characteristic. With the goal.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る赤外線ガス検出装置は、赤外線領域に通過
帯域を有する濾波手段と、該濾波手段によって濾波され
た赤外線量を検出する赤外線検出手段とを具備する赤外
線ガス検出装置において、前記濾波手段が、電気光学的
に通過帯域が可変な特性を有することを特徴とする。
An infrared gas detection device according to the present invention includes a filtering means having a pass band in the infrared region, and an infrared detection means for detecting an amount of infrared rays filtered by the filtering means, wherein the filtering means is , which is characterized by having a characteristic that the passband is electro-optically variable.

〔作用〕[Effect]

電気光学的に通過帯域が可変な特性をもつ濾波手段を備
えることにより、その濾波手段を通過する赤外線の波長
の値を電気的に制御して、任意の値に設定することがで
きる。
By providing a filtering means having a characteristic of electro-optically variable pass band, the value of the wavelength of infrared rays passing through the filtering means can be electrically controlled and set to an arbitrary value.

従って、上記濾波手段の赤外線の通過帯域を被検出ガス
の赤外線吸収波長の値に応じて設定することによって、
多種類のガス濃度を測定することができる。
Therefore, by setting the infrared passband of the filtering means according to the value of the infrared absorption wavelength of the gas to be detected,
It is possible to measure the concentration of many types of gases.

〔実施例〕〔Example〕

以下、本発明をその実施例を示す図面によって詳述する
Hereinafter, the present invention will be explained in detail with reference to drawings showing embodiments thereof.

第1図は本発明に係る赤外線ガス検出装置の構造図であ
る。
FIG. 1 is a structural diagram of an infrared gas detection device according to the present invention.

基台1の上に例えばCCDよりなる2次元イメージセン
サ2が配されており、その上部には例えばLiTa0z
よりなる焦電薄板3が設けられ、従来と同様な構成で赤
外線検出手段、つまり赤外線イメージセンサが構成され
ている。
A two-dimensional image sensor 2 made of, for example, a CCD is arranged on a base 1, and on the top thereof, for example, LiTa0z
A pyroelectric thin plate 3 made of the following is provided, and infrared detection means, that is, an infrared image sensor, is constructed with the same structure as the conventional one.

赤外線イメージセンサの上部には、2枚の偏光子4,4
によってPLZT等の電気光学素子5が挟まれた3層構
造を有する光学フィルタ10が設けられている。
There are two polarizers 4, 4 on the top of the infrared image sensor.
An optical filter 10 having a three-layer structure in which an electro-optical element 5 such as PLZT is sandwiched is provided.

前述の濾波手段である光学フィルタ10は電気光学的に
可変な透過特性を有する。上記のごとく構成された赤外
線イメージセンサ及び光学フィルタ10はケース6に収
納されている。
The optical filter 10, which is the filtering means described above, has electro-optically variable transmission characteristics. The infrared image sensor and optical filter 10 configured as described above are housed in a case 6.

ケース6の上面には赤外線Pを入射させるための例えば
シリコンを素材とする赤外線透過窓7が設けられており
、ケース6の底面からは、イメージセンサ2及び電気光
学素子5等に接続されたリード線8が引き出されている
An infrared transmitting window 7 made of silicon, for example, is provided on the top surface of the case 6 to allow infrared rays P to enter, and from the bottom surface of the case 6, leads connected to the image sensor 2, the electro-optical element 5, etc. are provided. Line 8 is drawn out.

第2図は上記光学フィルタ10の下側からの斜視図であ
り、第3図は上記光学フィルタエ0の模式的構造図であ
る。
FIG. 2 is a perspective view of the optical filter 10 from below, and FIG. 3 is a schematic structural diagram of the optical filter 0. As shown in FIG.

図中の破線の矢符は赤外線Pを表している。電気光学素
子5には、第3図に示すように溝の負荷さが1.2つの
溝の内側端の間隔がdの溝形電極5a、5aがその下面
側に設けられている。
The broken line arrow in the figure represents infrared rays P. As shown in FIG. 3, the electro-optical element 5 is provided with groove-shaped electrodes 5a, 5a on the lower surface thereof, with a groove load of 1.0 and an interval of d between the inner ends of the two grooves.

イメージセンサ2は上記2つの溝形電極5a、5aの間
の部分の下側に位置する。
The image sensor 2 is located below the portion between the two groove-shaped electrodes 5a, 5a.

上記の2つの溝形電極5a、5aの間には電源からリー
ド線8を通じて電圧が印加される。
A voltage is applied from a power source through a lead wire 8 between the two groove-shaped electrodes 5a, 5a.

次に上記光学フィルタ10の動作原理を説明する。Next, the operating principle of the optical filter 10 will be explained.

例えば第3図において、上記電気光学素子5に電圧が印
加されていない場合電気光学素子5は光学的に等方性媒
質であるので上側の偏光子を透過した赤外線Pが電気光
学素子5を透過したあともその偏波方向が変化しない。
For example, in FIG. 3, when no voltage is applied to the electro-optical element 5, the electro-optical element 5 is an optically isotropic medium, so the infrared rays P transmitted through the upper polarizer are transmitted through the electro-optical element 5. Even after that, the polarization direction does not change.

従って赤外線Pは直交した偏波方向(図中の偏光子4,
4中の矢符)を有する2枚の偏光子4゜4の間を通過で
きない。これに対して電気光学素子5に電圧が印加され
た場合は、赤外線Pは電気光学効果によって位相変化を
うける。従って赤外線Pは焦電薄板3側の偏光子(検光
子)4の偏光軸と一致した成分(図中の実線矢符参照)
だけが通過できるようになる。
Therefore, the infrared rays P are transmitted in orthogonal polarization directions (polarizer 4 in the figure,
It cannot pass between the two polarizers 4°4 having the arrow mark in 4). On the other hand, when a voltage is applied to the electro-optic element 5, the infrared rays P undergo a phase change due to the electro-optic effect. Therefore, the infrared ray P is a component that coincides with the polarization axis of the polarizer (analyzer) 4 on the side of the pyroelectric thin plate 3 (see the solid line arrow in the figure).
Only people will be able to pass through.

赤外線Pが焦電薄板3側の偏光子4を出たときの振幅E
0は電気光学素子5への入射赤外線Pの振幅をE、とじ
た場合 Eo” =E4” 5in2(Δψ/2)    −(
1)で表される。
The amplitude E when the infrared ray P exits the polarizer 4 on the pyroelectric thin plate 3 side
0 is the amplitude of the infrared rays P incident on the electro-optical element 5, and Eo" = E4" 5in2 (Δψ/2) - (
1).

従って波長λ。の赤外線Pの上記光学フィルタ10の入
射強度Kに対する出射強度Iは(2)式で表される。
Therefore the wavelength λ. The outgoing intensity I of the infrared rays P relative to the incident intensity K of the optical filter 10 is expressed by equation (2).

ただし、上式において li なる関係がある。However, in the above formula li There is a relationship.

ここで、 Δψ :偏光された赤外線Pの電気光学素子5の結晶中
で受ける位相変化 V  :赤外線ガス検出装置のリード線8がらの印加電
圧 Vλ/2:半波長電圧 no  :常屈折率 n、  :異常屈折率 rc +  +33 +’13’電気光学定数である。
Here, Δψ: Phase change V that polarized infrared rays P undergoes in the crystal of electro-optical element 5: Voltage applied to the lead wire 8 of the infrared gas detection device Vλ/2: Half-wave voltage no: Ordinary refractive index n, : extraordinary refractive index rc + +33 + '13' electro-optic constant.

偏光された波長λ。の赤外線Pの電気光学素子5が結晶
中で受ける位相変化Δψは次式で表される。
Polarized wavelength λ. The phase change Δψ that the electro-optical element 5 undergoes in the crystal of the infrared ray P is expressed by the following equation.

λ。λ.

(noゴ  r  +3  no”   r :+*)
   E)  ・”(6)ま ただしEは結晶中での電界の強さである。
(no go r +3 no" r :+*)
E) ・”(6) where E is the strength of the electric field in the crystal.

(6)式に+31. (4)、 (5)式およびE=V
/dを代入すると、 π V となる。
(6) +31. (4), (5) and E=V
Substituting /d gives π V .

赤外線ガス検出装置のリード線8がらは印加する電圧V
は、直流バイアスV、に交流変調電圧V、 sinω、
tが重畳されたものを加える。すると ・・・(8) となる。
The voltage V applied to the lead wire 8 of the infrared gas detection device
is the DC bias V, the AC modulation voltage V, sinω,
Add the superimposed t. Then...(8) becomes.

ここでθ+πVb / V A/2= 0となるように
■5を選べば、 となる。
Here, if we select ■5 so that θ+πVb/VA/2=0, we get the following.

ここで交流変調電圧Vm sinωm j =V 、!
/2のとき赤外線Pの透過率(1/K)は最大となる。
Here, the AC modulation voltage Vm sinωm j =V,!
/2, the transmittance (1/K) of infrared rays P is maximum.

以上により光学フィルタの透過率は印加電圧Vに支配さ
れることが分かる。またこの透過率はV、!、□に支配
されるが、(3)式に明らかなようにλ。とV27□が
一義対応の関係を有している。従っである波長λ。の赤
外線に対して最大の透過率を示す電圧■を定めることが
可能である。第5図はPLZTのλ=3.3μm (C
Haの吸収波長)における印加電圧Vと透過率との関係
を示すグラフであり、172vの場合に最大値をとる。
From the above, it can be seen that the transmittance of the optical filter is controlled by the applied voltage V. Also, this transmittance is V,! , □, but as is clear from equation (3), λ. and V27□ have a unique correspondence relationship. Therefore the wavelength λ. It is possible to determine the voltage (2) that exhibits the maximum transmittance for infrared rays. Figure 5 shows PLZT λ=3.3μm (C
It is a graph showing the relationship between the applied voltage V and the transmittance at the absorption wavelength of Ha, which takes the maximum value at 172V.

この特性は(2)又は(9)式を表すが、これらの式の
関数はcos函数であるから周期的なピークを有してお
り、必要な赤外’m’pH域のピークを利用できる。
This characteristic expresses equations (2) or (9), and since the functions of these equations are cos functions, they have periodic peaks, and the peaks in the necessary infrared 'm' pH range can be used. .

而してこのように透過率は印加電圧Vに依存するから適
宜の電圧を選択することが検出対象ガスの吸収波長又は
その近傍に通過帯域を有する光学フィルタを得ることが
可能となるのである。
Since the transmittance thus depends on the applied voltage V, selecting an appropriate voltage makes it possible to obtain an optical filter having a passband at or near the absorption wavelength of the gas to be detected.

なお複数の電気光学素子を用いて夫々の通過帯域を組合
せることで通過帯域が狭い光学フィルタを構成すること
も可能である。
Note that it is also possible to configure an optical filter with a narrow passband by using a plurality of electro-optical elements and combining their respective passbands.

以上の如き本発明装置は検出対象ガスに応じて印加電圧
を予め求めておいた値に設定する。そうすると当該ガス
の吸収量が焦電薄板3及びイメージセンサ2によって検
出されることになる。同様のことを電圧を変更すること
により行えば複数のガスの検出が可能となるのである。
In the apparatus of the present invention as described above, the applied voltage is set to a predetermined value depending on the gas to be detected. Then, the absorbed amount of the gas will be detected by the pyroelectric thin plate 3 and the image sensor 2. If the same thing is done by changing the voltage, it becomes possible to detect multiple gases.

なお上述の実施例では2次元イメージセンサを用いてい
るので2次元のガス濃度分布も測定できる。また本発明
は検出ガスが複数種混在している場合にも使用できるこ
とは言うまでもない。
Note that in the above embodiment, since a two-dimensional image sensor is used, a two-dimensional gas concentration distribution can also be measured. It goes without saying that the present invention can also be used when a plurality of detection gases are mixed.

更に本発明は2次元イメージセンサを用いることなく単
一の光電変換素子によって赤外線を検出するものにも適
用できる。
Furthermore, the present invention can also be applied to a device in which infrared rays are detected by a single photoelectric conversion element without using a two-dimensional image sensor.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明の赤外線ガス検出装置は、電
気光学的に可変な帯域通過特性をもつ光学フィルタを備
えることによって従来のように各々のガスの赤外線吸収
波長に応じた複数の検出装置を用いるとか、複数個の光
学フィルタを取り換えて使用する等の必要がなくなり、
一種類の光学フィルタで多種類のガス濃度を測定するこ
とができるので、測定の能率を高め得ると共に、コスト
低減が可能である。
As described in detail above, the infrared gas detection device of the present invention is equipped with an optical filter having an electro-optically variable band-pass characteristic, so that a plurality of detection devices corresponding to the infrared absorption wavelength of each gas can be used. There is no need to use a filter or replace multiple optical filters.
Since the concentration of many types of gases can be measured with one type of optical filter, it is possible to improve measurement efficiency and reduce costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る赤外線ガス検出装置の構造図、第
2図は光学フィルタの斜視図、第3図は光学フィルタの
構造図、第4図は光学フィルタの透過赤外線の透過赤外
線波長と半波長電圧との関係を示したグラフ、第5図は
電圧−透過率の特性図、第6回は従来の赤外線ガス検出
装置の斜視図である。 2・・・イメージセンサ 3・・・赤外線検出体4・・
・偏光子 5・・・電気光学素子5a・・・溝形電極 
10・・・光学フィルタ特 許 出願人  三洋電機株
式会社 代理人 弁理士  河 野  登 夫 P 第 2 図 P 嘉 壷 第3図 % 4 図 vJ6図 印加室fL(v) % 5 図
Fig. 1 is a structural diagram of an infrared gas detection device according to the present invention, Fig. 2 is a perspective view of an optical filter, Fig. 3 is a structural diagram of an optical filter, and Fig. 4 shows the wavelength of transmitted infrared rays of the optical filter. A graph showing the relationship with the half-wavelength voltage, FIG. 5 is a voltage-transmittance characteristic diagram, and Part 6 is a perspective view of a conventional infrared gas detection device. 2... Image sensor 3... Infrared detector 4...
・Polarizer 5... Electro-optical element 5a... Groove electrode
10... Optical filter patent Applicant Sanyo Electric Co., Ltd. Agent Patent attorney Noboru Kono P Figure 2 P Kakatsu Figure 3 % 4 Figure vJ6 Application chamber fL (v) % 5 Figure

Claims (1)

【特許請求の範囲】 1、赤外線領域に通過帯域を有する濾波手段と、該濾波
手段によって濾波された赤外線量を検出する赤外線検出
手段とを具備する赤外線ガス検出装置において、 前記濾波手段が、電気光学的に通過帯域が可変な特性を
有することを特徴とする赤外線ガス検出装置。
[Scope of Claims] 1. An infrared gas detection device comprising a filtering means having a passband in the infrared region and an infrared detecting means for detecting the amount of infrared rays filtered by the filtering means, wherein the filtering means is electrically An infrared gas detection device characterized by having an optically variable passband characteristic.
JP63146139A 1988-06-14 1988-06-14 Infrared-ray gas detector Pending JPH01313735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63146139A JPH01313735A (en) 1988-06-14 1988-06-14 Infrared-ray gas detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63146139A JPH01313735A (en) 1988-06-14 1988-06-14 Infrared-ray gas detector

Publications (1)

Publication Number Publication Date
JPH01313735A true JPH01313735A (en) 1989-12-19

Family

ID=15401025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63146139A Pending JPH01313735A (en) 1988-06-14 1988-06-14 Infrared-ray gas detector

Country Status (1)

Country Link
JP (1) JPH01313735A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005033678A1 (en) * 2003-10-03 2005-04-14 Olympus Corporation Image processing apparatus and image processing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005033678A1 (en) * 2003-10-03 2005-04-14 Olympus Corporation Image processing apparatus and image processing method
US7227122B2 (en) 2003-10-03 2007-06-05 Olympus Corporation Image processing apparatus and method for processing images
JPWO2005033678A1 (en) * 2003-10-03 2007-11-15 オリンパス株式会社 Image processing apparatus and image processing method

Similar Documents

Publication Publication Date Title
Povel Imaging Stokes polarimetry with piezoelastic modulators and charge-coupled-device image sensors
US20200378831A1 (en) Liquid crystal fourier transform imaging spectrometer
US20190313036A1 (en) Liquid crystal fourier transform imaging spectrometer
EP0181872A1 (en) Optical spatial frequency filter.
US4508964A (en) Electro-optically tuned rejection filter
WO2001002799A1 (en) Birefringement interferometer
AU747390B2 (en) Multi-gas sensor
WO1997014942A1 (en) A birefringent-biased sensor
JPH0763609A (en) Spectroscope having optical shutter
US4726660A (en) Technique for compressing light intensity ranges utilizing a specifically designed liquid crystal notch filter
Povel Ground-based instrumentation for solar magnetic field studies, with special emphasis on the Zurich imaging polarimeters ZIMPOL-I and II
US6992777B2 (en) Birefringent Mach-Zehnder interferometer
JPH0357942A (en) Interferometer pattern detector
JPH01313735A (en) Infrared-ray gas detector
US6574031B1 (en) Method for balancing detector output to a desired level of balance at a frequency
JP3329898B2 (en) Multi-channel Fourier transform spectrometer
JPH024864B2 (en)
US5838441A (en) Wide field of view coherent light detector and locator
Chang Development of an infrared tunable acousto-optic filter
JPH08122253A (en) Sample analyzer
Yilmaz et al. Active-matrix-addressed spatial light modulators based on the longitudinal pockels effect in oblique-cut perovskites
JPS6262233A (en) Color sensor
JPH02264831A (en) Interferometer system for generating two or more transmission light beams from one incident light beam
JPS6248814B2 (en)
CN117724198A (en) Visible light dynamic tunable high spectral resolution filter based on dielectric elastomer