JPH01313731A - Member strength analyzing device - Google Patents

Member strength analyzing device

Info

Publication number
JPH01313731A
JPH01313731A JP63144740A JP14474088A JPH01313731A JP H01313731 A JPH01313731 A JP H01313731A JP 63144740 A JP63144740 A JP 63144740A JP 14474088 A JP14474088 A JP 14474088A JP H01313731 A JPH01313731 A JP H01313731A
Authority
JP
Japan
Prior art keywords
analysis
load
linear
stress
straight line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63144740A
Other languages
Japanese (ja)
Inventor
Misao Inoke
操 猪野毛
Kanji Nishino
関司 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63144740A priority Critical patent/JPH01313731A/en
Publication of JPH01313731A publication Critical patent/JPH01313731A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To shorten CPU processing time and to obtain the analysis accuracy of the same degree as a linear analysis by converting a stress-strain curve to a linear approximate expression consisting of plural lines, utilizing this data and a linear solver and executing a non-linear analysis of a material. CONSTITUTION:Plural points a1 to a6 on a stress-strain curve S-E derived by a test are set as nodal points, connected by straight lines 21a to 21f and a linear approximation is executed. By subtracting from a load and a displacement quantity, a new load or displacement quantity is obtained, and the foregoing and characteristic data obtained from an approximate straight line of the next section become input data. A linear analyzing part 4 executes an analysis from a Young's modulus derived from an approximate straight line 21a and the load or the displacement, and when the maximum stress value is larger than the stress value a1, the load or the displacement corresponding to a1 is derived, and the analysis is executed until the value becomes smaller than a1. Subsequently, the load or the displacement derived by the first analysis is subtracted from analysis input data, and by giving a Young's modulus derived from an approximate straight line 21b, the analysis is executed. Thereafter, when the analysis is executed in the same way, stress values of each nodal point are all added and become analysis output data.

Description

【発明の詳細な説明】 [概要] 部材に応力を与えたときの歪を解析する装置に関し、 線形解析手段を用いて非線形解析を高速に行なうことの
可能な手段を提供することを目的とし、試料を試験して
求めた応力歪曲線上の複数の点を節点となし隣接する節
点ごとに直線で結ぶことにより直線近似を行なう手段と
、該直線近似から得られる前記試料の材質に係る特性デ
ータと、荷重あるいは変位量とモデルデータとを解析入
力データとして線形解析を行なう手段と、 該線形解析に際し、対象となる区間の近似直線上の応力
値に対応する荷重または変位量を求め、その値を前記解
析人力データの荷重または変位量から減算して新たな荷
重または変位量となし、これと次の区間の近似直線から
得られる特性データとを解析入力データとして与える動
作を反復して行なう手段とを具備せしめることにより構
成する。
[Detailed Description of the Invention] [Summary] The present invention relates to a device for analyzing strain when stress is applied to a member. A means for performing linear approximation by using a plurality of points on a stress strain curve obtained by testing a sample as nodes and connecting each adjacent node with a straight line, and characteristic data regarding the material of the sample obtained from the linear approximation. , means for performing linear analysis using load or displacement and model data as analysis input data, and in the linear analysis, determining the load or displacement corresponding to the stress value on the approximate straight line of the target section, and calculating the value. Means for repeatedly performing an operation of subtracting the load or displacement amount from the analysis human data to obtain a new load or displacement amount, and giving this and characteristic data obtained from the approximate straight line of the next section as analysis input data. It is constituted by having the following.

〔産業上の利用分野コ 本発明は部材強度解析装置に関し、特に線形解析手段を
用いて、部材の非線形解析を高速上行なうことの可能な
部材強度解析装置に係る。
[Industrial Field of Application] The present invention relates to a member strength analysis device, and more particularly to a member strength analysis device capable of performing nonlinear analysis of a member at high speed using linear analysis means.

[従来の技術] 最近、製品の安全性、機能性、経済性などを確認するた
めのシミュレーション手法として部材強度解析装置など
の解析システムが広く利用されるようになってきており
、非線形解析では、精度の良いCPU時間の少ない、解
析手法が要求されている。
[Prior art] Recently, analysis systems such as member strength analysis devices have become widely used as simulation methods to check the safety, functionality, economic efficiency, etc. of products. There is a need for an analytical method that is highly accurate and requires less CPU time.

従来の部材強度解析装置においては、通常第6、rl!
Jに示すような、応力歪曲線を利用して非線形解析を行
なっている。すなわち同図において、解析対象の部材と
同一の材質の試料について実験で求めた応力曲線51上
に複数の節点53−1〜53−nを設定し、原点52お
よび各節点における接線54−1〜54−nを求めて線
形解析を行い各区間のヤング率ポアソン比等を求める方
式が採られていた。
In conventional member strength analysis devices, the sixth, rl!
Nonlinear analysis is performed using stress strain curves as shown in J. That is, in the same figure, a plurality of nodes 53-1 to 53-n are set on a stress curve 51 obtained experimentally for a sample made of the same material as the member to be analyzed, and tangents 54-1 to 54-n at the origin 52 and each node are set. 54-n, linear analysis is performed, and the Young's modulus Poisson's ratio of each section is determined.

[発明が解決しようとする課題] 上述したように従来の部材強度解析装置における非線形
解析は応力歪曲線上の各節点(ステップの開始点)にお
いて接線を求めて解析しているので、実際の応力歪曲線
と接線との誤差が累積して、最終的には、かなり精度が
悪くなると言う問題点があった。
[Problems to be Solved by the Invention] As mentioned above, nonlinear analysis in conventional member strength analysis devices calculates tangents at each node (starting point of a step) on a stress-strain curve. There was a problem in that the errors between the lines and the tangents accumulated, and eventually the accuracy deteriorated considerably.

そのため、高い精度を得ようとして各ステップを小さく
すると解析処理の繰り返しが多くなり、その処理に多大
な時間を要すると言う問題点があった。
Therefore, if each step is made smaller in an attempt to obtain high accuracy, the analysis process will be repeated many times, which poses the problem of requiring a large amount of time.

更に線形ソルバーしかない場合は非線形解析ができない
と言う問題点もあった。
Furthermore, there was the problem that nonlinear analysis was not possible when only a linear solver was available.

本発明はこのような従来の問題点に2み線形ソルバーを
用いて、非線形解析を比較的少ない処理時間で行なうこ
との可能な部材強度解析装置を提供することを目的とし
ている。
SUMMARY OF THE INVENTION An object of the present invention is to provide a member strength analysis apparatus that can solve these conventional problems by using a bilinear solver and perform nonlinear analysis in a relatively short processing time.

[課題を解決するための手段] 本発明によれば上述の目的は前記特許請求の範囲に記載
した手段により達成される。すなわち、本発明は、 試料を試験して求めた応力歪曲線上の複数の点を節点と
なし隣接する節点ごとに直線で結ぶことにより直線近似
を行なう手段と、 該直線近似から得られる前記試料の材質に係る特性デー
タと、荷重あるいは変位量とモデルデータとを解析人力
データとして線形解析を行なう手段と、該線形解析に際
し、対象となる区間の近似直線上の応力値に対応する荷
重または変位量を求め、その値を前記解析入力データの
荷重または変位量から減算して新たな荷重または変位量
となし、これと次の区間の近似直線から得られる特性デ
ータとを解析入力データとして与える動作を、 解析結果の最大応力値が与えられた近似直線から求めら
れる応力値以下になるまで反復して行ない、解析ごとの
各節点の応力値を加算する手段を具備する部材強度解析
装置である。
[Means for Solving the Problems] According to the present invention, the above objects are achieved by the means described in the claims. That is, the present invention provides means for performing linear approximation by using a plurality of points on a stress strain curve obtained by testing a sample as nodes and connecting each adjacent node with a straight line, and Means for performing linear analysis using characteristic data related to the material, load or displacement amount, and model data as analytical human data, and in the linear analysis, load or displacement amount corresponding to the stress value on the approximate straight line of the target section. is calculated, that value is subtracted from the load or displacement amount of the analysis input data to obtain a new load or displacement amount, and this and the characteristic data obtained from the approximate straight line of the next section are given as analysis input data. This is a member strength analysis device that repeatedly performs the analysis until the maximum stress value of the analysis result is equal to or less than the stress value determined from the given approximate straight line, and is equipped with means for adding the stress values of each node for each analysis.

[実施例コ 以下、図面に基づき、本発明の実施例について説明する
[Embodiments] Hereinafter, embodiments of the present invention will be described based on the drawings.

第1図は本発明の一実施例の構成を示すブロック図であ
る。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention.

同図において、1はモデル作成部、2はプリ処理部、3
は解析入力データファイル、4は線形解析部、5は線形
ソルバー、6は解析出力データファイル、7はポスト処
理部、8はプロット部を表わしている。
In the figure, 1 is a model creation section, 2 is a pre-processing section, and 3 is a model creation section.
4 represents an analysis input data file, 4 represents a linear analysis section, 5 represents a linear solver, 6 represents an analysis output data file, 7 represents a post processing section, and 8 represents a plotting section.

モデル作成部1においては、例えば第2図に示すような
両端支持梁9のモデルについて、(同図にふいて、10
.10゛ は支点を表しており英字符Aで示す矢印は荷
重または変位を示している)データを作成する。
In the model creation section 1, for example, a model of the both end support beam 9 as shown in FIG.
.. (10゛ represents the fulcrum, and the arrow indicated by the letter A indicates the load or displacement) Create data.

プリ処理部2は、該データについてメツシュ分割を含む
事前処理を行ない解析人力データを生成する。
The pre-processing unit 2 performs pre-processing including mesh division on the data to generate analytical human data.

該解析入力データの例を第3図に示す。同図におジ)で
、11は解析制御カード、12は節点定義カード、13
は要素定義カード、14は要素形状特性カード、15は
材料特性定義カード、16は拘束定義カード、17は荷
重定義カード、18はヤング率、19はポアソン比、2
0は変位量を表している。
An example of the analysis input data is shown in FIG. 11 is an analysis control card, 12 is a node definition card, and 13 is a node definition card.
is an element definition card, 14 is an element shape property card, 15 is a material property definition card, 16 is a constraint definition card, 17 is a load definition card, 18 is Young's modulus, 19 is Poisson's ratio, 2
0 represents the amount of displacement.

ここで、節点定義カード12においてデータは、物体を
xSy、z方向に複数に分割する線分の交点に付与した
節点番号22と、各節点番号のX。
Here, the data in the node definition card 12 is the node number 22 given to the intersection of line segments that divide the object into a plurality of parts in the xSy and z directions, and the X of each node number.

YSZ座標(図ではそれぞれ23〜25で示している)
と、各節点の6自由度方向を示す自由度方向番号26か
ら成る。
YSZ coordinates (shown as 23 to 25 in the figure)
and a degree-of-freedom direction number 26 indicating the six-degree-of-freedom direction of each node.

要素定義カード13において、データは要素番号27、
参照する形状特性番号28、要素を構成する節点番号2
9から成る。
In the element definition card 13, the data is element number 27,
Reference shape characteristic number 28, node number 2 that constitutes the element
Consists of 9.

要素形状特性カード14のデータは、形状特性番号、材
料特性番号30、曲げに抵抗する板厚31から成る。
The data on the element shape characteristic card 14 consists of a shape characteristic number, a material characteristic number 30, and a plate thickness 31 that resists bending.

材料特性定義カード15のデータは、材料特性番号、ヤ
ング率18、ポアソン比19から成る。
The data of the material property definition card 15 consists of a material property number, Young's modulus of 18, and Poisson's ratio of 19.

拘束定義カード16のデータは、強性変位のセット番号
32、節点番号33、拘束する自由度番号34、強性変
位量から成る。荷重定義カード17のデータは、荷重ケ
ース番号35、全体のスケールフィルタ36、荷重セッ
トに対するスケールフィルタ37、強制変位のセット番
号から成る。以上の各データについての詳細な説明は、
FACOMマニュアル99AR−5470F[!MM説
書「有限要素法による構造解析プログラム」に述べてい
る。
The data of the constraint definition card 16 consists of a strong displacement set number 32, a node number 33, a constraint degree of freedom number 34, and a strong displacement amount. The data on the load definition card 17 includes a load case number 35, an overall scale filter 36, a scale filter 37 for the load set, and a forced displacement set number. For detailed explanation of each data above, please refer to
FACOM Manual 99AR-5470F [! It is stated in the MM manual "Structural analysis program using finite element method".

第1図の線形解析部4においては、上述の解析入力デー
タに第4図に示すような応力歪曲線から求めたデータを
与えて解析を行なう。
In the linear analysis section 4 of FIG. 1, analysis is performed by giving data obtained from a stress strain curve as shown in FIG. 4 to the above-mentioned analysis input data.

第4図は応力曲線の例を示す図であって、材料の試験片
について、引張り試験を行なって求めた応力曲線S−E
を示している。同図において21a〜21fはそれぞれ
応力曲線上の節点を結んだ直線であり、これらの直線2
1a〜21fによって応力曲線S−Eの直線近似を行な
っている。
FIG. 4 is a diagram showing an example of a stress curve, and is a stress curve S-E obtained by performing a tensile test on a test piece of the material.
It shows. In the same figure, 21a to 21f are straight lines connecting nodes on the stress curve, and these straight lines 2
The stress curve SE is linearly approximated by 1a to 21f.

前記第1図の線形解析部4は解析に際し、解析入力デー
タに、例えば、第4図に示した近似直線21aから求め
た初期ヤング率と荷重または変位を与えて解析を行なう
。そして、解析の結果最大応力値が第4図の応力値a1
より大であればalに相当する荷重または変位を求めて
2回目の解析を行なう。このとき解析の結果の最大応力
値がalより小であればこの部分の解析を終了する。
The linear analysis unit 4 shown in FIG. 1 performs the analysis by applying, for example, the initial Young's modulus and load or displacement obtained from the approximate straight line 21a shown in FIG. 4 to the analysis input data. As a result of the analysis, the maximum stress value is the stress value a1 in Figure 4.
If it is larger, the load or displacement corresponding to al is determined and a second analysis is performed. At this time, if the maximum stress value as a result of the analysis is smaller than al, the analysis of this part is ended.

次に解析入力データの荷重または変位から1回目の解析
で求めた荷重または変位を減算して第4図の近似直線2
1bから求めたヤング率を与えて解析を行なう。
Next, the load or displacement obtained in the first analysis is subtracted from the load or displacement of the analysis input data, and the approximate straight line 2 in Figure 4 is calculated.
Analysis is performed by giving the Young's modulus obtained from 1b.

以降同様に、解析の結果得られた最大応力値が第4図で
求められる応力値より大であるときは、反復して解析を
行なうことにより、次々と解析を行なう。
Similarly, if the maximum stress value obtained as a result of the analysis is greater than the stress value determined in FIG. 4, the analysis is performed one after another by repeating the analysis.

このようにして、各節点の応力値は総て加算されて解析
出力データとなる。
In this way, the stress values at each node are all added together to form analysis output data.

前記第3図で示した解析入力データの例では、材料特性
定義カード15と拘束定義カード(変位量)を解析ごと
に変更する。
In the example of analysis input data shown in FIG. 3, the material property definition card 15 and the constraint definition card (displacement amount) are changed for each analysis.

第5図に上述した線形解析に係る制御を流れ図として示
す。
FIG. 5 shows the control related to the linear analysis described above as a flowchart.

[発明の効果] 以上説明したように、本発明によれば引張り試験で作成
した応力歪曲線を、複数からなる直線近似式に変換して
、このデータと線形ソルバーを利用して材料の非線形解
析を行なっているので、非線形ソルバーを用いて解析を
行なう場合に比し、CPU処理時間が少なく、解析精度
も線形解析の場合と同程度のものを得ることができる利
点がある。
[Effects of the Invention] As explained above, according to the present invention, a stress strain curve created in a tensile test is converted into a linear approximation formula consisting of a plurality of linear approximations, and this data and a linear solver are used to perform nonlinear analysis of the material. Since the analysis is performed using a nonlinear solver, there is an advantage that the CPU processing time is shorter and the analysis accuracy is comparable to that of linear analysis.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成を示すブロック図、第
2図は両端支持梁のモデルを示す図、第3図は解析入力
データの例を示す図、第4図は応力曲線の例を示す図、
第5図は解析の制御を示す流れ図、第6図は従来の非線
形解析について説明する図である。 1・・・・・・モデル作成部、2・・・・・・ブリ処理
部、3・・・・・・解析入力データファイル、4・・・
・・・線形解析部、5・・・・・・線形ソルバー、6・
・・・・・解析出力データファイル、7・・・・・・ポ
スト処理部、8・・・・・・プロット部、9・・・・・
・両端支持梁、10.10’ ・・・・・・支点、11
・・・・・・解析制御カード、12・・・・・・節点定
義カード、13・・・・・・要素定義カード、14・・
・・・・要素形状特性カード、15・・・・・・材料特
性定義カード、16・・・・・・拘束定義カード、17
・・・・・・荷重定義カード、18・・・・・・ヤング
率、19・・・・・・ポアソン比、20・・・・・・変
位量、21a〜21f・・・・・・近似直線、22.2
9.33・・・・・・節点番号、23・・・・・・X座
標、24・・・・・・Y座標、25・・・・・・Z座標
、26・・・・・・自由度方向番号、27・・・・・・
要素番号、28・・・・・・形状特性番号、30・・・
・・・材料特性番号、31・・・・・・板厚、32・・
・・・・セット番号、34・・・・・・自由度番号、3
5・・・・・・荷重ケース番号、36.37・・・・・
・スケールフィルタ
Figure 1 is a block diagram showing the configuration of an embodiment of the present invention, Figure 2 is a diagram showing a model of a beam supported at both ends, Figure 3 is a diagram showing an example of analysis input data, and Figure 4 is a diagram showing a stress curve. Diagram showing an example,
FIG. 5 is a flowchart showing analysis control, and FIG. 6 is a diagram explaining conventional nonlinear analysis. 1... Model creation section, 2... Buri processing section, 3... Analysis input data file, 4...
... Linear analysis section, 5 ... Linear solver, 6.
... Analysis output data file, 7 ... Post processing section, 8 ... Plot section, 9 ...
・Both end support beam, 10.10'...Fulcrum, 11
... Analysis control card, 12 ... Node definition card, 13 ... Element definition card, 14 ...
...Element shape property card, 15...Material property definition card, 16...Restraint definition card, 17
... Load definition card, 18 ... Young's modulus, 19 ... Poisson's ratio, 20 ... Displacement amount, 21a to 21f ... Approximation straight line, 22.2
9.33...Node number, 23...X coordinate, 24...Y coordinate, 25...Z coordinate, 26...Free Degree direction number, 27...
Element number, 28... Shape characteristic number, 30...
...Material property number, 31...Plate thickness, 32...
...Set number, 34...Degree of freedom number, 3
5...Load case number, 36.37...
・Scale filter

Claims (1)

【特許請求の範囲】 試料を試験して求めた応力歪曲線上の複数の点を節点と
なし隣接する節点ごとに直線で結ぶことにより直線近似
を行なう手段と、 該直線近似から得られる前記試料の材質に係る特性デー
タと、荷重あるいは変位量とモデルデータとを解析入力
データとして線形解析を行なう手段と、 該線形解析に際し、対象となる区間の近似直線上の応力
値に対応する荷重または変位量を求め、その値を前記解
析入力データの荷重または変位量から減算して新たな荷
重または変位量となし、これと次の区間の近似直線から
得られる特性データとを解析入力データとして与える動
作を、解析結果の最大応力値が与えられた近似直線から
求められる応力値以下になるまで反復して行ない、解析
ごとの各節点の応力値を加算する手段を具備することを
特徴とする部材強度解析装置。
[Claims] Means for linear approximation by using a plurality of points on a stress strain curve obtained by testing a sample as nodes and connecting each adjacent node with a straight line; Means for performing linear analysis using characteristic data related to material, load or displacement amount, and model data as input data for analysis, and in the linear analysis, load or displacement amount corresponding to stress value on the approximate straight line of the target section. is calculated, that value is subtracted from the load or displacement amount of the analysis input data to obtain a new load or displacement amount, and this and the characteristic data obtained from the approximate straight line of the next section are given as analysis input data. , a member strength analysis characterized by comprising a means for repeating the analysis until the maximum stress value of the analysis result becomes equal to or less than the stress value determined from a given approximate straight line, and adding the stress values of each node for each analysis. Device.
JP63144740A 1988-06-14 1988-06-14 Member strength analyzing device Pending JPH01313731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63144740A JPH01313731A (en) 1988-06-14 1988-06-14 Member strength analyzing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63144740A JPH01313731A (en) 1988-06-14 1988-06-14 Member strength analyzing device

Publications (1)

Publication Number Publication Date
JPH01313731A true JPH01313731A (en) 1989-12-19

Family

ID=15369252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63144740A Pending JPH01313731A (en) 1988-06-14 1988-06-14 Member strength analyzing device

Country Status (1)

Country Link
JP (1) JPH01313731A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009124422A1 (en) * 2008-04-11 2009-10-15 北京联合大学 A dual-elastic moduli method of material's load deformation curve where the primary line being very short

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009124422A1 (en) * 2008-04-11 2009-10-15 北京联合大学 A dual-elastic moduli method of material's load deformation curve where the primary line being very short

Similar Documents

Publication Publication Date Title
JP5582211B1 (en) Stress-strain relationship simulation method, springback amount prediction method, and springback analysis device
JP5003609B2 (en) Method for determining equivalent thickness of anisotropic material
JP2003270060A (en) Stress strain analyzing system, stress strain analyzing method therefor, and program therefor
Kandler et al. Stochastic finite element approaches for wood-based products: theoretical framework and review of methods
Lin et al. Development of a theoretical framework for vibration analysis of the class of problems described by fractional derivatives
Füssl et al. Application of stochastic finite element approaches to wood-based products
CN110362912B (en) Mesoscopic structure optimization method
JP3000957B2 (en) Plastic analysis method and system using finite element method and recording medium storing plastic analysis program using finite element method
US7308387B1 (en) Method and system for numerically simulating foam-like material in finite element analysis
CN109388833B (en) Elastic element structure optimization design method based on fatigue life
Ruocco et al. A new nonlinear 5-parameter beam model accounting for the Poisson effect
Whirley et al. An assessment of numerical algorithms for plane stress and shell elastoplasticity on supercomputers
CN115831295B (en) Material constitutive equation parameter calibration method and device and computer equipment
JPH01313731A (en) Member strength analyzing device
Vorel et al. Computational modelling of real structures made of Strain-hardening Cement-based Composites
WO2020261422A1 (en) Method for evaluating risk of hydrogen embrittlement fracture of reinforcing bar
Liu et al. Using comparison theorem to compare corotational stress rates in the model of perfect elastoplasticity
Adah et al. MATLAB based buckling analysis of thin rectangular flat plates
Gustafson et al. Integration of MAC/GMC into CalculiX, an open source finite element code
CN110334459B (en) Rapid and refined modeling system and method for power transmission tower line system
Liaw et al. Double noding technique for mixed mode crack propagation studies
JP2017054203A (en) Structural design support device and structural design support program
Kumar et al. Numerical study for dynamic fracture toughness of AA7075-T651 under dynamic loading
Folhento et al. Cyclic response of a reinforced concrete frame: Comparison of experimental results with different hysteretic models
Kant et al. Transient/pseudo-transient finite element small/large deformation analysis of two-dimensional problems