JPH01313511A - Preparation of thin film of polymer - Google Patents

Preparation of thin film of polymer

Info

Publication number
JPH01313511A
JPH01313511A JP14448188A JP14448188A JPH01313511A JP H01313511 A JPH01313511 A JP H01313511A JP 14448188 A JP14448188 A JP 14448188A JP 14448188 A JP14448188 A JP 14448188A JP H01313511 A JPH01313511 A JP H01313511A
Authority
JP
Japan
Prior art keywords
polymer
bismaleimide
substrate
thin film
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14448188A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kimura
俊之 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP14448188A priority Critical patent/JPH01313511A/en
Publication of JPH01313511A publication Critical patent/JPH01313511A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Chemical Vapour Deposition (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

PURPOSE:To obtain a thin film of polymer excellent in heat resistance, adhesiveness, etc., by evaporating specified vaporizable polymeric and/or polymerizable compound in a vacuum and reacting the formed vapors. CONSTITUTION:Evaporation tubes 6 and 9 charged with a bismaleimide of formula I [wherein Ar is a group of formula II or III (wherein X is -O-, -S-, -SO2-, -NH-, -CO-, -CS-or a 1-4C alkylene; R<1-2> are each H, a halogen atom, an OH group, a 1-4C alkyl or a 1-4C alkoxy; and n and m are the numbers of the substituents R<1-2> are each 1-4)] and vaporizable polymeric and/or polymerizable compounds are set in a vacuum chamber 1, and the chamber 1 is evacuated to 1X10<-4>Torr or below by operating a vacuum pump 12 while the evaporation tubes 6 and 9 are heated by applying a current to heaters 7 and 10 to evaporate the bismaleimide and the polymer. These vapors are allowed to deposit on a substrate 2 mounted on a substrate holder 3 and reacted with each other by heating with a heater 4 to form deposited film of a crosslinked bisimide polymer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、たとえば、半導体等の電子部品の絶縁膜、
防湿膜、潤滑膜等として用いられる高分子薄膜の製造方
法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to, for example, insulating films of electronic components such as semiconductors,
This invention relates to a method for manufacturing thin polymer films used as moisture-proof films, lubricating films, etc.

〔従来の技術〕[Conventional technology]

高分子薄膜の製法としては、従来、次のようなものが知
られているが、それぞれ、併記の問題点を有している。
The following methods are conventionally known as methods for producing polymer thin films, but each method has the problems listed below.

■ 原料モノマーを溶媒に溶かし、これを基板上にキャ
スティングして重合させる方法:得られる薄膜中に溶媒
が残留してしまう。
■ Method of dissolving the raw material monomer in a solvent, casting it onto a substrate, and polymerizing it: The solvent remains in the resulting thin film.

■ ポリマーを基板上に真空蒸着し、堆積させる方法:
蒸着可能なポリマーの種類が限定されるとともに、分解
等が生じたりして、得られるポリマーの分子量が低い。
■ Method of vacuum evaporating and depositing polymers onto a substrate:
The types of polymers that can be deposited are limited, and decomposition may occur, resulting in a low molecular weight of the resulting polymer.

■ ポリマーをスパッタして、基板に付着、堆積させる
方法ニスバッタ時にポリマーの低分子化等が起こり、薄
膜の熱特性の低下など、物性が変化してしまう。
■ Method of adhering and depositing polymer on a substrate by sputtering Polymers are reduced in molecular weight during varnish sputtering, resulting in changes in physical properties such as a decrease in the thermal properties of the thin film.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

最近では、これらの従来法に代わる高分子薄膜形成法と
して、モノマー等の加熱蒸発1重合により基板上に蒸着
高分子膜を得る蒸着重合法が提案されており、以下のよ
うな具体的な研究が進められている。
Recently, as an alternative method for forming polymer thin films to these conventional methods, a vapor deposition polymerization method has been proposed in which a vapor-deposited polymer film is obtained on a substrate by single-polymerization by heating and evaporation of monomers, etc., and the following specific research is being carried out. is in progress.

(a)  ポリパラキシリレン薄膜の形成法発させた後
、熱分解重合させてポリバラキシリレン、÷CHs−P
h−CHt÷0を基板上に形成する方法である。この方
法では、得られる薄膜の耐熱性が低い。
(a) Method of forming polyparaxylylene thin film
This is a method of forming h-CHt÷0 on a substrate. With this method, the resulting thin film has low heat resistance.

(b)  テトラカルボン酸二無水物とジアミンからの
ポリイミド薄膜の形成法 上記2モノマーを共に加熱蒸着し、基板上に堆積させて
から加熱重合を行う方法である。この方法は、耐熱性の
高い薄膜ができる、という長所を有するが、他方、2モ
ノマーの反応モル比を制御することが難しく、高分子化
等が困難である(特開昭61−78463号公報、特開
昭61−138924号公報等参照)。
(b) Method for forming a polyimide thin film from tetracarboxylic dianhydride and diamine This is a method in which the above two monomers are vapor-deposited together by heating, deposited on a substrate, and then heated and polymerized. This method has the advantage of producing a thin film with high heat resistance, but on the other hand, it is difficult to control the reaction molar ratio of the two monomers, making polymerization difficult (Japanese Patent Laid-Open No. 61-78463) , JP-A-61-138924, etc.).

(C)  ビスマレイミドとジアミンからのポリイミド
薄膜の形成法 上記2モノマーを同時に加熱蒸着して基板上に堆積させ
、その後加熱して架橋構造のポリイミドを形成する方法
である。この方法では、モル比の制御が上記(b)より
は容易であり、かつ、耐熱性の高い薄膜を製造できるが
、低摩擦性、非粘着性。
(C) Method for forming a polyimide thin film from bismaleimide and diamine This is a method in which the above two monomers are deposited on a substrate by simultaneous heating vapor deposition, and then heated to form a crosslinked polyimide. In this method, the molar ratio can be controlled more easily than in (b) above, and a thin film with high heat resistance can be produced, but it also has low friction and non-adhesive properties.

低吸水性等のその他の各種特性を付与することは困難で
ある(特開昭61−211339号公報参照)。
It is difficult to impart various other properties such as low water absorption (see JP-A-61-211339).

以上の事情に鑑み、この発明は、重合等の反応の制御が
容易であるとともに、耐熱性、密着性等をはじめとする
各種特性に一層優れた高分子薄膜を製造する方法を提供
することを課題とする。
In view of the above circumstances, it is an object of the present invention to provide a method for producing a polymer thin film that is easy to control reactions such as polymerization and has even better properties such as heat resistance and adhesion. Take it as a challenge.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するため、この発明にかかる高分子薄膜
の製法では、下記一般式で表されるビス(ただし、Xは
一〇 −、−S −、−so!−、−NH−。
In order to solve the above problems, the method for producing a polymer thin film according to the present invention uses bis represented by the following general formula (where X is 10-, -S-, -so!-, -NH-).

−co−、−cs−あるいは炭素数1〜4のアルキレン
基、R1およびRzはそれぞれ独立に水素、Aロゲン、
水酸基、炭素数1〜4のアルキル基あるいは炭素数1〜
4のアルコキシル基を示し、nおよびmはR’、 R”
の置換数であってそれぞれ独立に1〜4の整数を表す)
を示す〕 と、蒸着可能なポリマーおよび/または重合性化合物と
を、それぞれ減圧下で同時に蒸発させた後に反応させて
、基板上に架橋ビスマレイミド重合体からなる蒸着膜を
形成するようにする。
-co-, -cs- or an alkylene group having 1 to 4 carbon atoms, R1 and Rz each independently represent hydrogen, Arogen,
Hydroxyl group, alkyl group having 1 to 4 carbon atoms, or 1 to 4 carbon atoms
4 alkoxyl group, n and m are R', R''
each independently represents an integer from 1 to 4)
] and a vapor-depositable polymer and/or a polymerizable compound are simultaneously evaporated under reduced pressure and then reacted to form a vapor-deposited film made of a crosslinked bismaleimide polymer on a substrate.

〔作   用〕[For production]

上記ビスマレイミドは、蒸発管内で重合することなく、
加熱等の手段により容易に蒸発し、その後、やはり蒸発
したポリマーおよび/または重合性化合物(以下、「反
応性化合物」と記す)と同ビスマレイミドとの間で、以
下のような反応が進・行すると推察される。まず、ビス
マレイミド同士がその二重結合部分でラジカル的に反応
して、下記のような構造のビスマレイミド重合体(Pま
たはQ)が生成する。
The above bismaleimide does not polymerize in the evaporation tube,
It is easily evaporated by means such as heating, and then the following reaction proceeds between the evaporated polymer and/or polymerizable compound (hereinafter referred to as "reactive compound") and the bismaleimide. It is presumed that it will. First, bismaleimides radically react with each other at their double bond portions to produce a bismaleimide polymer (P or Q) having the structure shown below.

・・・(P)          ・・・(Q)〔ただ
し、静は上記同様、Sおよびtは正の整数を表す。〕 ここで、この発明における特徴は、上記ビスマレイミド
重合体P、Qの生成と同時に、同重合体あるいは原料ビ
スマレイミドと反応性化合物とのラジカル反応、および
反応性化合物同士のラジカル反応が起こり、その結果、
複雑に枝分かれした三次元構造の架橋ビスマレイミド重
合体が生成することである。以下に、その生成物の一部
の構造〔ただし、Arは上記同様、−〇−〇は反応性化
合物からなる高分子鎖を表す。〕 上記構造は、はんの−例であって、実際に生成する架橋
ビスマレイミド重合体には、上記ビスマレイミド重合体
P、Qや、七ツマ−あるいはダイマー等としての重合性
化合物なども含んだ様々な結合様式が存在している。ま
た、重合体生成時には、重合や架橋以外のその他の反応
も関与していると推察される。
...(P) ...(Q) [However, as above, S and t represent positive integers. ] Here, the feature of this invention is that, simultaneously with the production of the bismaleimide polymers P and Q, a radical reaction between the same polymer or the raw material bismaleimide and a reactive compound, and a radical reaction between the reactive compounds occurs, the result,
A cross-linked bismaleimide polymer with a complexly branched three-dimensional structure is produced. Below, the structure of a part of the product [However, Ar is the same as above, -0-0 represents a polymer chain consisting of a reactive compound. ] The above structure is just an example, and the crosslinked bismaleimide polymer actually produced does not include the bismaleimide polymers P and Q, or polymerizable compounds such as hexamers or dimers. There are various bonding styles. Furthermore, it is presumed that other reactions than polymerization and crosslinking are also involved during polymer production.

以上のように、複雑な架橋構造を有し、反応性化合物の
特性も備えたビスマレイミド重合体が生成するため、得
られる高分子薄膜は、耐熱性をはじめとする各種物性が
非常に良好なものとなる。
As described above, a bismaleimide polymer with a complex crosslinked structure and the characteristics of a reactive compound is produced, so the resulting polymer thin film has very good physical properties including heat resistance. Become something.

〔実 施 例〕〔Example〕

以下、この発明にかかる高分子薄膜の製法を詳しく説明
する。
Hereinafter, the method for manufacturing a polymer thin film according to the present invention will be explained in detail.

上記ビスマレイミドと反応する反応性化合物、すなわち
蒸着可能なポリマーおよび重合性化合物は、特に限定さ
れることなく、任意の化合物を単独で、あるいは複数種
を併せて使用できる。具体的には、たとえば、蒸着可能
なポリマーとしては、ポリエチレン、ポリプロピレン、
ポリフッ化ビニリデン、ポリ塩化ビニル、ポリテトラフ
ルオロエチレン、ポリフェニレンスルフィド、ポリフェ
ニレンオキシド等が好ましく用いられる。
The reactive compounds that react with the bismaleimide, that is, the vapor-depositable polymers and polymerizable compounds, are not particularly limited, and arbitrary compounds can be used alone or in combination of multiple types. Specifically, examples of polymers that can be vapor-deposited include polyethylene, polypropylene,
Polyvinylidene fluoride, polyvinyl chloride, polytetrafluoroethylene, polyphenylene sulfide, polyphenylene oxide, etc. are preferably used.

重合性化合物としては、上記バラキシリレンダイマー(
=ジパラキシリレン)およびその誘導体(ハロゲン、低
級アルキル基、水酸基等によるベンゼン環置換体)等が
最も好ましい例として挙げられる。このジパラキシリレ
ン類は、蒸発後、ラジカル的な加熱分解により七ツマー
化され、キノジメタン構造を経て重合し、ポリ (p−
キシリレン)になるものと推察される。さらに、上記以
外の重合性化合物としては、たとえば、常温常圧で気体
状の化合物(エチレン、プロピレン、テトラフルオロエ
チレン、塩化ビニル、フン化ビニル等)を減圧チャンバ
ー内に導入して用いることもできる。また、ベンゾシク
ロブテンの誘導体等を用いてもよい。なお、重合性化合
物は、モノマー段階でビスマレイミド等の他成分と反応
するようであっても、それ自身で重合しつつ他成分と反
応するようであってもよい。
As a polymerizable compound, the above-mentioned baraxylylene dimer (
=diparaxylylene) and derivatives thereof (substituted benzene ring with halogen, lower alkyl group, hydroxyl group, etc.) are the most preferred examples. After evaporation, this diparaxylylene is converted into a heptamer by radical thermal decomposition, polymerized through a quinodimethane structure, and poly(p-
It is assumed that the result is xylylene). Furthermore, as polymerizable compounds other than those mentioned above, for example, compounds that are gaseous at room temperature and pressure (ethylene, propylene, tetrafluoroethylene, vinyl chloride, vinyl fluoride, etc.) can also be introduced into the reduced pressure chamber. . Further, a derivative of benzocyclobutene or the like may be used. The polymerizable compound may react with other components such as bismaleimide at the monomer stage, or may react with other components while polymerizing itself.

上記ビスマレイミドと反応性化合物は、任意の配合比で
反応させることができる。たとえば、反応性化合物の持
つ特性を充分に生かすようにするため、反応性化合物の
ビスマレイミドに対するモル比を1〜3程度にすること
が適切であるが、この範囲を外れていても構わないこと
は言うまでもない。
The bismaleimide and the reactive compound can be reacted at any mixing ratio. For example, in order to make full use of the properties of the reactive compound, it is appropriate to set the molar ratio of the reactive compound to bismaleimide to about 1 to 3, but it is acceptable to have a molar ratio outside of this range. Needless to say.

ビスマレイミドと反応性化合物の蒸着方法は、特に限定
されず、熱蒸着法(抵抗加熱蒸着、高周波加熱蒸着、フ
ラッシュ加熱蒸着、電子ビーム加熱蒸着、レーザ加熱蒸
着等)、イオンブレーティング法(イオン蒸着法:直流
イオンブレーティング、高周波イオンブレーティング、
反応性クラスタイオン蒸着、イオンビーム蒸着等)、ス
パッタ法(イオンスパッタリング、マグネトロンスパッ
タリング等)などの方法を任意に選択できる。また、そ
れらの各方法の実施に際する個々の条件も特に限定はさ
れず、用いられる化合物種等に応じて、それらの分子が
ばらばらに分解されてしまうことなく適切に蒸発できる
エネルギーを与えるよう、適宜設定することが好ましい
。たとえば、熱蒸着を行う場合の加熱温度等も、特に限
定されないが、おおよその目安としては、ビスマレイミ
ドが140〜180℃9反応性化合物が200〜400
℃程度にそれぞれ加熱され、両者の反応温度は、180
〜250℃程度に設定されることが適切である。
The method of vapor deposition of bismaleimide and the reactive compound is not particularly limited, and may include thermal vapor deposition (resistance heating vapor deposition, radio frequency heating vapor deposition, flash heating vapor deposition, electron beam heating vapor deposition, laser heating vapor deposition, etc.), ion blating method (ion vapor deposition, etc.). Method: DC ion brating, high frequency ion brating,
Methods such as reactive cluster ion deposition, ion beam deposition, etc.), sputtering methods (ion sputtering, magnetron sputtering, etc.) can be arbitrarily selected. In addition, the individual conditions for carrying out each of these methods are not particularly limited, and depending on the type of compound used, etc., it is necessary to provide energy that can appropriately evaporate the molecules without being broken down into pieces. , is preferably set appropriately. For example, the heating temperature when performing thermal evaporation is not particularly limited, but as a rough guide, bismaleimide is 140-180°C9 reactive compound is 200-400°C.
℃, and the reaction temperature for both was 180℃.
It is appropriate to set the temperature to about 250°C.

蒸着時の減圧度(あるいは真空条件)は、特に限定はさ
れないが、I X l O−’Torr以下、さらには
lXl0−’〜1×10弓Torr程度の圧力にするこ
とが適切である。この程度の減圧下では、原料を蒸発さ
せるための加熱温度を上げすぎる必要がなく、蒸発管内
での原料ビスマレイミドの重合や反応性化合物の劣化を
抑制できる。また、蒸着に与える残留ガスの影響も比較
的小さいため、きれいな蒸着膜が得られやすい、という
利点もある。
The degree of reduced pressure (or vacuum conditions) at the time of vapor deposition is not particularly limited, but it is appropriate to set the pressure to less than IXlO-'Torr, and more preferably to a pressure of about 1X10-' to 1×10 Torr. Under this level of reduced pressure, there is no need to raise the heating temperature too high for evaporating the raw material, and it is possible to suppress the polymerization of the raw material bismaleimide and the deterioration of the reactive compounds in the evaporation tube. Further, since the influence of residual gas on vapor deposition is relatively small, there is also the advantage that a clean vapor deposited film can be easily obtained.

なお、きれいな蒸着膜を得るためには、減圧度は高い方
が有利であるが、より強力な排気装置やリークの少ない
材料等を選択する必要がある。
Note that in order to obtain a clean deposited film, it is advantageous to have a higher degree of vacuum, but it is necessary to select a more powerful exhaust device, a material with less leakage, and the like.

蒸発させたビスマレイミドおよび反応性化合物は、重合
や架橋等の反応をさせながら、あるいはさせてから、基
板(対象物)上に堆積させてもよいし、まず両者を基板
上に堆積させて、その後反応を行わせてもよい。基板材
料としては、たとえば、ガラス、ステンレス、アルミニ
ウム、銅、ケイ素鋼等、特に限定はされない。また、そ
の蒸着面を、あらかじめ常法に従って前処理しておくこ
とも好ましい。
The evaporated bismaleimide and the reactive compound may be deposited on the substrate (object) while or after undergoing a reaction such as polymerization or crosslinking, or both may be deposited on the substrate first, The reaction may then be carried out. The substrate material is not particularly limited, for example, glass, stainless steel, aluminum, copper, silicon steel, etc. It is also preferable to pre-treat the vapor deposition surface in advance according to a conventional method.

得られる高分子薄膜の膜厚は、特に限定はされないが、
たとえば、0.5〜5ハ程度であることが適切である。
The thickness of the obtained polymer thin film is not particularly limited, but
For example, approximately 0.5 to 5 ha is appropriate.

あまり薄すぎると、均一性が不充分になる恐れがある。If it is too thin, the uniformity may become insufficient.

第1図〜第3図は、この発明の高分子薄膜の製法に使用
する装置例の構成概略断面図である。なお、第2図およ
び第3図の装置の構成部材のうち、第1図と重複するも
のについては、同一符号を付して説明を省略する。
FIGS. 1 to 3 are schematic cross-sectional views of an example of an apparatus used in the method for manufacturing a polymer thin film according to the present invention. It should be noted that among the structural members of the apparatus shown in FIGS. 2 and 3, those that are the same as those in FIG.

第1図の装置は、減圧チャンバー1内に、蒸発管6.9
および基板ホルダー3を備え、減圧チャンバー1は、真
空ポンプ12を作動させることにより所定圧力に減圧さ
れるようになっている。基板ホルダー3の蒸発管6,9
に向かう面には、蒸着の対象物となる基板2が着脱され
、同基板2を装着した状態で、基板ホルダー3が軸13
を中心に回転するようになっている。蒸発管6,9は、
それらの開口部を基板2側に向けるようにして減圧チャ
ンバー1の下側に設置され、それぞれに、ビスマレイミ
ドと反応性化合物とが別々に入れられる。基板2は基板
加熱用ヒータ4により、蒸発管6.9は蒸発管加熱用ヒ
ータ7.1oによりそれぞれ所定温度に加熱されるよう
になっている。
The apparatus shown in FIG. 1 includes an evaporation tube 6.9 in a vacuum chamber 1
and a substrate holder 3, and the reduced pressure chamber 1 is reduced to a predetermined pressure by operating a vacuum pump 12. Evaporation tubes 6, 9 of substrate holder 3
A substrate 2 to be vapor-deposited is attached to and detached from the surface facing the substrate holder 3 with the substrate 2 attached to the shaft 13.
It rotates around the center. The evaporation tubes 6 and 9 are
They are installed under the reduced pressure chamber 1 with their openings facing the substrate 2 side, and bismaleimide and a reactive compound are separately placed in each of them. The substrate 2 is heated to a predetermined temperature by a substrate heating heater 4, and the evaporation tube 6.9 is heated to a predetermined temperature by an evaporation tube heating heater 7.1o.

5.8および11は、それぞれ上記各ヒータ用の電源で
ある。
5.8 and 11 are power supplies for each of the above heaters, respectively.

蒸発管6.9から蒸発したビスマレイミドおよび反応性
化合物は、基板2上に蒸着して堆積し、その後同基板2
上で加熱されて反応し、架橋ビスマレイミド重合体とな
る。
The bismaleimide and the reactive compounds evaporated from the evaporation tube 6.9 are deposited on the substrate 2, and are then deposited on the substrate 2.
It is heated above and reacts to form a crosslinked bismaleimide polymer.

第2図に示された装置では、上記第1図における基板用
加熱ヒータ4の代わりに、基板2と蒸発管6,9の間に
加熱炉14が設けられている。すなわち、蒸発したビス
マレイミドおよび反応性化合物は、加熱炉14を通る際
に反応し、その結果架橋ビスマレイミド重合体が生成し
てから基板2に堆積するようになっている。
In the apparatus shown in FIG. 2, a heating furnace 14 is provided between the substrate 2 and the evaporation tubes 6, 9 instead of the substrate heater 4 in FIG. That is, the evaporated bismaleimide and the reactive compound react while passing through the heating furnace 14, and as a result, a crosslinked bismaleimide polymer is formed and then deposited on the substrate 2.

第3図に示された装置では、蒸発管9と基板2との間に
熱分解炉15および同熱分解炉15用の電源16が設け
られ、蒸発した反応性化合物からラジカルを生成させる
ようになっている。したがって、この装置は、上記ジパ
ラキシリレンなど、重合に先立ち熱分解を必要とするよ
うな化合物を用いるような場合に特に適している。
In the apparatus shown in FIG. 3, a pyrolysis furnace 15 and a power source 16 for the pyrolysis furnace 15 are provided between the evaporation tube 9 and the substrate 2, and a power source 16 is provided for the pyrolysis furnace 15 to generate radicals from the evaporated reactive compounds. It has become. Therefore, this device is particularly suitable when using a compound that requires thermal decomposition prior to polymerization, such as the above-mentioned diparaxylylene.

以下に、さらに詳しい実施例について、比較例と併せて
説明する。
Below, more detailed examples will be described together with comparative examples.

一実施例1〜1〇− 第1図に示した装置を使用し、第1表に示したビスマレ
イミドおよび反応性化合物から以下のようにして高分子
薄膜を製造した。まず、蒸発管6内にビスマレイミド1
00■、蒸発管9内に反応性化合物50■を入れ、減圧
チャンバー1内の圧力をI X 10−’Torrに設
定した。蒸発管6および9をそれぞれ第1表に示した所
定温度に加熱し、ビスマレイミドと反応性化合物を基板
2上に蒸着させた。その後、基板加熱用ヒータ4により
、200℃/1時間の加熱処理を行って、高分子薄膜を
得た。なお、実施例6および7では、ビスマレイミドの
使用量を50■とした。
Examples 1 to 10 - Using the apparatus shown in FIG. 1, polymer thin films were produced from bismaleimide and reactive compounds shown in Table 1 in the following manner. First, bismaleimide 1 is placed inside the evaporation tube 6.
00cm, 50cm of a reactive compound was put into the evaporation tube 9, and the pressure inside the vacuum chamber 1 was set to I x 10-'Torr. The evaporation tubes 6 and 9 were heated to the predetermined temperatures shown in Table 1, respectively, and bismaleimide and the reactive compound were vapor-deposited onto the substrate 2. Thereafter, heat treatment was performed at 200° C./1 hour using the substrate heating heater 4 to obtain a polymer thin film. In Examples 6 and 7, the amount of bismaleimide used was 50 .mu.m.

一比較例1− 反応性化合物を使用しないようにする他は、上記実流側
と同様にして、高分子薄膜を得た。
Comparative Example 1 A thin polymer film was obtained in the same manner as on the actual flow side, except that no reactive compound was used.

−比較例2− ビスマレイミドを使用しないようにする他は、上記実施
例と同様にして、高分子薄膜を得た。
- Comparative Example 2 - A polymer thin film was obtained in the same manner as in the above example except that bismaleimide was not used.

一実施例11〜16− 第2図に示した装置を使用し、第2表に示したビスマレ
イミドおよび反応性化合物から高分子薄膜を製造した。
Examples 11-16 Using the apparatus shown in FIG. 2, polymer thin films were produced from bismaleimide and reactive compounds shown in Table 2.

加熱炉14は200℃に設定し、その他の諸条件は上記
実施例と同様に行った。なお、実施例14ではビスマレ
イミドの使用量を50■とした。
The heating furnace 14 was set at 200° C., and other conditions were the same as in the above examples. In Example 14, the amount of bismaleimide used was 50 .mu.m.

一比較例3− 反応性化合物を使用しないようにする他は、上記実施例
11〜16と同様にして、高分子薄膜を製造した。
Comparative Example 3 - A polymer thin film was produced in the same manner as in Examples 11 to 16 above, except that no reactive compound was used.

一比較例4− ビスマレイミドを使用しないようにする他は、上記実施
例11〜16と同様にして、高分子薄膜を製造した。
Comparative Example 4 - A polymer thin film was produced in the same manner as in Examples 11 to 16 above, except that bismaleimide was not used.

一実施例17− 第3図に示した装置を使用し、第2表に示したビスマレ
イミド50■およびジバラキシリレン50■から高分子
薄膜を製造した。熱分解炉15を600℃に設定し、そ
の他の諸条件は先の実施例と同様に行った。
Example 17 - Using the apparatus shown in FIG. 3, a thin polymer film was produced from 50 cm of bismaleimide and 50 cm of divaraxylylene shown in Table 2. The thermal decomposition furnace 15 was set at 600°C, and other conditions were the same as in the previous example.

以上、得られた実施例および比較例の高分子薄膜につい
て、耐熱性および基板に対する密着性を調べた。耐熱性
は、熱天秤で熱重量損失曲線を求め、熱分解開始温度に
より評価した。密着性は、粘着テープ(スリーエム社の
スコッチテープ)を各薄膜表面に貼り付け、それを引き
剥がす際に高分子薄膜が基板から剥離する(×)か否(
○)かで判定した。
The heat resistance and adhesion to the substrate of the obtained polymer thin films of Examples and Comparative Examples were investigated. Heat resistance was evaluated by determining a thermogravimetric loss curve using a thermobalance and determining the thermal decomposition onset temperature. Adhesion was determined by pasting adhesive tape (3M's Scotch Tape) on the surface of each thin film and determining whether the polymer thin film peeled off from the substrate (x) when it was peeled off.
○).

以上の結果を、第1表および第2表に示す。The above results are shown in Tables 1 and 2.

第1表および第2表にみるように、各実施例で得られた
高分子薄膜は、比較例のものに比べ、より一層優れた耐
熱性を有し、その対基板密着性も良好であることが判明
した。
As shown in Tables 1 and 2, the polymer thin films obtained in each example had better heat resistance and better adhesion to the substrate than those of the comparative examples. It has been found.

〔発明の効果〕〔Effect of the invention〕

この発明にかかる高分子薄膜の製法によれば、重合等の
反応を容易に制御しつつ、耐熱性、密着性等の各種特性
に一層優れた高分子薄膜を得ることができる。したがっ
て、この発明は、電子部品等の絶縁膜あるいは防湿膜形
成、半導体装置製造プロセス、金属表面保護2回路形成
などの幅広い分野に通用され、大きな成果を与えること
が期待される。
According to the method for producing a thin polymer film according to the present invention, it is possible to easily control reactions such as polymerization and to obtain a thin polymer film that has better various properties such as heat resistance and adhesion. Therefore, the present invention is expected to be applicable to a wide range of fields such as the formation of insulating films or moisture-proof films for electronic components, semiconductor device manufacturing processes, and the formation of two metal surface protection circuits, and to bring great results.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図は、いずれも、この発明の製法
の実施に用いられる装置例を表す概略断面図である。 1・・・減圧チャンバー 2・・・基板 6,9・・・
蒸発管 代理人 弁理士  松 本 武 彦
FIG. 1, FIG. 2, and FIG. 3 are all schematic cross-sectional views showing an example of an apparatus used for carrying out the manufacturing method of the present invention. 1... Decompression chamber 2... Substrate 6,9...
Evaporation pipe agent Patent attorney Takehiko Matsumoto

Claims (1)

【特許請求の範囲】 1 下記一般式で表されるビスマレイミド:▲数式、化
学式、表等があります▼ 〔式中、Arは▲数式、化学式、表等があります▼また
は▲数式、化学式、表等があります▼ (ただし、Xは−O−,−S−,−SO_2−,−NH
−,−CO−,−CS−あるいは炭素数1〜4のアルキ
レン基、R^1およびR^2はそれぞれ独立に水素,ハ
ロゲン,水酸基,炭素数1〜4のアルキル基あるいは炭
素数1〜4のアルコキシル基を示し、nおよびmはR^
1,R^2の置換数であってそれぞれ独立に1〜4の整
数を表す)を示す〕 と、蒸着可能なポリマーおよび/または重合性化合物と
を、それぞれ減圧下で同時に蒸発させた後に反応させて
、基板上に架橋ビスマレイミド重合体からなる蒸着膜を
形成するようにする高分子薄膜の製法。
[Claims] 1 Bismaleimide represented by the following general formula: ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ [In the formula, Ar is ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ or ▲ Numerical formulas, chemical formulas, tables, etc. etc.▼ (However, X is -O-, -S-, -SO_2-, -NH
-, -CO-, -CS- or an alkylene group having 1 to 4 carbon atoms; R^1 and R^2 each independently represent hydrogen, halogen, hydroxyl group, alkyl group having 1 to 4 carbon atoms, or an alkylene group having 1 to 4 carbon atoms; represents an alkoxyl group, n and m are R^
1, R^2, each independently representing an integer from 1 to 4)] and a vapor-depositable polymer and/or polymerizable compound are simultaneously evaporated under reduced pressure, and then reacted. A method for producing a polymer thin film in which a vapor-deposited film made of a crosslinked bismaleimide polymer is formed on a substrate.
JP14448188A 1988-06-10 1988-06-10 Preparation of thin film of polymer Pending JPH01313511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14448188A JPH01313511A (en) 1988-06-10 1988-06-10 Preparation of thin film of polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14448188A JPH01313511A (en) 1988-06-10 1988-06-10 Preparation of thin film of polymer

Publications (1)

Publication Number Publication Date
JPH01313511A true JPH01313511A (en) 1989-12-19

Family

ID=15363314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14448188A Pending JPH01313511A (en) 1988-06-10 1988-06-10 Preparation of thin film of polymer

Country Status (1)

Country Link
JP (1) JPH01313511A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5114612A (en) * 1990-04-04 1992-05-19 The United States Of America As Represented By The Department Of Energy Liquid crystal polyester thermosets

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5114612A (en) * 1990-04-04 1992-05-19 The United States Of America As Represented By The Department Of Energy Liquid crystal polyester thermosets

Similar Documents

Publication Publication Date Title
Takahashi et al. Synthesis of aromatic polyimide film by vacuum deposition polymerization
Limb et al. Molecular design of fluorocarbon film architecture by pulsed plasma enhanced and pyrolytic chemical vapor deposition
Chan et al. Initiated CVD of poly (methyl methacrylate) thin films
US4176209A (en) Process for forming polymeric paraxylylene coatings and films possessing improved oxidation resistance
WO2012177839A1 (en) Oligosaccharide/silicon-containing block copolymers for lithography applications
Chen et al. Plasma polymerization of hexafluoropropylene: Film deposition and structure
JPH046791B2 (en)
JPH01313511A (en) Preparation of thin film of polymer
Phadke Dielectric properties of plasma-polymerized ferrocene films
JPS61261322A (en) Formation of synthetic resin film
Yılmaz et al. Vapor deposition of stable copolymer thin films in a batch iCVD reactor
JP2821907B2 (en) Method of forming polyimide resin coating
JPH01313520A (en) Preparation of thin film of polymer
Yeping et al. Study of plasma-polymerization deposition of C2H2/CO2/H2 onto ethylene-co-propylene rubber membranes
US4673720A (en) Electroconductive polymer and process for preparation thereof
JPS61211339A (en) Production of heat-resistant thin membrane of high-molecular material
KR920009746B1 (en) Coated or enclosed product and method of producing the same
JPH0331330A (en) Production of polymer film
JPH0776416B2 (en) Method for forming polyimide resin coating
JPH04208567A (en) Orientation method
US4791028A (en) Polymer coatings
JP4513956B2 (en) Organic polymer film and method for producing the same
Han et al. Pulsed plasma synthesis of low dielectric constant materials
JP2001206947A (en) Method of forming polyimide resin membrane
Ohkubo et al. Influences of the substrate temperature on the films plasma-polymerized at the low system pressure