JPH0131322B2 - - Google Patents

Info

Publication number
JPH0131322B2
JPH0131322B2 JP23666584A JP23666584A JPH0131322B2 JP H0131322 B2 JPH0131322 B2 JP H0131322B2 JP 23666584 A JP23666584 A JP 23666584A JP 23666584 A JP23666584 A JP 23666584A JP H0131322 B2 JPH0131322 B2 JP H0131322B2
Authority
JP
Japan
Prior art keywords
dielectric
insertion loss
dielectric resonators
bpf
dielectric resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23666584A
Other languages
Japanese (ja)
Other versions
JPS61116403A (en
Inventor
Motoo Mizumura
Hisasuke Sei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP23666584A priority Critical patent/JPS61116403A/en
Publication of JPS61116403A publication Critical patent/JPS61116403A/en
Publication of JPH0131322B2 publication Critical patent/JPH0131322B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • H01P1/2084Cascaded cavities; Cascaded resonators inside a hollow waveguide structure with dielectric resonators

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は帯域通過波器に関し、特に誘電体共
振器を用いた帯域通過波器に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a bandpass waver, and particularly to a bandpass waver using a dielectric resonator.

〔従来技術とその問題点〕[Prior art and its problems]

第2図は従来の誘電体共振器帯域通過波器
(以下DR BPFと示す)の構成例を示す図であ
り、aは正面断面図、bはカバーをとつて上方か
らみた平面図を示す、第1図に於て、1〜5は誘
電体共振器、6〜10は前記誘電体共振器の支持
台、11〜15は各々前記誘電体共振器の共振周
波数を調整する為の金属ねじ、16は帯域通過
波器の金属シヤーシ(筐体)、17は金属カバー
であり、また18,19は入出力用のコネクタで
あつて各々に誘電体共振器1,5と電磁界的に結
合する為のプローブ20,21がとりつけられて
いる。但しこれらのコネクタは他とは異つて外観
を示している。
FIG. 2 is a diagram showing an example of the configuration of a conventional dielectric resonator bandpass filter (hereinafter referred to as DR BPF), in which a is a front sectional view, and b is a plan view seen from above with the cover removed. In FIG. 1, 1 to 5 are dielectric resonators, 6 to 10 are support stands for the dielectric resonators, and 11 to 15 are metal screws for adjusting the resonance frequency of the dielectric resonators, respectively. Reference numeral 16 designates a metal chassis (casing) of the bandpass wave device, 17 a metal cover, and 18 and 19 designate input/output connectors, which are electromagnetically coupled to the dielectric resonators 1 and 5, respectively. Probes 20 and 21 are attached for this purpose. However, these connectors have a different appearance than the others.

第3図は現在使用される代表的な誘電体共振器
の特性(無負荷Qと周波数の関係)例を示す図で
ある。この第2図からすぐ分るように、一般に比
誘電率εrの高い誘電体共振器の方が無負荷Qの値
が低い。DR BPFに期待される特徴として、挿
入損失の低減と形状の小型化とがある。比誘電率
εrの小さな誘電体共振器を使用して無負荷Qを高
くしようとすると、εrの大きな誘電体共振器を使
用した場合に比べて同一の比帯域幅を得る為の誘
電体共振器間距離S1〜S4が大きくなり、結果とし
てDR BPFの形状が大きくなつてしまう。そこ
で形状の小型化という特徴を考慮した場合に、従
来のDR BPFの構成例ではεrとして38〜40程度の
ものを、DR BPFを構成する全ての誘電体共振
器に使用している。ところがこのようにしても、
従来の波器では挿入損失が大きいという問題が
ある。
FIG. 3 is a diagram showing an example of the characteristics (relationship between no-load Q and frequency) of typical dielectric resonators currently used. As can be easily seen from FIG. 2, in general, dielectric resonators with a higher relative dielectric constant ε r have a lower no-load Q value. Features expected of DR BPF include reduced insertion loss and smaller size. If you try to increase the no-load Q by using a dielectric resonator with a small relative permittivity ε r , you will have to use a dielectric material to obtain the same relative bandwidth compared to using a dielectric resonator with a large ε r . The inter-resonator distances S 1 to S 4 become large, and as a result, the shape of the DR BPF becomes large. Therefore, when considering the feature of miniaturization of the shape, in the conventional DR BPF configuration example, an ε r of about 38 to 40 is used for all dielectric resonators making up the DR BPF. However, even if you do this,
Conventional wave devices have a problem of large insertion loss.

いま例としてεr=40の誘電体共振器を用いて、
リツプルが0.01dB、タイプがチエビシエフタイ
プ、中心周波数が4GHz、リツプル帯域が±20M
Hz、段階が5段の特性を持つDR BPFを構成す
る事を考える。前記の特性が与えられた時のDR
BPFの挿入損失は、フイルター理論により 〔挿入損失〕=4.343×中心周波数/リツプル帯域 ×5n=1 go …(1) で与えられる。ここにgoはフイルタ理論により求
められている値であり、前記例の場合はg1
0.7563、g2=1.3049、g3=1.5773、g4=1.3049、g5
=0.7563である。そこでもし第3図に示すように
5つの誘電体共振器とも無負荷Qが6000のものが
得られれば、(1)式から挿入損失は 〔挿入損失〕=4.343×4000/40×(0.7563+1.3049+1
.5773+1.3049+0.7563)/6000≒0.41dB…(2) となるはずである。
As an example, using a dielectric resonator with ε r = 40,
Ripple is 0.01dB, type is Tiebishiev type, center frequency is 4GHz, ripple band is ±20M
Consider configuring a DR BPF with characteristics of 5 Hz and 5 steps. DR given the above characteristics
The insertion loss of BPF is given by filter theory as [insertion loss] = 4.343 × center frequency / ripple band × 5n = 1 g o ... (1). Here, g o is the value determined by filter theory, and in the case of the above example, g 1 =
0.7563, g 2 = 1.3049, g 3 = 1.5773, g 4 = 1.3049, g 5
=0.7563. Therefore, if all five dielectric resonators have an unloaded Q of 6000 as shown in Figure 3, the insertion loss from equation (1) is [insertion loss] = 4.343 x 4000/40 x (0.7563 + 1 .3049+1
.5773+1.3049+0.7563)/6000≒0.41dB…(2)

第4図は周波数(GHz)と挿入損失の関係を示
す図で、A点(四角印)の値が上記の挿入損失の
値を示す。しかしながら実際に第2図の構成の
DR BPFを製作すると(2)式より劣るという欠点
が生じる。そこでこの原因を調べたところ、入出
力回路と結合する誘電体共振器(第2図でいえば
1及び5)の無負荷Qが入出力回路の導体損の為
に低下するためであることが分つた。その低下の
程度は、比帯域により異るが、特性例のように
4GHzで40MHz帯域程度の場合、6000の無負荷Q
が約2500程度となる。よつて実際の挿入損失は 〔挿入損失〕=4.343×4000/40×(0.7563/2500
+1.3049+1.5773+1.3049/6000+0.7563/2500)≒0.
57dB…(3) となる。第4図のB点(三角印)が上記の挿入損
失の値を示す。従つて、(2)、(3)式から両端の無負
荷Qが低下することにより0.57dBと0.41dBの差
である0.16dBの挿入損失の劣化があることを示
す。8GHzにおけるC点およびD点も同様である。
FIG. 4 is a diagram showing the relationship between frequency (GHz) and insertion loss, and the value at point A (square mark) indicates the above-mentioned insertion loss value. However, in reality, the configuration shown in Figure 2
When a DR BPF is manufactured, it has the disadvantage that it is inferior to equation (2). When we investigated the cause of this, we found that it was because the no-load Q of the dielectric resonators (1 and 5 in Figure 2) coupled with the input/output circuit decreased due to conductor loss in the input/output circuit. Divided. The degree of decrease varies depending on the fractional band, but as shown in the characteristic example
For 40MHz band at 4GHz, no-load Q of 6000
is approximately 2500. Therefore, the actual insertion loss is [insertion loss] = 4.343×4000/40×(0.7563/2500
+1.3049+1.5773+1.3049/6000+0.7563/2500)≒0.
57dB...(3) Point B (triangle mark) in FIG. 4 indicates the above insertion loss value. Therefore, equations (2) and (3) show that as the no-load Q at both ends decreases, the insertion loss deteriorates by 0.16 dB, which is the difference between 0.57 dB and 0.41 dB. The same applies to points C and D at 8 GHz.

〔発明の目的〕[Purpose of the invention]

したがつて本発明の目的は形状の小型化という
DR BPFのメリツトをほとんど損うことなく挿
入損失の改善されたDR BPFを得ようとするも
のである。より具体的にいえば、入出力端部にお
ける挿入損失の少ないDR BPFを得ようとする
ものである。
Therefore, the purpose of the present invention is to reduce the size of the
The objective is to obtain a DR BPF with improved insertion loss without losing much of the merits of the DR BPF. More specifically, the aim is to obtain a DR BPF with low insertion loss at the input and output ends.

〔発明の構成〕[Structure of the invention]

本発明の誘電体共振器帯域波器は、本発明の
一実施例の構成を示した第1図に用いた参照数字
を援用すると、直列に配置した複数個の誘電体共
振器1a,2,3,4、および5aと、それらを
内包する金属シヤーシ16とから成る誘電体共振
器帯域通過波器において、外部と結合するため
の入出力回路側の誘電体共振器1a,5aの少な
くとも一方を、残りの誘電体共振器2,3,4よ
りも高無負荷Qのものとしたことを特徴とする誘
電体共振器帯域通過波器が得られる。
The dielectric resonator bandpass wave device of the present invention includes a plurality of dielectric resonators 1a, 2, 3, 4, and 5a and a metal chassis 16 containing them, at least one of the dielectric resonators 1a and 5a on the input/output circuit side for coupling with the outside is , a dielectric resonator band-pass waver is obtained which is characterized in that the dielectric resonators 2, 3, and 4 have a higher no-load Q than the remaining dielectric resonators 2, 3, and 4.

〔実施例〕〔Example〕

第1図の本発明の実施例の構成において、第2
図と同じ構成要素には同じ参照数字を付してあ
る。例えば2,3、および4は無負荷Qが4000の
誘電体は、各々本発明に於て特に用いた誘電体共
振器がある。これらの共振器は例えば第3図に示
す様なεr=30の誘電体共振器を用いる。第3図に
示すように、εr=30の誘電体共振器の無負荷Qは
4GHz帯では約12000ある。入出力回路の導体損失
を考慮しても前記特性例の比帯域の場合約6000が
得られる。従つてこのような誘電体共振器を両端
の誘電体共振器1aと5aとして用いれば、 〔挿入損失〕=4.343×4000/40×(0.7563+1.304
9+1.5773+1.3049+0.7563)/6000≒0.41dB となり、第4図のA点に示すような値となる。こ
のように従来の構成例で問題となつた、両端の誘
電体共振器の無負荷Qの低下による挿入損失の劣
化を防ぐことができる。なお第1図の両端の誘電
体共振器1aと5aのεrが小さくなつている為、
他の誘電体共振器2,3,4に比較して形状が若
干大きくなるが、上記のように損失の改善が計ら
れ、実用上極めて効果的である。
In the configuration of the embodiment of the present invention shown in FIG.
Components that are the same as those in the figures are provided with the same reference numerals. For example, 2, 3, and 4 are dielectric resonators each having an unloaded Q of 4000, which are specifically used in the present invention. As these resonators, for example, dielectric resonators with ε r =30 as shown in FIG. 3 are used. As shown in Figure 3, the unloaded Q of the dielectric resonator with ε r = 30 is
There are approximately 12,000 in the 4GHz band. Even if the conductor loss of the input/output circuit is taken into account, the fractional band of the above characteristic example can be approximately 6000. Therefore, if such dielectric resonators are used as dielectric resonators 1a and 5a at both ends, [insertion loss]=4.343×4000/40×(0.7563+1.304
9+1.5773+1.3049+0.7563)/6000≒0.41dB, resulting in a value as shown at point A in FIG. In this way, it is possible to prevent deterioration of insertion loss due to a decrease in the no-load Q of the dielectric resonators at both ends, which was a problem in the conventional configuration example. Note that since ε r of the dielectric resonators 1a and 5a at both ends of FIG. 1 is smaller,
Although the shape is slightly larger than the other dielectric resonators 2, 3, and 4, the loss is improved as described above, and it is extremely effective in practice.

第5図および第6図は本発明の他の2つの実施
例の構成を示す図であつて、第5図は片側の誘電
体共振器1aのみ高無負荷Qのものにおきかえた
構成を示し、第6図は両側の各2個a,2a,4
a,5aの4個がおきかえる構成を示している。
いずれも極めて効果的である。
5 and 6 are diagrams showing the configurations of two other embodiments of the present invention, and FIG. 5 shows a configuration in which only the dielectric resonator 1a on one side is replaced with a high no-load Q one. , Figure 6 shows two pieces a, 2a, 4 on both sides.
This shows a configuration in which four elements a and 5a can be replaced.
Both are extremely effective.

〔発明の効果〕〔Effect of the invention〕

以上のべたように、本発明は形状の増加を最小
限にとどめて挿入損失の改善をはかつている。
As described above, the present invention minimizes the increase in shape and improves insertion loss.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例である誘電体共振器
帯域通過波器(DR BPF)の構成を示す図、
第2図は従来のDR BPFの構成を示す図、第3
図は代表的な誘電体共振器の無負荷Qと周波数の
関係を示す図、第4図は従来例と本発明の実施例
における帯域通過波器の挿入損を比較して示し
た図、第5図および第6図は本発明の他の2つの
実施例の構成を示す図である。 記号の説明:1〜5および1a,2a,4a,
5aは誘電体共振器、6〜10は支持台、11〜
15は(共振周波数調整用)金属ねじ、16は金属
シヤーシ、17は金属カバー、18と19は入出
力用コネクタ、20と21はプローブをそれぞれ
あらわしている。
FIG. 1 is a diagram showing the configuration of a dielectric resonator bandpass filter (DR BPF) that is an embodiment of the present invention.
Figure 2 shows the configuration of a conventional DR BPF, and Figure 3 shows the configuration of a conventional DR BPF.
The figure shows the relationship between no-load Q and frequency of a typical dielectric resonator. 5 and 6 are diagrams showing the configurations of two other embodiments of the present invention. Explanation of symbols: 1 to 5 and 1a, 2a, 4a,
5a is a dielectric resonator, 6-10 are support stands, 11-
15 is a metal screw (for adjusting resonance frequency), 16 is a metal chassis, 17 is a metal cover, 18 and 19 are input/output connectors, and 20 and 21 are probes, respectively.

Claims (1)

【特許請求の範囲】[Claims] 1 直列に配置した複数個の誘電体共振器とそれ
らを内包する金属シヤーシとから成る誘電体共振
器帯域通過波器に於て、外部と結合する為の入
出力回路側の誘電体共振器の少なくとも一方を、
残りの誘電体共振器よりも高無負荷Qのものとし
た事を特徴とする誘電体共振器帯域通過波器。
1. In a dielectric resonator bandpass wave device consisting of a plurality of dielectric resonators arranged in series and a metal chassis containing them, the dielectric resonator on the input/output circuit side for coupling with the outside is at least one,
A dielectric resonator band-pass wave device characterized by having a higher no-load Q than the remaining dielectric resonators.
JP23666584A 1984-11-12 1984-11-12 Dielectric resonator band pass filter Granted JPS61116403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23666584A JPS61116403A (en) 1984-11-12 1984-11-12 Dielectric resonator band pass filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23666584A JPS61116403A (en) 1984-11-12 1984-11-12 Dielectric resonator band pass filter

Publications (2)

Publication Number Publication Date
JPS61116403A JPS61116403A (en) 1986-06-03
JPH0131322B2 true JPH0131322B2 (en) 1989-06-26

Family

ID=17003971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23666584A Granted JPS61116403A (en) 1984-11-12 1984-11-12 Dielectric resonator band pass filter

Country Status (1)

Country Link
JP (1) JPS61116403A (en)

Also Published As

Publication number Publication date
JPS61116403A (en) 1986-06-03

Similar Documents

Publication Publication Date Title
US4937542A (en) Dielectric filter
EP0415558B1 (en) Bandpass filter and method of trimming response characteristics thereof
JPS62164301A (en) Strip line filter
US6825740B2 (en) TEM dual-mode rectangular dielectric waveguide bandpass filter
JPH0369202B2 (en)
JPH06177607A (en) Dielectric filter
JPH0255402A (en) Dielectric filter
JPS5826843B2 (en) bandpass filter
JPH0131322B2 (en)
US5559485A (en) Dielectric resonator
JPH0473641B2 (en)
JPS6311802B2 (en)
US5331300A (en) Dielectric filter device
JP2001111302A (en) Low pass filter and electronic equipment using the same
JPH05110316A (en) Resonator
JPS59223003A (en) Coaxial type band-pass filter
JPH03252201A (en) Band attenuating filter
KR100564105B1 (en) Tunable filter using ferroelectric resonator
JPS6291001A (en) Strip line filter
JPH01144801A (en) Dielectric filter
JPS58131802A (en) Band pass filter
JPS5942729Y2 (en) Distributed constant filter
JP2519747B2 (en) Dielectric polar filter
JPS5942727Y2 (en) Distributed constant filter
JPH082001B2 (en) Band pass filter