JPH0131283Y2 - - Google Patents

Info

Publication number
JPH0131283Y2
JPH0131283Y2 JP2517885U JP2517885U JPH0131283Y2 JP H0131283 Y2 JPH0131283 Y2 JP H0131283Y2 JP 2517885 U JP2517885 U JP 2517885U JP 2517885 U JP2517885 U JP 2517885U JP H0131283 Y2 JPH0131283 Y2 JP H0131283Y2
Authority
JP
Japan
Prior art keywords
condensate
receiving tank
negative pressure
pressure condenser
vacuum pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2517885U
Other languages
Japanese (ja)
Other versions
JPS61143602U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2517885U priority Critical patent/JPH0131283Y2/ja
Publication of JPS61143602U publication Critical patent/JPS61143602U/ja
Application granted granted Critical
Publication of JPH0131283Y2 publication Critical patent/JPH0131283Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、負圧凝縮器の凝縮液取り出し装置の
改良に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to an improvement of a condensate extraction device for a negative pressure condenser.

(従来の技術) 従来の負圧凝縮器の凝縮液取り出し装置にあつ
ては、負圧凝縮器に溜る凝縮液を取り出す負圧凝
縮器内の負圧に相当した高低差をつけるか、又は
その圧力に打ち勝つだけの機能を有する真空ポン
プで吸引するようにしていた。即ち、前者の場合
では、例えば0.1気圧操作の場合約9.3m下方まで
管を導いて取り出すようにする為にスペース等の
面で問題がある。又後者の場合には、大容量の真
空ポンプが必要となり、しかもキヤビテーシヨン
やメカニカルシールのもれ等の問題がある。
(Prior art) In the case of a conventional condensate extraction device for a negative pressure condenser, a height difference is provided corresponding to the negative pressure in the negative pressure condenser from which the condensate accumulated in the negative pressure condenser is taken out, or The suction was done using a vacuum pump that had the ability to overcome the pressure. That is, in the former case, for example, in the case of 0.1 atm operation, there is a problem in terms of space, etc. because the tube must be guided and taken out approximately 9.3 m below. In the latter case, a large-capacity vacuum pump is required, and there are problems such as cavitation and leakage of mechanical seals.

(考案が解決しようとする問題点) 本考案は上記の点に鑑みてなされたものであつ
て、その目的とするところは小容量の真空ポンプ
で済み、しかも排出経路において直接回転部や摺
動部が介在せずに済んで材質の選定の容易化、構
造の自由化が図れる負圧凝縮器の凝縮液取り出し
装置を提供するにある。
(Problems to be solved by the invention) The present invention has been made in view of the above points, and its purpose is to allow a small-capacity vacuum pump to be used, and to avoid direct contact between rotating parts and sliding parts in the discharge path. It is an object of the present invention to provide a condensate extracting device for a negative pressure condenser, which does not require intervening parts, facilitates selection of materials, and allows for freedom in structure.

(問題点を解決するための手段) 本考案の要旨は、凝縮液1が溜る負圧凝縮器2
の溜り部3から排出管4を導出し、この負圧凝縮
器2の溜り部3より下方に凝縮液受け槽5を配す
ると共に、排出管4の導出端部を凝縮液受け槽5
内に開口し、凝縮液1を凝縮液受け槽5方向に流
す逆止弁6を排出管4の中間部に設け、一方真空
ポンプ7から導出される吸引管8を凝縮液受け槽
5内に開口して成る負圧凝縮器の凝縮液取り出し
装置に係るものである。
(Means for solving the problem) The gist of the present invention is that the negative pressure condenser 2 in which the condensate 1 accumulates
A discharge pipe 4 is led out from the reservoir 3 of the negative pressure condenser 2, and a condensate receiving tank 5 is disposed below the reservoir 3 of the negative pressure condenser 2.
A check valve 6 that opens into the condensate tank 5 and allows the condensate 1 to flow toward the condensate tank 5 is provided in the middle of the discharge pipe 4, while a suction pipe 8 led out from the vacuum pump 7 is inserted into the condensate tank 5. This invention relates to a condensate extraction device for a negative pressure condenser having an open opening.

(実施例) 以下、本考案を図示の実施例にもとづいて詳述
する。
(Example) Hereinafter, the present invention will be described in detail based on the illustrated example.

第1図は本考案の原理図に示してあり、ピスト
ンポンプ7を使用して負圧凝縮器2の凝縮液(水
等)1を取り出すとすれば次のようになる。即
ち、ピストンを左限より右方に移動させるとシリ
ンダー11内は真空となり凝縮液1は逆止弁6を
押し開いてシリンダー11内に流入して満液とな
つたところでピストンを左方に移動させてやると
逆止弁6は閉、逆止弁9は開となり、凝縮液は系
外に排出される。ここでピストンを左限より右方
に移動させてシリンダー11を真空にする役目を
真空ポンプに、又ピストンを右方より左方に移動
させて凝縮液を排出させる役目を高圧空気をもつ
てする。以上の動作を第2図に示してある。これ
は直接機械的部分では行わず、空気を利用する点
で熱伝導面でも有利である。
FIG. 1 is a diagram showing the principle of the present invention, and if the piston pump 7 is used to take out the condensate (water etc.) 1 from the negative pressure condenser 2, the process will be as follows. That is, when the piston is moved to the right from the left limit, the inside of the cylinder 11 becomes vacuum, and the condensate 1 pushes open the check valve 6 and flows into the cylinder 11, and when it becomes full, the piston is moved to the left. When this is done, the check valve 6 is closed and the check valve 9 is opened, and the condensed liquid is discharged out of the system. Here, a vacuum pump is used to move the piston from the left limit to the right to vacuum the cylinder 11, and high-pressure air is used to move the piston from the right to the left to discharge the condensate. . The above operation is shown in FIG. This is advantageous in terms of heat transfer because it uses air rather than a direct mechanical part.

第2図は本考案の第1実施例を示してある。 FIG. 2 shows a first embodiment of the invention.

負圧凝縮器2は蒸気を凝縮する目的、或いは液
(水等)を溜める目的のものであり、凝縮液1が
溜る負圧凝縮器2の溜り部3から排出管4を導出
してある。5は凝縮液受け槽であつて、負圧凝縮
器2の溜り部3より下方に配してあり、この凝縮
液受け槽5内に排出管4の導出端部を開口してあ
る。6は凝縮液1を凝縮液受け槽5方向に流す逆
止弁であつて、排出管4の中間部に配してある。
一方真空ポンプ7から導出される吸引管8を凝縮
液受け槽5内に開口してある。16は凝縮液受け
槽5に溜る凝縮液1は排出する排液管であつて、
排液管16の中間に逆止弁9を配してある。17
は負圧凝縮器2と凝縮液受け槽5とを連通させる
通気管であつて、この通気管17の中間にストツ
プ弁15をはいしてある。18は高圧空気供給管
であつて、この高圧空気供給管18の中間にスト
ツプ弁14を配してある。
The negative pressure condenser 2 is for the purpose of condensing steam or storing liquid (water, etc.), and a discharge pipe 4 is led out from a reservoir 3 of the negative pressure condenser 2 in which the condensed liquid 1 is stored. A condensate receiving tank 5 is disposed below the reservoir 3 of the negative pressure condenser 2, and the outlet end of the discharge pipe 4 is opened into the condensate receiving tank 5. Reference numeral 6 denotes a check valve that allows the condensate 1 to flow in the direction of the condensate receiving tank 5, and is disposed in the middle of the discharge pipe 4.
On the other hand, a suction pipe 8 led out from the vacuum pump 7 is opened into the condensate receiving tank 5. 16 is a drain pipe for discharging the condensate 1 accumulated in the condensate receiving tank 5;
A check valve 9 is arranged in the middle of the drain pipe 16. 17
A vent pipe 17 communicates the negative pressure condenser 2 and the condensate receiving tank 5, and a stop valve 15 is installed in the middle of the vent pipe 17. 18 is a high-pressure air supply pipe, and a stop valve 14 is arranged in the middle of this high-pressure air supply pipe 18.

次に、以上のようにして構成される負圧凝縮器
の凝縮液取り出し装置の動作を説明する。まず第
2図aのように、ストツプ弁13を開、ストツプ
弁14,15を閉状態にして、真空ポンプ7を作
動させ、凝縮液受け槽5内の空気を排出する。こ
の時逆止弁6,9は閉状態になる。そして凝縮液
受け槽5内の排気が充分に行われて凝縮液受け槽
5の内圧が負圧凝縮器7と同圧となれば、同図b
のように、凝縮液1は逆止弁6を押し開いて凝縮
液受け槽5内に落下流入する。ここでストツプ弁
13を閉とし真空ポンプ7を停止し、ストツプ弁
15を開くと負圧凝縮器2と凝縮液受け槽5とが
同圧になつて凝縮液1が連続して凝縮液受け槽5
内に落下流入し、従つて凝縮液受け槽5が満液に
なるまでの間は原動機(真空ポンプ7)は停止で
きて省エネルギー化が図れる。そして凝縮液受け
槽5内が満液となると、真空ポンプ7を停止させ
たままにして同図cのようにストツプ弁14を開
いて高圧空気を凝縮液受け槽5に供給して排液管
16から強制的に排出する。この時ストツプ弁1
3,15は閉状態とする。そして以上の動作を繰
り返すことにより負圧凝縮器2の排液が可能とな
る。
Next, the operation of the condensate extraction device of the negative pressure condenser constructed as described above will be explained. First, as shown in FIG. 2a, the stop valve 13 is opened, the stop valves 14 and 15 are closed, and the vacuum pump 7 is operated to discharge the air in the condensate receiving tank 5. At this time, the check valves 6 and 9 are closed. If the condensate tank 5 is sufficiently exhausted and the internal pressure of the condensate tank 5 becomes the same as that of the negative pressure condenser 7, then
As shown, the condensate 1 pushes open the check valve 6 and falls into the condensate receiving tank 5. When the stop valve 13 is closed to stop the vacuum pump 7 and the stop valve 15 is opened, the negative pressure condenser 2 and the condensate receiving tank 5 become at the same pressure, and the condensate 1 is continuously supplied to the condensate receiving tank. 5
The prime mover (vacuum pump 7) can be stopped until the condensate falls into the container and the condensate receiving tank 5 becomes full, thereby saving energy. When the condensate tank 5 becomes full, the vacuum pump 7 is kept stopped and the stop valve 14 is opened as shown in Figure c to supply high pressure air to the condensate tank 5 and drain the liquid. Forcibly discharge from 16. At this time, stop valve 1
3 and 15 are in the closed state. By repeating the above operations, the negative pressure condenser 2 can be drained.

第3図は本考案の第2実施例を示してある。 FIG. 3 shows a second embodiment of the invention.

凝縮液受け槽5には、下記のものが装備されて
いる。
The condensate receiving tank 5 is equipped with the following items.

液面報知調節装置(L,C) これは端子21及びコントローラーを有して電
磁弁MV1に連動し、凝縮液1のない状態では電
磁弁MV1の開方向が真空ポンプ7がわ、満液状
態では高圧空気がわとなるようにセツトされてあ
る。
Liquid level notification adjustment device (L, C) This has a terminal 21 and a controller and is linked to the solenoid valve MV1. When there is no condensate 1, the opening direction of the solenoid valve MV1 is toward the vacuum pump 7, and when the liquid is full. It is set so that the high-pressure air flows out.

圧力マイクロ接点付スイツチsw これは予め負圧凝縮器7の操作圧力に接点をセ
ツトされてその圧力(真空度)になつたところで
通電となるようにする。またこれは電磁弁MV
2,MV3に連動する。
Pressure micro-contact switch sw The contact is set in advance to the operating pressure of the negative pressure condenser 7, and the switch is energized when that pressure (degree of vacuum) is reached. Also this is a solenoid valve MV
2. Linked to MV3.

逆止弁6,9,10 これは圧力変化により自然開閉して逆流を防止
する。逆止弁6,9は第4図に示すように水平に
取り付けられ、従つて常に液が溜まつた状態とな
り流入がわが負圧となつても空気が漏れ込むこと
がない。逆止弁10は真空ポンプ7が停止しても
凝縮液受け槽5に空気が逆流しないように取り付
ける。
Check valves 6, 9, 10 These valves open and close naturally due to pressure changes to prevent backflow. The check valves 6 and 9 are installed horizontally, as shown in FIG. 4, so that liquid is always accumulated and no air leaks in even if the inflow becomes negative pressure. The check valve 10 is installed to prevent air from flowing back into the condensate receiving tank 5 even if the vacuum pump 7 is stopped.

電磁弁MV1,MV2,MV3 電磁弁MV1は三方弁とし、液面報知調節装置
(L,C)により連動されて上記のように動作
する。電磁弁MV2,MV3は圧力マイクロ接点
付スイツチswに連動し、圧力マイクロ接点付ス
イツチswのオンで電磁弁MV2が開き、電磁弁
MV3が閉じるように設定してある。
Solenoid valves MV1, MV2, MV3 The solenoid valve MV1 is a three-way valve, and operates as described above in conjunction with the liquid level notification adjustment device (L, C). The solenoid valves MV2 and MV3 are linked to the pressure micro-contact switch sw, and when the pressure micro-contact switch sw is turned on, the solenoid valve MV2 opens, and the solenoid valve
MV3 is set to close.

7は真空ポンプ7である。真空ポンプ7として
は各種のものが考えられるが、一般操作での凝縮
液の容積は負圧凝縮器本体の容積に比して充分に
小容量であるので、凝縮液受け槽5の容量が小さ
くて済む。従つて小容量のポンプで充分であり、
また到達真空度をその駆動水温度によつて変えら
れる利点を有する水ジエツトポンプを使用する。
またその駆動水を停止することはポンプ7のスイ
ツチをオフにしたのと同じ効果があり省力化が図
れる。
7 is a vacuum pump 7. Various types of vacuum pump 7 are conceivable, but the volume of condensate in general operation is sufficiently small compared to the volume of the negative pressure condenser body, so the capacity of condensate receiving tank 5 is small. It's done. Therefore, a small capacity pump is sufficient;
In addition, a water jet pump is used which has the advantage that the degree of vacuum achieved can be changed depending on the temperature of the driving water.
Further, stopping the driving water has the same effect as turning off the switch of the pump 7, and can save labor.

次にこの第2実施例の動作を説明する。 Next, the operation of this second embodiment will be explained.

いま凝縮液受け槽5内には液がないとする。ま
ず電気系統に通電すると、第3図aのように液面
報知調節装置(L,C)が液のないこと感知し電
磁弁MV1を真空ポンプ7に通ずるように開き高
圧空気がわを閉とする。それと同時に圧力マイク
ロ接点付スイツチswは、凝縮液受け槽5の中は
始動したばかりで接点はオフの状態であるので、
電磁弁MV2は閉、電磁弁MV3は開とし、真空
ポンプ7が作動して凝縮液受け槽5内の空気を排
出して減圧する。
It is now assumed that there is no liquid in the condensate receiving tank 5. First, when the electrical system is energized, the liquid level notification and adjustment device (L, C) detects that there is no liquid, as shown in Figure 3a, and opens the solenoid valve MV1 to communicate with the vacuum pump 7, closing the high-pressure air gate. do. At the same time, the pressure micro contact switch sw has just started in the condensate receiving tank 5 and the contact is off.
The solenoid valve MV2 is closed and the solenoid valve MV3 is opened, and the vacuum pump 7 is operated to exhaust the air in the condensate receiving tank 5 and reduce the pressure.

次に、負圧凝縮器7と凝縮液受け槽5とが同圧
になると、同図bに示すように凝縮液1が凝縮液
受け槽5内に落下流入する。そしてこの圧力に圧
力マイクロ接点付スイツチswの接点を設定して
おけば、圧力マイクロ接点付スイツチswはオン
となり、電磁弁MV2が開、電磁弁MV3が閉と
なる。従つて負圧凝縮器7と凝縮液受け槽5とは
電磁弁MV2を通つた通気管17で連通されてい
るため、液の流入に支障を来さない。また真空ポ
ンプ7は停止する。
Next, when the negative pressure condenser 7 and the condensate receiving tank 5 reach the same pressure, the condensed liquid 1 falls and flows into the condensate receiving tank 5, as shown in FIG. If the contact point of the pressure micro-contact switch sw is set to this pressure, the pressure micro-contact switch sw is turned on, solenoid valve MV2 is opened, and solenoid valve MV3 is closed. Therefore, since the negative pressure condenser 7 and the condensate receiving tank 5 are communicated with each other through the ventilation pipe 17 passing through the solenoid valve MV2, there is no problem with the inflow of liquid. Also, the vacuum pump 7 is stopped.

次に同図cのように、凝縮液受け槽5の液面が
上昇して感知端子21が接液すると、電磁弁MV
1の開方向を高圧空気がわにする。従つて空気は
凝縮液受け槽5内に導かれて圧力が上昇する。従
つて圧力マイクロ接点付スイツチswはオフとな
り電磁弁MV2が閉(電磁弁MV3は開となり真
空ポンプ7は予備運転状態となる。)となり、高
圧空気によつて排液が行われる。
Next, as shown in FIG.
The opening direction of No. 1 is the high pressure air side. Therefore, the air is introduced into the condensate receiving tank 5 and its pressure increases. Therefore, the pressure micro-contact switch SW is turned off, the solenoid valve MV2 is closed (the solenoid valve MV3 is opened, and the vacuum pump 7 is in a preliminary operation state), and the liquid is drained by high-pressure air.

次に同図dに示すように凝縮液受け槽5内の液
が排出されてしまうと、液面報知調節装置(L,
C)の下の感知端子21が液のないのを感知して
電磁弁MV1の開方向を真空ポンプ7側にして高
圧空気を止め、前操作で予備運転中の真空ポンプ
7により凝縮液受け槽5中の排気を開始する。
Next, as shown in Figure d, when the liquid in the condensed liquid receiving tank 5 is drained,
When the detection terminal 21 under C) detects that there is no liquid, the opening direction of the solenoid valve MV1 is set to the vacuum pump 7 side to stop the high-pressure air, and the vacuum pump 7, which is in preliminary operation in the previous operation, opens the condensate receiving tank. 5. Start exhausting.

そして以上の操作を繰り返して排液を行う。 Then, repeat the above operation to drain the liquid.

尚、以上の負圧凝縮器の凝縮液取り出し装置で
は排液動作が一時停止する時間があるが、複数の
凝縮液取り出し装置を排液動作がそれぞれシフト
するようにして配すれば、常時連続して排液でき
大量の凝縮液1の処理が可能となる。
In addition, in the above-mentioned negative pressure condenser condensate removal device, there is a time when the draining operation is temporarily stopped, but if multiple condensate removal devices are arranged so that the draining operation is shifted, the draining operation can be continuously performed. A large amount of condensate 1 can be treated.

(効果) 本考案は上述のように、凝縮液が溜る負圧凝縮
器の溜り部から排出管を導出し、この負圧凝縮器
の溜り部より下方に凝縮液受け槽を配すると共
に、排出管の導出端部を凝縮液受け槽内に開口
し、凝縮液を凝縮液受け槽方向に流す逆止弁を排
出管の中間部に設け、一方真空ポンプから導出さ
れる吸引管を凝縮液受け槽内に開口したので、凝
縮液受け槽を真空ポンプにて排出して負圧凝縮器
内と凝縮液受け槽内とを同圧にすれば、負圧凝縮
器に溜まつた凝縮液は逆止弁を押し開いて凝縮液
受け槽内に自然落下して流入することができ、従
つて凝縮液取り出し経路において動力機構を介在
させずに済んで効率よく凝縮液を取り出すことが
できると共に、しかも排出経路において直接回転
部や摺動部が介在しないことにより動力機構部の
材質の選定の容易化や構造の自由化が図れると言
う効果を奏する。また真空ポンプは槽内を排気す
るだけで良いので小容量化が図れるという効果を
奏する。
(Effects) As described above, the present invention leads out the discharge pipe from the reservoir of the negative pressure condenser where condensate accumulates, arranges the condensate receiving tank below the reservoir of the negative pressure condenser, and drains the condensate. The outlet end of the pipe is opened into the condensate receiving tank, and a check valve is provided in the middle of the discharge pipe to allow the condensate to flow toward the condensate receiving tank, while the suction pipe led out from the vacuum pump is connected to the condensate receiving tank. Since the opening has been made into the tank, if the condensate receiving tank is drained using a vacuum pump and the pressure inside the negative pressure condenser and the inside of the condensate receiving tank are the same, the condensate accumulated in the negative pressure condenser will be reversed. The stop valve can be pushed open to allow the condensate to fall naturally into the receiving tank, and therefore the condensate can be taken out efficiently without the need for a power mechanism in the condensate removal path. Since there are no direct rotating parts or sliding parts in the discharge path, it is possible to easily select the material of the power mechanism part and to make the structure more flexible. In addition, since the vacuum pump only needs to exhaust the inside of the tank, it has the effect of reducing the capacity.

又凝縮液受け槽に溜まつた凝縮液を空気圧にて
排出する排出手段を設けたので、凝縮液受け槽へ
の凝縮液の流入及び凝縮液受け槽から排出が空気
だけを介して行うことができ、したがつて凝縮液
に対する熱伝導を少なくできるという効果を奏す
る。
In addition, since a discharge means is provided to discharge the condensate accumulated in the condensate receiving tank using air pressure, the condensate can flow into the condensate receiving tank and be discharged from the condensed liquid receiving tank only through air. Therefore, there is an effect that heat conduction to the condensate can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の原理図、第2図a,b,cは
本考案の凝縮液取り出し装置の第1実施例の動作
説明、第3図a,b,c,dは同上の第2実施例
の動作説明図、第4図は同上の逆止弁の拡大断面
図である。 1……凝縮液、2……負圧凝縮器、3……溜り
部、4……排出管、5……凝縮液受け槽、6……
逆止弁、7……真空ポンプ、8……吸引管。
Fig. 1 is a principle diagram of the present invention, Fig. 2 a, b, and c are explanations of the operation of the first embodiment of the condensate extraction device of the present invention, and Fig. 3 a, b, c, and d are the same as the second embodiment of the same. FIG. 4, which is an explanatory diagram of the operation of the embodiment, is an enlarged sectional view of the same check valve as above. 1... Condensate, 2... Negative pressure condenser, 3... Reservoir, 4... Discharge pipe, 5... Condensate receiving tank, 6...
Check valve, 7...vacuum pump, 8...suction pipe.

Claims (1)

【実用新案登録請求の範囲】 (1) 凝縮液が溜る負圧凝縮器の溜り部から排出管
を導出し、この負圧凝縮器の溜り部より下方に
凝縮液受け槽を配すると共に、排出管の導出端
部を凝縮液受け槽内に開口し、凝縮液を凝縮液
受け槽方向に流す逆止弁を排出管の中間部に設
け、一方真空ポンプから導出される吸引管を凝
縮液受け槽内に開口して成る負圧凝縮器の凝縮
液取り出し装置。 (2) 実用新案登録請求の範囲第1項記載の負圧凝
縮器の凝縮液取り出し装置において、凝縮液受
け槽に溜まつた凝縮液を空気圧にて排出する排
出手段を設けたもの。 (3) 実用新案登録請求の範囲第1項記載の負圧凝
縮器の凝縮液取り出し装置において、凝縮液受
け槽への凝縮液の導入及び排気作用を凝縮液受
け槽内の空気の排出及び導入により行うもの。
[Scope of Claim for Utility Model Registration] (1) A discharge pipe is led out from the reservoir of the negative pressure condenser where condensate accumulates, and a condensate receiving tank is disposed below the reservoir of the negative pressure condenser, and The outlet end of the pipe is opened into the condensate receiving tank, and a check valve is provided in the middle of the discharge pipe to allow the condensate to flow toward the condensate receiving tank, while the suction pipe led out from the vacuum pump is connected to the condensate receiving tank. A condensate extraction device for a negative pressure condenser that opens into the tank. (2) Scope of Utility Model Registration The condensate removal device for a negative pressure condenser as set forth in claim 1, which is provided with a discharge means for discharging the condensate accumulated in the condensate receiving tank using air pressure. (3) Utility model registration In the condensate extraction device for a negative pressure condenser as described in claim 1, the introduction and exhausting of condensate into the condensate receiving tank is performed by discharging and introducing air in the condensed liquid receiving tank. What is done by
JP2517885U 1985-02-22 1985-02-22 Expired JPH0131283Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2517885U JPH0131283Y2 (en) 1985-02-22 1985-02-22

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2517885U JPH0131283Y2 (en) 1985-02-22 1985-02-22

Publications (2)

Publication Number Publication Date
JPS61143602U JPS61143602U (en) 1986-09-04
JPH0131283Y2 true JPH0131283Y2 (en) 1989-09-26

Family

ID=30520016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2517885U Expired JPH0131283Y2 (en) 1985-02-22 1985-02-22

Country Status (1)

Country Link
JP (1) JPH0131283Y2 (en)

Also Published As

Publication number Publication date
JPS61143602U (en) 1986-09-04

Similar Documents

Publication Publication Date Title
JP3631931B2 (en) Automatic pneumatic pump
KR100949640B1 (en) Washing-drying machine
JPS641164B2 (en)
JP6986081B2 (en) Automatic extraction and exhaust system
WO2000053838A2 (en) Dry cleaning process and system using jet agitation
JPS6143556B2 (en)
JP3970731B2 (en) Drying system
JPH0131283Y2 (en)
JPH101989A (en) Coupling device for water-intake device of water purifier
JPH09151873A (en) Water-sealed vacuum pump operating method
JP3579520B2 (en) Condenser and vacuum dryer
JP4288699B2 (en) Control method of vacuum cooling device and vacuum cooling device
JPH10114995A (en) Night cart
JP3217706B2 (en) Method and apparatus for self-evaporation compression type concentration of aqueous solution
KR102536163B1 (en) Waste heat recovery apparatus for a boiler of a laundry
CN218391671U (en) Portable sterilization station
JPH11344423A (en) Accumulator-testing device
CN112915921B (en) Vacuum system special for melt-blown material
CN111359236A (en) Continuous drainage device under high vacuum state and concentration system thereof
EP4219822A1 (en) Dryer with high air tigthness of a process air circuit and process for operating the dryer
CN217094896U (en) Exhaust volume adjustable type updraft ventilator of acid tank
JP2000249070A (en) Non-load power relieving device for water injection compressor
JP2001066031A (en) Vacuum cooler having vapor ejector by-pass route
JP2932915B2 (en) Operating method of vacuum cooling device and its device
JPS599193Y2 (en) Decompression steam generator