JPH01312808A - Superconductive magnet - Google Patents

Superconductive magnet

Info

Publication number
JPH01312808A
JPH01312808A JP63144541A JP14454188A JPH01312808A JP H01312808 A JPH01312808 A JP H01312808A JP 63144541 A JP63144541 A JP 63144541A JP 14454188 A JP14454188 A JP 14454188A JP H01312808 A JPH01312808 A JP H01312808A
Authority
JP
Japan
Prior art keywords
coil
superconductive
levitation
superconducting
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63144541A
Other languages
Japanese (ja)
Inventor
Koichi Oka
岡 皓一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP63144541A priority Critical patent/JPH01312808A/en
Publication of JPH01312808A publication Critical patent/JPH01312808A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To enable a superconductive magnetic levitation to be realized with a large object by reducing average radius of a superconductive coil at the floating side as compared with that of the superconductive coil at the support side and by short- circuiting the start and end edges of the coil winding at the levitation side. CONSTITUTION:Both a coil 1 at the floating side and a coil 2 at the supporting side (ground side) are superconductive coils made by winding the conductor mainly consisting of NiTi wire material for multiple times. Then, average radius of the coil 1 at the levitation side is made smaller than the coil 2 at the supporting side and a leading end 13 and a trailing end 15 of the coil 1 wire are connected superconductively by a connecting part 3. For excitation, liquid helium is filled in tanks 5 and 6 and are maintained so that coils 1 and 2 can realize superconductivity and a current lead 18 is inserted through an insertion port 10 to allow the tip connector to be combined with a relay 17. Then, after current is allowed to flow into a coil 2 from a power supply 19 and required magnetic field is generated at the coil 2, a switch 4 is turned off to allow a closed circuit to be produced at the coil 2. Thus, current flows within the coil 2 even if the power 19 is shut off so that superconductive magnetic levitation is enabled in a large object.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、超電導磁気浮上を利用した回転体のベアリン
グなどに有用な超電導マグネットに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a superconducting magnet useful for bearings of rotating bodies that utilize superconducting magnetic levitation.

[発明が解決しようとする課題] 磁気反発力その他により物体を非接触で安定に浮上させ
るものは却々得難く、マイスナー効果による超電導磁気
浮上もその一つである。
[Problems to be Solved by the Invention] It is quite difficult to achieve stable levitation of objects without contact using magnetic repulsion or other forces, and superconducting magnetic levitation using the Meissner effect is one of them.

本発明は、これを大型物体で実現させようというもので
ある。
The present invention aims to realize this with a large object.

[課題を解決するための手段] 本発明の要旨とするところは、浮上側の超電導コイルの
平均半径を支持側の超電導コイルの平均半径より小さく
すると共に、浮上側のコイル巻線の始端と終端を短絡さ
せたことにある。
[Means for Solving the Problems] The gist of the present invention is to make the average radius of the superconducting coils on the levitation side smaller than the average radius of the superconducting coils on the support side, and to This is due to the short circuit.

閉ループを形成するコイルは本来、磁場を保持するよう
に働き、超電導体はマイスナー効果により磁束の通過を
阻止するように働く。また、現在得られている第2種超
電導体により金属系超電導線は比較的強力な磁場中で大
きな電流密度を担い、強大な力を発生する。また、現在
既に高断熱性能を有する密封型クライオが得られており
、これらを適用すれば長時間に亘る磁気浮上体を得るこ
とができる。
The coils that form the closed loop essentially work to hold the magnetic field, and the superconductor works to block the passage of magnetic flux due to the Meissner effect. In addition, metal-based superconducting wires using the currently available type 2 superconductors can carry a large current density in a relatively strong magnetic field and generate a large force. Furthermore, sealed cryostats with high heat insulation performance have already been obtained, and by applying these, it is possible to obtain magnetically levitated bodies for long periods of time.

これを実現するに当って重要なことは、■大きなlf土
力が発生すること、■浮上体には非触手であること、■
浮上が安定であること、である。
In order to achieve this, the important things are: ■ large lf earth force is generated; ■ the floating object has no tentacles; ■
The levitation must be stable.

閉ループの超電導コイルを浮上体側とすることにより上
記■、■が満たされ、浮上側のコイルの平均半径を支持
側の“コイルのそれより小さくすることにより■が満た
されることになる。
By placing the closed-loop superconducting coil on the floating body side, the above conditions (1) and (2) are satisfied, and (2) is satisfied by making the average radius of the coil on the floating side smaller than that of the coil on the supporting side.

浮上の程度(J、支持側のコイルの電流調整で調節−・
することかできる。
Degree of levitation (J, adjusted by adjusting the current of the coil on the support side)
I can do something.

「実 施 例」 以下、図面をy照17て本発明を説明するに、第11図
で本発明の詳細な説明する。
``Example'' The present invention will be explained below with reference to the drawings, and the present invention will be explained in detail with reference to FIG. 11.

第1図においj:、’)は床面20上に設置された超電
導コイル示オ。また、]はその上部に配置された別の超
電導コイル4示す。コイル1.2は夫々別個のクライオ
スタット内に収納され、クライオスタット内には寒剤た
る液体゛\リウムが充填されている。コイル2に外部電
源より図示の向き、即ち磁界が紙面に沿って上向きに発
生するように直流電流を通ず乙。しかるとき、電磁誘導
の原理に従いコイル】には、この発生磁界を打ち消す向
き、即ち第1図に小す向きに自動的に電流が誘起される
。この電流と磁界の相互作用により、コイル1には図中
矢印で示す向きに力が発4トする。
In FIG. 1, j:,') indicates a superconducting coil installed on the floor surface 20. Also, ] indicates another superconducting coil 4 disposed above it. The coils 1.2 are housed in separate cryostats, each of which is filled with a liquid cryogen. Direct current is not passed through the coil 2 from an external power source in the direction shown in the figure, that is, so that a magnetic field is generated upward along the plane of the paper. At this time, according to the principle of electromagnetic induction, a current is automatically induced in the coil in a direction that cancels out this generated magnetic field, that is, in the direction shown in FIG. Due to the interaction between this current and the magnetic field, a force is generated in the coil 1 in the direction shown by the arrow in the figure.

コイル1は勿論重量があるため、鉛直方向の力が釣り合
う位置で静止、浮上する。
Since the coil 1 is of course heavy, it stands still and floats at a position where the vertical forces are balanced.

]は超電導コイルであるから液体ヘリウムが存在する限
りは上記の現9が継続する。
] is a superconducting coil, so as long as liquid helium exists, the above condition 9 continues.

実際問題Tlシて、コイル1はこれを収納せるフライオ
スタラ!・と一体となっているために数10〜数100
kg以上のかなりの重】物体となるが、コイル1の導体
としてNlTl糸の第2flJ!超電導体を用いれば、
数テスラの強磁場中でも大きな電流密度がとれ、l”V
 、を力と(、−ごは優1こ数100 kg〜数トンが
得られる。従って人間かコイル1が側に乗ったまま:1
イル1側をif上させる。キもう容易である。
In fact, Coil 1 is a Fly Ostara that can accommodate this!・Because it is integrated with the number 10 to 100
Considerable weight of more than kg ] object, but the second flJ of NlTl thread as the conductor of coil 1! If we use superconductors,
A large current density can be obtained even in a strong magnetic field of several Tesla, and l”V
, and the force (, - can be obtained from 100 kg to several tons. Therefore, with a person or coil 1 on the side: 1
Raise the 1st side if. It's already easy.

本発明ではコ・イル1の平均半径をコイル2のそれより
小さくしであるため、仮に何等かの外乱力がコイル]に
加わっ′Cコイルlの34゛衡状態を崩17ても、反発
力が増大し、元の状態・・、復掃し、ようとする力が働
く。即ちコイル1のd−L状態は「安定」となる。
In the present invention, the average radius of the coil 1 is smaller than that of the coil 2, so even if some disturbance force is applied to the coil and disturbs the 34° equilibrium state of the coil 1, the repulsive force increases, and a force acts to restore and restore the original state. That is, the dL state of the coil 1 becomes "stable".

第2図は、第1図の原理のものを実際の構成要素と共に
示したものである。即ち1が浮上側のコイル、2が支持
側(地上側)のコイルであり、共に〜iT1線材を主体
とI−だ導体を多数目在いた超電導コイルである。しか
してコイル1落線の始端13と終端15は接続部3て超
電導的に接続されている。
FIG. 2 shows the principle of FIG. 1 together with actual components. That is, 1 is a coil on the floating side, and 2 is a coil on the support side (ground side), both of which are superconducting coils mainly made of ~iT1 wire and having many I- conductors. Thus, the starting end 13 and the terminal end 15 of the falling wire of the coil 1 are superconductingly connected through the connecting portion 3.

一方、コイル2側ではその巻線の始端14と終端16が
熱式の永久71スイツチ4を介して接続されている。コ
イル1.2は夫々図示されているように、別個のヘリウ
ム槽5.6及びクライオ外槽7.8からなるクライオス
タット内に収納されている。これらのクライオスタット
としては液体ヘリウム(図示せず)の蒸発を極力小さく
抑えるために、コイルを収納した後に完全密封できる方
式のものを用いることが望ましい。
On the other hand, on the coil 2 side, the starting end 14 and the ending end 16 of the winding are connected via a thermal permanent switch 4. The coils 1.2 are housed in a cryostat consisting of a separate helium bath 5.6 and a cryo-external bath 7.8, each as shown. In order to minimize the evaporation of liquid helium (not shown), it is desirable to use a type of cryostat that can be completely sealed after the coil is housed.

尚、図中、9及び12は液体ヘリウムの注入口、11は
その排気口、10は外部の直流電源1つに接続された電
流リード18を中継器17へ導くための電流リード挿入
口を示す。
In the figure, 9 and 12 indicate liquid helium injection ports, 11 indicates its exhaust port, and 10 indicates a current lead insertion port for guiding the current lead 18 connected to one external DC power source to the repeater 17. .

以十のよつな構成において、コ・fル2L:電iを流し
て励磁するには、槽5.6内に液体ヘリウムを充填して
コイル1.2が超電導を実現できるように維持する一力
、挿入口10から電流リード18を挿入して先端のコネ
クタを中継器17に結合すると共に、スイッチ4を入れ
′C電源19からの電流をコイル2内に流すことによっ
て行われる。
In the following ten different configurations, in order to excite the coil 2L by flowing electricity, the tank 5.6 is filled with liquid helium to maintain the coil 1.2 so that it can achieve superconductivity. This is done by first inserting the current lead 18 through the insertion port 10, connecting the connector at the tip to the repeater 17, and turning on the switch 4 to cause the current from the power source 19 to flow into the coil 2.

そしてコイル2に所要磁界を発生させた後、スイッチ4
を切ってコイル2に閉回路を生じさせる。
After generating the required magnetic field in the coil 2, the switch 4
to create a closed circuit in coil 2.

これにより電源コ−9を遮断してもコイル2内に電流が
流れ、前記したコイル1の磁気浮上が長時間に亘り達成
される。
As a result, even if the power supply cord 9 is cut off, a current flows in the coil 2, and the above-described magnetic levitation of the coil 1 is achieved for a long period of time.

[発明の効果] 以上の説明から明らかなように、本発明の超電導マグネ
ットは超電導磁気浮上を大型の物体での実現を=J能と
したもので、大気中に安定に浮上するため摩擦力が小さ
く、回転体ベアリングとしての機能を有し、デモンスト
レーション用装置としてもH用である。
[Effects of the Invention] As is clear from the above explanation, the superconducting magnet of the present invention is capable of realizing superconducting magnetic levitation with a large object. It is small and has the function of a rotating body bearing, and can also be used as a demonstration device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わる超電導マグネットの原理を示す
説明図、第2図はその構成の一例を示す縦断説明図であ
る。 1:浮上側の超電導コイル、 2:支持側の超電導コイル、 3:超電導接続部、 4:永久電流スイッチ、 5及び6:ヘ リ ウ ム 槽、 7及び8 : り  ラ  イ  オ  外  槽。 第1図 第2図
FIG. 1 is an explanatory view showing the principle of a superconducting magnet according to the present invention, and FIG. 2 is a longitudinal cross-sectional view showing an example of its configuration. 1: Superconducting coil on the levitation side, 2: Superconducting coil on the support side, 3: Superconducting connection section, 4: Persistent current switch, 5 and 6: Helium bath, 7 and 8: Rilio outer bath. Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)支持側の超電導コイルと、コイルの平均半径が前
記コイルそれよりも小さい浮上側の超電導コイルとから
なり、浮上側のコイル巻線の始端と終端が短絡している
ことを特徴とする超電導マグネット。
(1) It consists of a superconducting coil on the support side and a superconducting coil on the levitation side, the average radius of which is smaller than that of the coil, and is characterized in that the starting end and the terminal end of the coil winding on the levitation side are short-circuited. Superconducting magnet.
(2)少くとも一方の超電導コイルが密封型クライオに
収納されている、前記第1項記載の超電導マグネット。
(2) The superconducting magnet according to item 1, wherein at least one superconducting coil is housed in a sealed cryostat.
(3)支持側コイルの終端部が永久電流スイッチを介し
て接続されている、前記第1項又は第2項記載の超電導
マグネット。
(3) The superconducting magnet according to item 1 or 2, wherein the terminal end of the supporting coil is connected via a persistent current switch.
JP63144541A 1988-06-10 1988-06-10 Superconductive magnet Pending JPH01312808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63144541A JPH01312808A (en) 1988-06-10 1988-06-10 Superconductive magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63144541A JPH01312808A (en) 1988-06-10 1988-06-10 Superconductive magnet

Publications (1)

Publication Number Publication Date
JPH01312808A true JPH01312808A (en) 1989-12-18

Family

ID=15364701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63144541A Pending JPH01312808A (en) 1988-06-10 1988-06-10 Superconductive magnet

Country Status (1)

Country Link
JP (1) JPH01312808A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007023589A1 (en) * 2005-08-26 2007-03-01 Sumitomo Electric Industries, Ltd. Superconducting actuator
JP2008139408A (en) * 2006-11-30 2008-06-19 Sumitomo Electric Ind Ltd Property exhibiting device of superconducting wire, and method for using the property exhibiting device of superconducting wire
JP2012007708A (en) * 2010-06-28 2012-01-12 Railway Technical Research Institute Superconductive magnetic bearing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007023589A1 (en) * 2005-08-26 2007-03-01 Sumitomo Electric Industries, Ltd. Superconducting actuator
JP2008139408A (en) * 2006-11-30 2008-06-19 Sumitomo Electric Ind Ltd Property exhibiting device of superconducting wire, and method for using the property exhibiting device of superconducting wire
JP2012007708A (en) * 2010-06-28 2012-01-12 Railway Technical Research Institute Superconductive magnetic bearing device

Similar Documents

Publication Publication Date Title
Brandt Rigid levitation and suspension of high‐temperature superconductors by magnets
US5479145A (en) Superconducting electromagnet for levitation and propulsion of a maglev vehicle
CN101192463B (en) High temperature superconducting magnet applied in electromagnetic suspension type high speed magnetic levitation train
US3198994A (en) Superconductive magnetic-fieldtrapping device
CN106059394B (en) A method of magnetic suspension state is realized using Closed-loop Constant-current high temperature superconductor coil
JPH01312808A (en) Superconductive magnet
CA2009342C (en) Magnetic field transfer device and method
US5602430A (en) Superconducting electromagnet arrangement for a magnetic levitation system
JPH06200942A (en) Superconductive bearing assembly
Kalsi et al. Iron-core superconducting magnet design and test results for maglev application
JP3084132B2 (en) Magnetic levitation device
GB1038554A (en) Apparatus for generating magnetic flux
JPH08182116A (en) Magnetic track for running magnetic levitator and running method thereof
US3478232A (en) Superconductive generators
CN114792594B (en) Superconducting suspension magnetic field attenuation suppression device and suppression method
Martinelli et al. Some effects of field orientation on the magnetization of superconducting wires
JP3185270B2 (en) Magnetic levitation device
Moon Superconducting levitating bearing
US3253192A (en) Superconducting solenoid apparatus
Nagashima et al. Levitation of bulk superconductors controlled by two coils
JPH04260534A (en) Superconductivity type lifting device
JP2000021621A (en) Fluctuating magnetic field shielding method for superconducting magnet
Atherton et al. Limitations of levitation by iron-cored electromagnets
RU1184169C (en) Method of leading-out object on magnet superconducting bearing
JPS6423704A (en) Transporting method for electrical machinery