JPH0131200B2 - - Google Patents
Info
- Publication number
- JPH0131200B2 JPH0131200B2 JP55160761A JP16076180A JPH0131200B2 JP H0131200 B2 JPH0131200 B2 JP H0131200B2 JP 55160761 A JP55160761 A JP 55160761A JP 16076180 A JP16076180 A JP 16076180A JP H0131200 B2 JPH0131200 B2 JP H0131200B2
- Authority
- JP
- Japan
- Prior art keywords
- hot
- lens
- manufacturing
- graphite
- sonic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000463 material Substances 0.000 claims description 25
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 15
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 239000010439 graphite Substances 0.000 claims description 10
- 229910002804 graphite Inorganic materials 0.000 claims description 10
- 238000005245 sintering Methods 0.000 claims description 9
- 239000000919 ceramic Substances 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 238000007731 hot pressing Methods 0.000 claims description 3
- 229920003002 synthetic resin Polymers 0.000 claims description 3
- 239000000057 synthetic resin Substances 0.000 claims description 3
- 239000000843 powder Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Landscapes
- Ultra Sonic Daignosis Equipment (AREA)
- Transducers For Ultrasonic Waves (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、音波の収束、拡散或いは方向変換の
ために使用する音波レンズを製造すする方法に関
する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a sound wave lens used for converging, diffusing or changing the direction of sound waves.
従来、音波の収束、拡散或いは方向変換を行な
うためには、反射鏡やホーンが多く用いられてき
た。又、例えば、光学的凹レンズ状の形状をした
音波レンズであつて超音波探傷器等の探触子の先
端に取り付けられレンズを透過した超音波をその
凹面から放射してこれを被検体中の一点に収束さ
せるようにした音波レンズも知られている。然し
ながら、それらは何れも、音波が入射、反射又は
放射される面の形状を所定の救面又はその他の曲
面に成形することによつて音波を収束、拡散させ
る効果を得るものであつた。
Conventionally, reflectors and horns have often been used to converge, diffuse, or change the direction of sound waves. For example, a sonic lens shaped like an optical concave lens is attached to the tip of a probe such as an ultrasonic flaw detector, and the ultrasonic waves transmitted through the lens are radiated from the concave surface of the lens and transmitted into the sample. A sound wave lens that focuses sound waves on a single point is also known. However, all of them achieve the effect of converging and diffusing sound waves by shaping the shape of the surface on which the sound waves are incident, reflected, or radiated into a predetermined relief surface or other curved surface.
而して、先に特開昭55−88100号公報には、超
音波伝搬媒質からなる熱硬化性樹脂にこの樹脂の
比重と異なる比重を有する粉体を混合して所定の
混合密度の分布を与え、上記熱硬化性樹脂の超音
波送波面を平面形成したことを特徴とする音響レ
ンズが示されている。 Japanese Patent Application Laid-open No. 55-88100 previously describes a method of mixing a thermosetting resin made of an ultrasonic propagation medium with powder having a specific gravity different from that of the resin to obtain a predetermined mixed density distribution. An acoustic lens is shown in which the ultrasonic wave transmitting surface of the thermosetting resin is formed into a flat surface.
而して、この種音波レンズは、レンズ部材自体
を部分的に音速の異なる密度の媒体で構成するこ
とにより走波面を平面状としつゝレンズ効果を持
たせようとするものであり、これにより走波面が
平面状であつても所望のレンズ効果が得られ、従
来の音波レンズではその形状から使用、取付けが
困難であつた分野でも使用できる音波レンズが提
供された。 This type of acoustic lens is designed to have a planar wave surface and a lens effect by partially composing the lens member itself with media with different densities and different sound velocities. A desired lens effect can be obtained even if the wave surface is planar, and a sonic lens that can be used in fields where conventional sonic lenses have been difficult to use and install due to their shape has been provided.
然しながら、上記の発明に記載されたレンズの
製造では、溶融状態の樹脂を中心点Cを中心とし
て所定の速度で回転させ、この回転動作によつて
生ずる遠心力を利用して鉄粉の拡散を行ない、そ
して、所定の時間経過後に上記回転動作を停止さ
せて凝固させることにより行なわれるが、それで
は所望の密度分布を有する音波レンズを製造する
ことが困難であつた。 However, in manufacturing the lens described in the above invention, the molten resin is rotated at a predetermined speed about the center point C, and the centrifugal force generated by this rotation is used to diffuse the iron powder. However, it has been difficult to manufacture a sound wave lens having a desired density distribution.
本発明は、叙上の観点に立つてなされたもので
あり、本発明の目的とするところは、特に超音波
加工機や超音波溶接機等の超音波振動子のホーン
としてその効率を一段と向上させることができる
音波レンズを容易かつ高精度に製造する方法を提
供することにある。
The present invention has been made based on the above-mentioned viewpoints, and an object of the present invention is to further improve the efficiency of ultrasonic vibrator horns, particularly in ultrasonic processing machines, ultrasonic welding machines, etc. An object of the present invention is to provide a method for manufacturing a sound wave lens easily and with high precision.
而して、本発明の目的は、
上記音波レンズを製造する方法に於いて、次の
各ステツプから成ることを特徴とする上記の音波
レンズを製造する方法によつて達成される。。
Therefore, the object of the present invention is achieved by the method for manufacturing a sound wave lens, which is characterized by comprising the following steps. .
a 比較的低密度の上記物質により、軸方向中心
軸上に円錐台形の中心部を假成形するステツ
プ。a. Forming a truncated conical center on the axial central axis using the relatively low density material.
b 上記中心部の外面に順次高密度となるよう
に、上記物質により円錐殻を多層にかつ全体と
して略円錐台形となるように假成形するステツ
プ。b. Forming a conical shell in multiple layers using the material so that the outer surface of the center part has a higher density in sequence and has an approximately truncated conical shape as a whole.
c 上記両ステツプにより假成形された円錐台形
体を熱間加圧焼結するステツプ。c. A step of hot-pressing sintering the truncated conical body formed in the above steps.
而して、本発明方法では、上記熱間加圧成形可
能な物質としてグラフアイト、或いはセラミツク
を用いることが推奨される。 Therefore, in the method of the present invention, it is recommended to use graphite or ceramic as the hot press moldable material.
又、上記熱間加圧成形可能な物質として、グラ
フアイト、セラミツク、合成樹脂及び金属のうち
から選ばれた少なくとも2種以上の物質を用いる
ようにすることも推奨される。 It is also recommended that at least two or more materials selected from graphite, ceramic, synthetic resin, and metal be used as the hot-press moldable material.
叙上の如く構成することにより、音波レンズを
容易かつ高精度に製造することができ、特に超音
波加工機や超音波溶接機等の超音波振動子のホー
ンとして用いた場合にはその音波効率を一段と向
上させることができるものである。
By configuring as described above, the sonic lens can be manufactured easily and with high precision, and its sonic efficiency is particularly high when used as a horn for an ultrasonic vibrator in an ultrasonic processing machine, an ultrasonic welding machine, etc. can be further improved.
以下、図面により本発明の詳細を具体的に説明
する。
Hereinafter, the details of the present invention will be specifically explained with reference to the drawings.
第1図は、本発明方法により製造した音波レン
ズをホーンに適用した場合の一実施例を示す断面
図ある。 FIG. 1 is a cross-sectional view showing an embodiment in which a sonic lens manufactured by the method of the present invention is applied to a horn.
特に、第1図は、例えば超音波加工機や超音波
溶接機に於いて、超音波を超音波振動子から工作
部分に伝達、集中させるため用いられているホー
ンに音波レンズを応用した例を示している。 In particular, Figure 1 shows an example in which a sonic lens is applied to a horn used to transmit and concentrate ultrasonic waves from an ultrasonic vibrator to a workpiece in an ultrasonic processing machine or an ultrasonic welding machine. It shows.
第1図中、3は磁歪素子等の超音波振動子であ
り、4はその底面が超音波振動子3の振動面に当
接された円錐状のホーンある。 In FIG. 1, 3 is an ultrasonic vibrator such as a magnetostrictive element, and 4 is a conical horn whose bottom surface is in contact with the vibration surface of the ultrasonic vibrator 3.
而して、ホーン4は、その軸直角断面に於い
て、軸方向中心部4aが密度を最も小さくしてあ
り、中間部4bから外周部4cにかけて段階的に
密度が増大するように構成されている。 The horn 4 is configured such that, in a cross section perpendicular to its axis, the axial center portion 4a has the lowest density, and the density increases stepwise from the intermediate portion 4b to the outer peripheral portion 4c. There is.
而して、超音波振動子3からの振動がホーン4
の円錐底面に伝波されると、その入射後微小時間
Δtを経た時点での波面は、ホイヘンスの原理に
より、ホーン4上の中心部4a、中間部4b及び
外周部4cの入射点をそれぞれ中心とし、波が微
小時間Δtに伝わる距離を半径とする無数の小さ
な波の包絡面として表わされる。 Therefore, the vibration from the ultrasonic vibrator 3 is transmitted to the horn 4.
When the wave is propagated to the conical bottom surface of the horn 4, the wave front after a minute time Δt has been centered on the incident points of the center part 4a, middle part 4b, and outer peripheral part 4c on the horn 4, respectively, according to Huygens' principle. It is expressed as an envelope of countless small waves whose radius is the distance that a wave travels in a minute time Δt.
このホーン4の場合、軸方向中心部4aは密度
が最も小さく、中間部4bから外周部4cにかけ
て段階的に密度が高く音速も大であるので、微小
時間Δt経過後の波面は、ホーン4の中心部4a
では進行が最も遅く、中間部4bから外周部4c
にかけて段階的に速くなるので波面はホーン4を
通過中に次第に放物面状に湾曲し、最終的には先
端部4dから空中に放射される際には、外方の一
点に収歛する波面又は平面状等、使用目的に適応
した形状となつて放射される。 In the case of this horn 4, the axial center part 4a has the lowest density, and the density increases stepwise from the middle part 4b to the outer circumferential part 4c, and the sound speed increases, so the wavefront after a minute time Δt has elapsed is the same as that of the horn 4. Center part 4a
In this case, the progress is slowest, from the middle part 4b to the outer peripheral part 4c.
As the wave surface speeds up step by step, the wave surface gradually curves into a parabolic shape while passing through the horn 4, and finally, when it is radiated into the air from the tip 4d, the wave surface converges at a single point on the outside. Alternatively, it is emitted in a shape suitable for the purpose of use, such as a flat shape.
第1図に示されるホーン4をグラフアイトによ
つて作製し、その中心部4aを最も密度を小さ
く、中間部4bから外周部4cにかけて段階的に
密度を増大させ伝搬する音速を適宜に調節すれ
ば、所望の音波レンズが得られるものである。そ
の作製方法自体は、それ程複雑ではなく、以下に
その一例を説明する。 The horn 4 shown in FIG. 1 is made of graphite, and the center part 4a has the lowest density, and the density is increased stepwise from the middle part 4b to the outer peripheral part 4c to adjust the propagating speed of sound as appropriate. For example, a desired acoustic lens can be obtained. The manufacturing method itself is not that complicated, and one example will be explained below.
即ち、グラフアイトは、バインダを加えた炭素
骨材紛末を熱間加圧焼成して作製し得るものであ
るから、本発明音波レンズを作製する場合には、
例えば、成形型内にグラフアイト化すべき素地を
充填する際、中心部には粒度の粗い炭素粉末を含
む素地を充填し、中間部から外周部にかけて段階
的に粒度の細かい炭素粉末を含む素地を充填して
熱間加圧焼成すれば、中心部の密度が最も小さ
く、中間部から外周部にかけて段階的に密度を増
大させたグラフアイトが得られる。 That is, since graphite can be produced by hot pressure firing of carbon aggregate powder to which a binder has been added, when producing the acoustic lens of the present invention,
For example, when filling a mold with a material to be converted into graphite, the center is filled with a material containing coarse-grained carbon powder, and the material containing fine-grained carbon powder is filled in stages from the middle to the outer periphery. By filling and firing under hot pressure, graphite can be obtained which has the lowest density in the center and gradually increases in density from the middle to the outer periphery.
又、炭素骨材粉末とバインダから成る素地中
に、鉄、コバルト、ニツケル、クロム、銅、銀等
の金属粉末、或いはセラミツク粉末をその添加量
が段階的に異なるよう加えて、熱間加圧焼成する
ようにしてもよい。 In addition, metal powders such as iron, cobalt, nickel, chromium, copper, silver, or ceramic powders are added to the base material consisting of carbon aggregate powder and binder in varying amounts in stages, and the mixture is hot-pressed. It may also be baked.
焼結法としては、従来公知の各種のホツトプレ
ス法を用い得るが、そのうち例えば通電(放電)
焼結法を用いる場合について説明すれば、上記の
如く、段階的に炭素骨材粉末の粒度、バインダの
固定炭素分、金属等の添加粉末の添加量等を変化
させた素地を成形型内に充填し、それを通電焼結
装置の対向するパンチ電極とダイ間に挟んで加圧
しつつ通電を行なつてグラフアイト化処理を行な
うものである。 As the sintering method, various conventionally known hot press methods can be used, but among them, for example, energization (discharge)
To explain the case of using the sintering method, as described above, the base material with the particle size of the carbon aggregate powder, the fixed carbon content of the binder, the amount of additive powder such as metal etc. changed in stages is placed in the mold. The graphitization process is performed by filling the powder, sandwiching it between a die and a punch electrode facing each other in an energizing sintering device, applying pressure, and energizing.
この場合の通電電流は直流或いは商用周波数の
交流でもよいが、被焼結体への全体的な均一加熱
や熱効率を考虜した場合、直流と交流との重畳電
流とすることが好ましく、且つその交流電流の周
波数を0.5〜2KHzとし、直流と交流の重畳比を
1:1から4:1の範囲に設定することが推奨さ
れる。 The current to be applied in this case may be direct current or alternating current at commercial frequency, but in consideration of overall uniform heating of the object to be sintered and thermal efficiency, it is preferable to use a superimposed current of direct current and alternating current. It is recommended that the frequency of the alternating current be 0.5 to 2 KHz, and the superimposition ratio of direct current and alternating current be set in the range of 1:1 to 4:1.
上記成形型に充填した素地をパンチ電極により
10Kg/cm2前後の圧力で加圧した上で上記通電を開
始し、数秒を経過した後、加圧力を200〜1000
Kg/cm2に昇圧して、30〜150秒間の通電焼結を行
なう。この時の電力量は、素地1gr当たり0.5〜
3.0kw程度である。 The base material filled in the above mold is punched using a punch electrode.
After applying the pressure to around 10Kg/ cm2 , start applying the electricity, and after a few seconds, increase the pressure to 200 to 1000.
The pressure is increased to Kg/cm 2 and energization sintering is performed for 30 to 150 seconds. The amount of electricity at this time is 0.5 to 1gr of base material.
It is about 3.0kw.
勿論、以上の交流電流の周波数、直流電流との
重畳比、通電中の加圧力、通電時間、通電電力等
は、素地の性質、量、得られるべきレンズ体の特
性等に応じて適宜選択決定されるものであり、場
合によつては、一連の通電時間中において加圧力
や通電電力を数段階に変更するようにしてもよ
い。或いは又、第一次焼結と第二次焼結に分け、
第一次焼結体の所望の部分に高分子炭化水素を含
浸させた上でこれを第二次焼結することにより部
分的に密度の異なるグラフアイト材を得るように
してもよい。 Of course, the frequency of the alternating current, the superimposition ratio with the direct current, the pressing force during energization, the energizing time, the energizing power, etc., are selected and determined as appropriate depending on the nature and amount of the substrate, the characteristics of the lens body to be obtained, etc. Depending on the case, the pressing force and the applied power may be changed in several stages during a series of current application times. Alternatively, it can be divided into primary sintering and secondary sintering,
Graphite materials having partially different densities may be obtained by impregnating desired portions of the primary sintered body with a polymeric hydrocarbon and then performing secondary sintering.
而して、本発明に係る音波レンズの材質として
は、密度の変化に対する音速の変化が顕著である
点においてグラフアイトが特に有用であることは
前記の通りであるが、これは必ずしもグラフアイ
トに限定されるものではなく、部分的に密度を変
化させた成形品を得ることが可能な物質、具体的
には熱間加圧成形が比較的容易な物質であれば任
意の素材を利用し得る。即ち、それらのうち代表
的なものを掲げれば、合成樹脂、セラミツク、焼
結可能な金属等であり、これらを単独で、或いは
複合して用いることにより、所望の音波レンズを
作成し得る。 As described above, graphite is particularly useful as a material for the acoustic lens according to the present invention in that the sound speed changes significantly with changes in density, but this does not necessarily mean that graphite The material is not limited, and any material can be used as long as it is possible to obtain a molded product with partially changed density, specifically, a material that can be relatively easily hot-pressed. . That is, representative materials include synthetic resins, ceramics, and sinterable metals, and by using these materials alone or in combination, a desired acoustic lens can be created.
本発明は叙上の如く構成されるので、本発明方
法によるときには、容易かつ高精度に音波レンズ
を製造でき、特に超音波加工機や超音波溶接機等
の超音波振動子のホーンとして用いた場合にはそ
の音波効率を一段と向上させることができるもの
である。
Since the present invention is constructed as described above, when using the method of the present invention, a sonic lens can be manufactured easily and with high precision, and is particularly suitable for use as a horn of an ultrasonic vibrator in an ultrasonic processing machine, an ultrasonic welding machine, etc. In some cases, the sonic efficiency can be further improved.
第1図は、本発明方法により製造した音波レン
ズをホーンに適用した場合の一実施例を示す断面
図である。
3…超音波振動子、4…円錐ホーン、4a…軸
方向中心部、4b…中間部、4c…外周部、4d
…先端部。
FIG. 1 is a cross-sectional view showing an embodiment in which a sonic lens manufactured by the method of the present invention is applied to a horn. 3... Ultrasonic vibrator, 4... Conical horn, 4a... Axial center portion, 4b... Intermediate portion, 4c... Outer peripheral portion, 4d
...Tip.
Claims (1)
に密度の異なる音波レンズを製造する方法に於い
て、次の各ステツプから成ることを特徴とする上
記の音波レンズを製造する方法。 a 比較的低密度の上記物質により、軸方向中心
軸上に円錐台形の中心部を假成形するステツ
プ。 b 上記中心部の外面に順次高密度となるよう
に、上記物質により円錐殻を多層にかつ全体と
して略円錐台形となるように假成形するステツ
プ。 c 上記両ステツプにより假成形された円錐台形
体を熱間加圧焼結するステツプ。 2 上記熱間加圧成形可能な物質としてグラフア
イトを用いたことを特徴とする特許請求の範囲第
1項記載の音波レンズを製造する方法。 3 上記熱間加圧成形可能な物質としてセラミツ
クを用いたことを特徴とする特許請求の範囲第1
項記載の音波レンズを製造する方法。 4 上記熱間加圧成形可能な物質として、グラフ
アイト、セラミツク、合成樹脂及び金属のうちか
ら選ばれた少なくとも2種以上の物質を用いたこ
とを特徴とする特許請求の範囲第1項記載の音波
レンズを製造する方法。[Claims] 1. A method for manufacturing a sonic lens made of a material that can be formed by hot pressing and having partially different densities, characterized by comprising the following steps: How to manufacture. a. Forming a truncated conical center on the axial central axis using the relatively low density material. b. Forming a conical shell in multiple layers using the material so that the outer surface of the center part has a higher density in sequence and has an approximately truncated conical shape as a whole. c. A step of hot-pressing sintering the truncated conical body formed in the above steps. 2. The method for manufacturing a sound wave lens according to claim 1, characterized in that graphite is used as the hot-press moldable material. 3. Claim 1, characterized in that ceramic is used as the hot-press moldable material.
A method of manufacturing the sonic lens described in Section 1. 4. The method according to claim 1, wherein at least two or more materials selected from graphite, ceramic, synthetic resin, and metal are used as the hot-press moldable material. A method of manufacturing a sonic lens.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55160761A JPS5784498A (en) | 1980-11-17 | 1980-11-17 | Acoustic wave lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55160761A JPS5784498A (en) | 1980-11-17 | 1980-11-17 | Acoustic wave lens |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5784498A JPS5784498A (en) | 1982-05-26 |
JPH0131200B2 true JPH0131200B2 (en) | 1989-06-23 |
Family
ID=15721889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55160761A Granted JPS5784498A (en) | 1980-11-17 | 1980-11-17 | Acoustic wave lens |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5784498A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2237974B1 (en) * | 2000-07-14 | 2006-12-01 | Universidad Politecnica De Valencia | ACOUSTIC LENS BASED ON BI AND THREE-DIMENSIONAL SOUND CRYSTALS. |
US7383733B2 (en) * | 2005-09-30 | 2008-06-10 | Jennings Technology | Method and apparatus for the sonic detection of high pressure conditions in a vacuum switching device |
WO2010119729A1 (en) * | 2009-04-16 | 2010-10-21 | コニカミノルタエムジー株式会社 | Method of manufacturing acoustic lens, ultrasound probe, and ultrasound diagnostic apparatus |
ES2367641B1 (en) * | 2010-04-22 | 2012-10-09 | Consejo Superior De Investigaciones Científicas (Csic) | THREE-DIMENSIONAL ACOUSTIC LENS. |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5588100A (en) * | 1978-12-27 | 1980-07-03 | Tokyo Shibaura Electric Co | Acoustic lens |
-
1980
- 1980-11-17 JP JP55160761A patent/JPS5784498A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5588100A (en) * | 1978-12-27 | 1980-07-03 | Tokyo Shibaura Electric Co | Acoustic lens |
Also Published As
Publication number | Publication date |
---|---|
JPS5784498A (en) | 1982-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3125647A (en) | Frequency-o cycles sec | |
WO1991018486A1 (en) | A coupling device | |
EP0112562A3 (en) | Ultrasonic transducer and method for manufacturing the same | |
JPH0131200B2 (en) | ||
US11007686B2 (en) | Ultrasound transducer matching layers and method of manufacturing | |
US20040012307A1 (en) | Ultrasonic transducer and method of manufacturing the same | |
CN104259288B (en) | A kind of ultrasonic rotary pressure device for increasing thick disc slab wheel rim and method | |
US3616529A (en) | Transducer and method of making same | |
JPS63300872A (en) | Superabrasive grain cutter | |
US2578167A (en) | Grinding wheel and method of producing same | |
US3189767A (en) | Ultrasonic transmitting means and method of producing same | |
CA2330920A1 (en) | Transducer backing material and method of application | |
JPS57132497A (en) | Ring type probe and its manufacture | |
US3166619A (en) | Method for making a transducer | |
JPS60214908A (en) | Method of molding powdered body | |
JPH0870498A (en) | Ultrasonic transducer and manufacture thereof | |
US4978880A (en) | Piezoelectric capsule with flat supporting surface and resilient holding means | |
RU2171177C1 (en) | Method of article molding form dispersed material | |
JP4103190B2 (en) | Method and apparatus for manufacturing hollow rotating magnetic body | |
JPH03198674A (en) | Ultrasonic motor | |
JP2000141336A (en) | Production of ceramic sintered article | |
US3137897A (en) | Means for making a transducer sound absorbing pad | |
GB2097630A (en) | Ultrasonic transducers | |
JPH04250799A (en) | Ultrasonic vibrator | |
JPH0140593Y2 (en) |