JPH01311574A - Electrode section for zinc-chlorine cell - Google Patents

Electrode section for zinc-chlorine cell

Info

Publication number
JPH01311574A
JPH01311574A JP63140439A JP14043988A JPH01311574A JP H01311574 A JPH01311574 A JP H01311574A JP 63140439 A JP63140439 A JP 63140439A JP 14043988 A JP14043988 A JP 14043988A JP H01311574 A JPH01311574 A JP H01311574A
Authority
JP
Japan
Prior art keywords
electrode
zinc
battery
current collecting
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63140439A
Other languages
Japanese (ja)
Inventor
Kunihiko Fujiwara
邦彦 藤原
Yoshio Misawa
三沢 義男
Koichi Ashizawa
芦沢 公一
Ryoichi Sugita
椙田 良一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP63140439A priority Critical patent/JPH01311574A/en
Publication of JPH01311574A publication Critical patent/JPH01311574A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • H01M12/085Zinc-halogen cells or batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To prevent the reduction of the current efficiency by providing a hole and/or a groove horizontally penetrating a current collecting bar on each current collecting bar and communicating adjacent partition chambers across the current collecting bar to each other. CONSTITUTION:A hole and/or a groove 14 horizontally penetrating a current collecting bar is provided on each current collecting bar 4, thus adjacent partition liquid chambers across the current collecting bar are communicated to each other. When multiple electrolyte feed ports 11 of one partition liquid chamber are almost clogged, an electrolyte flows in from the adjacent partition liquid chamber through the hole or the like provided on the current collecting bar 4, thus an extreme deficiency in chlorine does not occur, a discharge reaction proceeds between the chloride electrode of the partition liquid chamber and a mating zinc electrode across a partition cell section, the zinc electrodeposited by charging is effectively utilized. The position where the hole or the like is formed on the current collecting bar 4 is provided at the lower section of the current collecting bar, i.e., the portion near the electrolyte feed port 11 at the lower section of an electrolyte chamber 5.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は亜鉛−塩素電池の電極部に関し、特に集電棒を
改良して電流効率を向上させたものでおる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to the electrode section of a zinc-chlorine battery, and in particular to one in which the current efficiency is improved by improving the current collecting rod.

(従来の技術〕 二股にバイポーラ構造を有する亜鉛−塩素電池は、液透
過性の塩素極を正極、液不透過の亜鉛極を負極とし、こ
れらを縦方向の集電棒を介して対設し、両極間に電解液
室を形成したユニットを構成する。さらに該電解液室は
集電棒によって複数の分割液室に仕切られており、各分
割液室の底部には電解液供給口が設けられている。上記
ユニットをそれぞれ絶縁リブを介して複数個積層してユ
ニット間に電池部を形成し、各電解液供給口から塩化亜
鉛を主成分とする電解液を分割液室に供給し、ざらに塩
素極を透過させて電池部に供給することにより電池反応
をさせ、電池の充放電運転を行なうものである。
(Prior art) A zinc-chlorine battery with a bipolar structure has a liquid-permeable chlorine electrode as a positive electrode, a liquid-impermeable zinc electrode as a negative electrode, and these are arranged oppositely through a vertical current collector rod. It constitutes a unit in which an electrolyte chamber is formed between the two electrodes.Furthermore, the electrolyte chamber is partitioned into a plurality of divided chambers by a current collecting rod, and an electrolyte supply port is provided at the bottom of each divided chamber. A battery section is formed between the units by stacking a plurality of the above units via insulating ribs, and an electrolytic solution containing zinc chloride as a main component is supplied from each electrolytic solution supply port to the divided solution chamber, and then By passing through the chlorine electrode and supplying it to the battery section, a battery reaction is caused and the battery is charged and discharged.

□これを例えば第3図により説明すると、ポリ塩化ビニ
ルのような耐食性の絶縁体からなる電池枠体(1)内に
、負極として液不透過の緻密グラファイト又はチタンか
らなる亜鉛極板(2)と正極として塩素極の分極を小さ
くするために液透過型の多孔質グラファイト又はチタン
からなる塩素極板(3)を少なくとも一つのグラファイ
ト又はチタン製の縦方向の集電棒(4a)(4bH4c
)(4d)を介して対設し、電解液至(5)を形成した
ユニットを構成し、このユニットを多数直列に積層して
塩素極板(3)と亜鉛極板(2°)間を複数の縦方向の
リブ(6)(6)を介して接続し、電池部(7)を形成
している。
□To explain this with reference to FIG. 3, for example, a zinc electrode plate (2) made of liquid-impermeable dense graphite or titanium is placed as a negative electrode in a battery frame (1) made of a corrosion-resistant insulator such as polyvinyl chloride. In order to reduce polarization of the chlorine electrode as a positive electrode, a chlorine electrode plate (3) made of liquid permeable porous graphite or titanium is connected to at least one vertical current collector rod (4a) (4bH4c) made of graphite or titanium.
) (4d) to form an electrolytic solution (5), and a large number of these units are stacked in series to connect the chlorine electrode plate (3) and the zinc electrode plate (2°). They are connected via a plurality of longitudinal ribs (6) (6) to form a battery part (7).

また両端の集電棒(4a)(4d)を除いた集電棒(4
b)(4c)はリブ(6)(6)と表裏の関係位置に縦
方向に重なり合うように配設されており、これらにより
電解液至(5)は集電棒(4b)(4c)により夫々分
割液’l (8a)(8b) (8c)に分割されると
共に電池部(7)ハ夫々分割電池部(7a) (7b)
 (7C)に分割されている。
In addition, current collector rods (4) excluding current collector rods (4a) and (4d) at both ends
b) (4c) are arranged so as to overlap vertically in relation to the ribs (6) and (6) on the front and back, so that the electrolytic solution (5) is collected by the current collector rods (4b) and (4c), respectively. The divided liquid is divided into (8a) (8b) (8c) and the battery part (7) is divided into the respective divided battery parts (7a) (7b).
It is divided into (7C).

そして電解液タンクから電解液ポンプで送り出された塩
化亜鉛を主成分とする電解液(9)は供給側マニノオー
ルド(10)によりそむぞれ分流されて各分割液至(8
a) (8b) (8c)の底部に設けられた電解液供
給口(lla) (11b) (11C)からそれぞれ
の分割液至(8a)(8b)(8c)に入る。
Then, the electrolytic solution (9) containing zinc chloride as a main component, sent out from the electrolytic solution tank by the electrolytic solution pump, is divided by the supply-side manino old (10) to each divided solution (8).
a) (8b) Enter into the respective divided liquids (8a), (8b), and (8c) from the electrolyte supply ports (lla), (11b), and (11C) provided at the bottom of (8c).

ざらに電解液(9)は夫々塩素極板(3)を透過して電
池部(7)の各分割電池部(7a) (7b) (7C
)に入り電池反応を行なったのち、排出側マニフォール
ド(12)により再び合流して電解液排出口(13)か
ら系外に排出される。
Roughly, the electrolytic solution (9) passes through the chlorine electrode plates (3), respectively, to each divided battery section (7a) (7b) (7C) of the battery section (7).
) and undergo a battery reaction, then merge again at the discharge side manifold (12) and are discharged out of the system from the electrolyte discharge port (13).

このようにグラファイト棒あるいはチタン棒を集電棒と
して亜鉛極と塩素極の間に介在させるのは、亜鉛極と塩
素極とをバイポーラ化するためでおる。そしてこれらを
配設する間隔は電流密度をなるべく均等化するために小
さくするが、例えば電池枠体(1)の1枚の大きさがi
 oo。
The reason why a graphite rod or a titanium rod is interposed between the zinc electrode and the chlorine electrode as a current collecting rod is to make the zinc electrode and the chlorine electrode bipolar. The intervals at which these are arranged are made small in order to equalize the current density as much as possible, but for example, if the size of one battery frame (1) is i
oo.

#” X600 m’ X11/+1111’程度のも
のを使用して電極を積層したものにおいては数cmごと
に集電棒を入れている。
#''X600 m'X11/+1111' In the case of stacking electrodes, current collector rods are inserted every few cm.

また各分割液至底部には通常複数個の電解液供給口が設
けられているが、各供給口ごとの電解液流量をできるだ
け等しくするために各供給口の面積は小ざくし、ここで
の差圧を数十cm水柱程度にしている。このため通常、
供給口は直径1〜2履であり、電解液中に異物が混入し
た場合には詰まってしまうおそれがある。
In addition, there are usually multiple electrolyte supply ports at the bottom of each divided solution, but in order to equalize the electrolyte flow rate for each supply port as much as possible, the area of each supply port is made small. The differential pressure is set to several tens of centimeters of water column. For this reason, usually
The supply port has a diameter of 1 to 2 mm and may become clogged if foreign matter gets mixed into the electrolyte.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このように電解液供給口が詰ってしまった場合、その詰
りか完全であるときは電解液が流れず正常な電池反応が
ほとんど行なわれないことになるが、詰りの程度が半分
以上であるときには充電中は電解藁中の塩化亜鉛濃度が
2〜2.5mol/Jと高濃度であるため、この程度の
詰りかあっても液供給が正常なところとほぼ等しい亜鉛
の電析および塩素発生が起る。ところが放電時になると
電解液中の塩素濃度が0.01〜0.02moI#!程
度と低濃度であるため、詰りのある分割液室の塩素極で
は塩素濃度不足となり定格電流密度が維持できなくなる
If the electrolyte supply port is clogged in this way, if the blockage is complete, the electrolyte will not flow and normal battery reactions will hardly occur, but if the degree of clog is more than half During charging, the concentration of zinc chloride in the electrolytic straw is as high as 2 to 2.5 mol/J, so even if there is a blockage of this degree, zinc electrodeposition and chlorine generation are almost the same as when the liquid supply is normal. It happens. However, during discharge, the chlorine concentration in the electrolyte is 0.01 to 0.02 moI#! Since the chlorine electrode in the clogged divided liquid chamber has a low concentration, the chlorine concentration becomes insufficient and the rated current density cannot be maintained.

この状態で放電が続くと、電解液供給口に詰りのある分
割液至の塩素極に電池部を挟んで相対している亜鉛極の
亜鉛のイオン化が、定格電流密度でイオン化している他
の正常な部分よりおそくなるため正常セルの亜鉛が溶解
しおわった後も電極上に亜鉛が残ってしまう。したがっ
て充電で電析した亜鉛が有効に使われないことになりい
わゆる電流効率が低下してしまう。
If the discharge continues in this state, the ionization of zinc in the zinc electrode that faces the chlorine electrode of the splitting solution with the electrolyte supply port clogged across the battery section will cause the ionization of zinc in the other electrodes, which are ionized at the rated current density. Because it is slower than the normal part, zinc remains on the electrode even after the zinc in the normal cell has completely dissolved. Therefore, the zinc deposited during charging is not used effectively, resulting in a decrease in so-called current efficiency.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はこれに鑑み種々検討した結果、電解液供給口が
何らかの原因で詰っ工放電時に電極が塩素不足に陥った
場合でも電流効率の低下を防止した亜鉛−塩素電池の電
極部を提供するものである。
In view of this, as a result of various studies, the present invention provides an electrode section for a zinc-chlorine battery that prevents a decrease in current efficiency even if the electrolyte supply port is clogged for some reason and the electrode becomes deficient in chlorine during discharge. It is.

即ち本発明は液透過性のグラファイト又はチタン製塩素
極と液不透過のグラファイト又はチタン製亜鉛極とをグ
ラフ1イト又はチタン製の縦方向の集電棒を介して対設
で両極間に集電棒で仕切られた複数の分割液子からなる
電解液室を形成したユニットを、それぞれ絶縁リブを介
して複数個積層してユニット間に電池部を形成し、各分
割液子にその底部に設けた電解液供給口から電解液を供
給し、塩素極を透過させて電池部に供給することにより
電池反応を行なわせるバイポーラ構造の電池において、
各集電棒に該集電棒を横方向に貫通する孔及び/又は溝
を設けることにより、集電棒を挟んで隣り合う分割液子
を互いに連通したことを特徴とするものであり、集電棒
の下部に孔及び/又は溝を設けるのは効果的である。
That is, in the present invention, a liquid-permeable graphite or titanium chlorine electrode and a liquid-impermeable graphite or titanium zinc electrode are arranged oppositely through a graphite or titanium vertical current collector rod, and a current collector rod is installed between the two electrodes. A battery section is formed between the units by stacking a plurality of units with an electrolyte chamber consisting of a plurality of divided liquid molecules separated by insulating ribs, and a battery section is provided at the bottom of each divided liquid element. In a battery with a bipolar structure, the electrolyte is supplied from the electrolyte supply port, passes through the chlorine electrode, and is supplied to the battery section to perform a battery reaction.
Each current collector rod is provided with a hole and/or groove that passes through the current collector rod in the horizontal direction, so that adjacent split liquids with the current collector rod in between are communicated with each other, and the lower part of the current collector rod is It is advantageous to provide holes and/or grooves.

(作 用〕 このような集電棒を用いることにより、あるひとつの分
割液子の複数個の電解液供給口がほとんど詰ってしまっ
た場合でも、集電棒に設けられた孔等を通って隣の分割
液子から電解液が流入してくるため極端な塩素不足にお
ちいることなくこの分割液子の塩素極とこれに分割電池
部を挟んで相対する亜鉛極との間に放電反応が進行し、
充電で電析した亜鉛が有効に利用されることになる。
(Function) By using such a current collector rod, even if the multiple electrolyte supply ports of one divided liquid droplet are almost clogged, the current can be passed through the hole provided in the current collector rod to the next one. Because the electrolyte flows in from the split liquid element, a discharge reaction proceeds between the chlorine electrode of this split liquid element and the zinc electrode that faces it across the divided battery part, without causing an extreme chlorine shortage.
The zinc deposited during charging will be effectively used.

また集電棒に孔等を形成させる位置は集電棒の下部、即
ち電解液室の下部の電解液供給口に近い部分の方がよい
。これは電解液供給口からはなれた上部につけた場合に
は、孔等が形成されているところより下側の塩素極には
塩素を溶解した電解液が供給されないため、その塩素極
に分割電池部を挟んで相対する亜鉛極の下部の電析亜鉛
は放電反応に関与できないことになってしまうからでお
る。
Further, it is preferable that the hole or the like be formed in the current collector rod at the lower part of the current collector rod, that is, in the lower part of the electrolyte chamber near the electrolyte supply port. If this is attached to the upper part away from the electrolyte supply port, the electrolyte with dissolved chlorine will not be supplied to the chlorine electrode below where the holes are formed, so the split battery will be attached to the chlorine electrode. This is because the deposited zinc at the bottom of the zinc electrodes, which are opposite to each other with the electrodes in between, cannot participate in the discharge reaction.

(実施例〕 次に本発明の詳細な説明する。(Example〕 Next, the present invention will be explained in detail.

第2図に示すにうに有効面積2800CrIiで厚さ1
馴のグラファイトファイバーシート(15)を塩素極と
し、同じ有効面積を有し2000’C以上で焼成した厚
さ0.8簡のグラツシーカーボン板(16)を亜鉛極と
して両極を対設ざぜ、その間に横断面寸法が10#X5
#のグラファイト製の9本の集電棒をそれぞれ縦方向に
配設して8つの分割液子を形成した電解液室(5)を設
けたユニットを構成し、このユニットをリブを介して5
組積層し、ユニット間に8つの分割電池部からなる電池
部(7)を設けた。また各分割液子の底部にはそれぞれ
4個の直径1履の電解液供給口(11)を設けた。ざら
に上記5組のユニットのうち3組のユニット内のそれぞ
れ両端の2本を除く7本の集電棒については第1図に示
すようにそれぞれ下端から10mの位置で亜鉛極に接す
る側に隣合う分割液子を連通する幅2#X高さ1#の溝
(14)を形成してそれらを用いた3組のユニットは本
発明電極部とし、また他の2組のユニットは溝を設けな
い従来の集電棒から構成されている従来電極部とした。
As shown in Figure 2, the effective area is 2800CrIi and the thickness is 1.
A graphite fiber sheet (15) made of graphite is used as a chlorine electrode, and a graphite carbon plate (16) with a thickness of 0.8 sheets, which has the same effective area and is fired at 2000°C or more, is used as a zinc electrode, and the two electrodes are placed opposite each other. Meanwhile, the cross-sectional dimension is 10#X5
A unit is constructed with an electrolyte chamber (5) in which nine graphite collector rods of ## are arranged vertically to form eight divided liquid molecules, and this unit is connected to the electrolyte chamber (5) through ribs.
The batteries were stacked together, and a battery section (7) consisting of eight divided battery sections was provided between the units. Further, four electrolyte supply ports (11) each having a diameter of one shoe were provided at the bottom of each divided liquid droplet. Roughly speaking, as shown in Figure 1, the seven current collector rods in three of the five sets of units above, excluding the two at both ends, are placed next to each other on the side that contacts the zinc electrode at a position 10 m from the bottom end. Three sets of units using grooves (14) with a width of 2# and height of 1# are formed to communicate the matching split liquid molecules, and the other two sets of units are provided with grooves. The conventional electrode part is made up of a conventional current collector rod.

上記5組の積層ユニットに液中の異物除去用に通常用い
るフィルターを通さないで電解液タンクから電解液を循
環させて充電及び放電のサイクル運転を繰り返して行な
い、10サイクル毎の本発明電極部の平均電流効率を従
来電極部の平均電流効率と比較して第1表に示した。
The electrolyte was circulated from the electrolyte tank to the five laminated units described above without passing through a filter normally used to remove foreign matter from the solution, and cycle operations of charging and discharging were repeated, and the electrode part of the present invention was operated every 10 cycles. Table 1 shows a comparison of the average current efficiency of the electrode section with that of the conventional electrode section.

第1表 第1表から明らかなように本発明電極部は長時間連続運
転しても電流効率の低下は極めて低いことがわかる。こ
れに対して従来電極部は運転サイクル数が大きくなるに
つれて電解液中の異物も増え、電解液供給口が次第に詰
ってくるので電流効率は大きく低下してしまう。
As is clear from Table 1, the electrode section of the present invention exhibits extremely low decrease in current efficiency even when operated continuously for a long time. On the other hand, in the conventional electrode section, as the number of operating cycles increases, the amount of foreign matter in the electrolyte increases, and the electrolyte supply port gradually becomes clogged, resulting in a significant drop in current efficiency.

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば亜鉛−塩素電池において、た
とえ電解液供給口の一部に詰りか生じても電流効率をほ
とんど低下させずに安定した充放電運転を可能にする等
工業上顕著な効果を奏するものでおる。
As described above, according to the present invention, even if a part of the electrolyte supply port becomes clogged in a zinc-chlorine battery, the current efficiency hardly decreases and stable charging/discharging operation is possible, which is an industrially remarkable feature. It is something that is effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明電極部で用いる集電棒の一例を示す斜視
図、第2図は亜鉛−塩素電池の5組の積層ユニットを示
す切欠断面図、第3図は従来の亜鉛−塩素電池の構造を
示すもので(イ)は側断面図、(ロ)は(イ)のAA’
線矢視図、(ハ)は(イ)のBB’線矢視図である。 1・・・・・・・・電池枠体 2・・・・・・・・亜鉛極板 3・・・・・・・・塩素極板 4.4a、41)、4C,4d ・−・−−−−集電棒
5・・・・・・・・電解液至 6・・・・・・・・リブ 7・・・・・・・・電池部 7a、 7b、 7c・・・・・・・・分割電池部8a
、 8b、 8c・・・・・・・・分割液至9・・・・
・・・・電解液 10・・・・・・・・供給側マニフォールド11、11
a、 11b、 l1c−:−−−−−電解液供給口1
2・・・・・・・・排出側マニフォールド13・・・・
・・・・電解液排出口 14・・・・・・・・溝 15・・・・・・・・グラファイトファイバーシート1
6・・・・・・・・グラツシーカーボン板第1図 第2図 −、i37−
Figure 1 is a perspective view showing an example of a current collector rod used in the electrode section of the present invention, Figure 2 is a cutaway cross-sectional view showing five stacked units of a zinc-chlorine battery, and Figure 3 is a cross-sectional view of a conventional zinc-chlorine battery. Showing the structure, (a) is a side sectional view, and (b) is the AA' of (a).
(C) is a view taken along the line BB' of (A). 1...Battery frame 2...Zinc electrode plate 3...Chlorine electrode plate 4.4a, 41), 4C, 4d .-- ---Current collector rod 5... Electrolyte solution 6... Rib 7... Battery section 7a, 7b, 7c...・Split battery part 8a
, 8b, 8c......Divided liquid to 9...
... Electrolyte 10 ... Supply side manifold 11, 11
a, 11b, l1c-: ---- Electrolyte supply port 1
2...Discharge side manifold 13...
..... Electrolyte discharge port 14 ..... Groove 15 ..... Graphite fiber sheet 1
6... Gratsy carbon plate Fig. 1 Fig. 2-, i37-

Claims (2)

【特許請求の範囲】[Claims] (1)液透過性のグラファイト又はチタン製塩素極と液
不透過のグラファイト又はチタン製亜鉛極とをグラファ
イト又はチタン製の縦方向の集電棒を介して対設して両
極間に集電棒で仕切られた複数の分割液室からなる電解
液室を形成したユニットを、それぞれ絶縁リブを介して
複数個積層してユニット間に電池部を形成し、各分割液
室にその底部に設けた電解液供給口から電解液を供給し
、塩素極を透過させて電池部に供給することにより電池
反応を行なわせるバイポーラ構造の電池において、各集
電棒に該集電棒を横方向に貫通する孔及び/又は溝を設
けることにより、集電棒を挟んで隣り合う分割液室を互
いに連通したことを特徴とする亜鉛−塩素電池の電極部
(1) A liquid-permeable graphite or titanium chlorine electrode and a liquid-impermeable graphite or titanium zinc electrode are placed opposite each other via a graphite or titanium vertical collector rod, and the two electrodes are separated by a collector rod. A plurality of units each forming an electrolyte chamber consisting of a plurality of divided liquid chambers are stacked together via insulating ribs to form a battery section between the units, and an electrolytic solution provided at the bottom of each divided liquid chamber is stacked. In a battery with a bipolar structure in which a battery reaction is performed by supplying an electrolytic solution from a supply port, passing through a chlorine electrode, and supplying it to the battery part, each current collector rod has a hole and/or An electrode part for a zinc-chlorine battery, characterized in that adjacent divided liquid chambers are communicated with each other with a current collecting rod in between by providing a groove.
(2)横方向に貫通する孔及び/又は溝を集電棒の下部
に設けた請求項(1)記載の亜鉛−塩素電池の電極部。
(2) The electrode part of a zinc-chlorine battery according to claim (1), wherein a hole and/or groove passing through in the lateral direction is provided in the lower part of the current collector rod.
JP63140439A 1988-06-09 1988-06-09 Electrode section for zinc-chlorine cell Pending JPH01311574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63140439A JPH01311574A (en) 1988-06-09 1988-06-09 Electrode section for zinc-chlorine cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63140439A JPH01311574A (en) 1988-06-09 1988-06-09 Electrode section for zinc-chlorine cell

Publications (1)

Publication Number Publication Date
JPH01311574A true JPH01311574A (en) 1989-12-15

Family

ID=15268671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63140439A Pending JPH01311574A (en) 1988-06-09 1988-06-09 Electrode section for zinc-chlorine cell

Country Status (1)

Country Link
JP (1) JPH01311574A (en)

Similar Documents

Publication Publication Date Title
US5804055A (en) Electrode, electrochemical cell and electrochemical processes
JPS6410597B2 (en)
US4417960A (en) Novel electrolyzer and process
US6383347B1 (en) Electrochemical cell utilizing rigid support members
US20080245662A1 (en) Electrolytic Cell Comprising Multilayer Expanded Metal
US4472255A (en) Electrochemical cell
DE60045583D1 (en) ELEMENTARY CELL FOR USE IN AN ELECTROLYTE CELL WITH AQUEOUS ALKALINE METAL CHLORIDE SOLUTION
US4488948A (en) Channel flow cathode assembly and electrolyzer
US4332662A (en) Electrolytic cell having a depolarized cathode
EP0521386B1 (en) Electrolyzer and its production
ES530940A0 (en) IMPROVEMENTS IN ELECTROLYTIC CELLS OF THE PRESS FILTER TYPE.
US6187155B1 (en) Electrolytic cell separator assembly
JPH01311574A (en) Electrode section for zinc-chlorine cell
CS221549B2 (en) Electrolyser for electrolysis of liquid electrolyte
DE4419683C2 (en) Bipolar filter press cell for anodic oxidation on platinum
JP2601808B2 (en) Electrolyte circulation type secondary battery
JPH0230446Y2 (en)
JPH03271385A (en) Bipolar type electrolyzer for water electrolysis
GB2127856A (en) Electrochemical cell
CA2276444A1 (en) Electrochemical cells and electrochemical systems
DE2919527A1 (en) Electrolysis of dilute sodium chloride solns. - to produce dilute hypochlorite solns. having series of horizontal chambers in cell with vertically mounted intermeshed electrode plates
CA1221657A (en) Channel flow cathode assembly and electrolyzer
JPH08132042A (en) Strong acidic water production device
JPS60262988A (en) Electrolytic cell by filter press type ion exchange membrane process for electrolyzing organic compound
CN113321271A (en) Wave water flow type electrolytic tank