JPH01310593A - Circuit element forming substance of hybrid ic substrate - Google Patents

Circuit element forming substance of hybrid ic substrate

Info

Publication number
JPH01310593A
JPH01310593A JP14267988A JP14267988A JPH01310593A JP H01310593 A JPH01310593 A JP H01310593A JP 14267988 A JP14267988 A JP 14267988A JP 14267988 A JP14267988 A JP 14267988A JP H01310593 A JPH01310593 A JP H01310593A
Authority
JP
Japan
Prior art keywords
circuit element
circuit
chamber
polymer
monomer gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14267988A
Other languages
Japanese (ja)
Inventor
Takatoshi Ito
貴俊 伊藤
Shuzo Hattori
服部 秀三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP14267988A priority Critical patent/JPH01310593A/en
Publication of JPH01310593A publication Critical patent/JPH01310593A/en
Pending legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To improve a circuit element forming substance raw material in affinity for an organic solvent and increase a circuit forming solution in a solid content when the circuit forming solution is prepared so as to improve a dispersion in stability with time by a method wherein particle faces of the circuit element forming substance raw material are coated with polymer. CONSTITUTION:Microparticles formed of particles of circuit element forming substance raw material whose surfaces are coated with polymer are dispersed into an organic solvent of low vapor pressure to form a circuit forming solution. Therefore, not only the microparticles are improved in dispersion stability but also the circuit forming solution hardly causes clogging of a ink jet nozzle. And, the circuit forming solution can be optionally varied in a solid content and increased in a metal content, so that a circuit pattern of low sheet resistance can be formed, and moreover microparticles tens nm in diameter whose surfaces are coated with polymer can be manufactured. By this process, the stability of a dispersion with time can be improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はインクジェットヘッドを使用して回路基板にハ
イブリッドICの回路パターンを形成する際に厄インク
ジェットヘッドから吐出される回路要素形成物に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a circuit element formed material ejected from an inkjet head when forming a circuit pattern of a hybrid IC on a circuit board using an inkjet head. be.

[従来の技術] 本出願人はハイブリッドICの回路形成において、回路
要素形成物を溶解させた液滴をインクジェットヘッドに
て基板上に吐出させ同夜にて同基板上に回路パターンを
描画した後、焼成して基板に回路パターンを固着さセる
方法を提案している。
[Prior Art] In the circuit formation of a hybrid IC, the present applicant discharges droplets containing dissolved circuit elements onto a substrate using an inkjet head, and draws a circuit pattern on the same substrate on the same night. proposed a method of bonding circuit patterns to substrates by baking them.

そして、インクジェット方式に使用される回路形成用の
溶液は下記の反応式で雨られるネオデカンIS!銀等の
有機金属化合物をキシレン等の無極性有癲溶剤に)8解
さセた溶液を使用していた。
The circuit forming solution used in the inkjet method is neodecane IS! A solution prepared by dissolving an organometallic compound such as silver in a non-polar astringent solvent such as xylene was used.

Cq  H,?cOOH+NH40H → C,H,?coONH4,+820C9+−1,、
C○ONH斗 +A CI N O。
Cq H,? cOOH+NH40H → C, H,? coONH4,+820C9+-1,,
C○ONH 斗 +A CI NO.

解するために比較的蒸気圧の高い有機溶剤を使用してい
るため、インクジェットヘッドのノズルが目詰りし易い
という問題があった。さらに、該有償金属化合物は長鎖
アルキルを有するカルボン酸の金属塩であるため、溶液
中の金属含有量を上げることが難しくシート抵抗が高く
なるという問題点があった。
Since an organic solvent with a relatively high vapor pressure is used to dissolve the inkjet head, there is a problem that the nozzle of the inkjet head is easily clogged. Furthermore, since the paid metal compound is a metal salt of a carboxylic acid having a long alkyl chain, there is a problem in that it is difficult to increase the metal content in the solution and the sheet resistance increases.

そこで、本出願人は上記問題を解消するために、真空中
で回路要素形成物の原料を蒸発させ、その蒸発した微粒
子を蒸気圧の低い回収液にて回路要素形成の超微粒子と
して回収し、同回収液又は他の溶剤に同月微粒子を分散
させた回路形成液を提案している。
Therefore, in order to solve the above problem, the present applicant evaporates the raw material for forming circuit elements in a vacuum, and collects the evaporated fine particles as ultrafine particles for forming circuit elements using a recovery liquid with low vapor pressure. We are proposing a circuit forming liquid in which the same particles are dispersed in the recovered liquid or other solvent.

[発明が解決しようとする課題] しかしながら、この超微粒子の表面は何らの速球も施さ
れていなかったため、前記超微粒子を分散さゼた回路形
成液においては超微粒子を分散媒に分散させた際、非常
にコアギュレートし易く、回路要素形成物の沈澱が生じ
易いという問題があった。
[Problems to be Solved by the Invention] However, since the surface of these ultrafine particles was not subjected to any fast-balling, in the circuit forming liquid in which the ultrafine particles were dispersed, when the ultrafine particles were dispersed in a dispersion medium, However, there was a problem in that it was very easy to coagulate and precipitation of the circuit element formed product was likely to occur.

この発明の目的はインクジェットヘッドのノズルの目詰
りを防止し、金属含有量を任意に変化させることができ
る回路形成液並びに該形成液中での分散性が良好なハイ
ブリッドIC基板の回路要素形成物及びその製造方法を
提供することにある。
The object of the present invention is to provide a circuit forming liquid that can prevent clogging of nozzles of an inkjet head and to arbitrarily change the metal content, and a circuit element formed for a hybrid IC substrate that has good dispersibility in the forming liquid. An object of the present invention is to provide a method for manufacturing the same.

[課題を解決するための手段] 上記問題点を解決づるために、本発明は次のように構成
した。
[Means for Solving the Problems] In order to solve the above problems, the present invention was constructed as follows.

回路要素形成物の粒子表面をポリマーでコートしたハイ
ブリッドIC基板の回路要素形成物とした。
The particle surface of the circuit element formed product was coated with a polymer to obtain a circuit element formed product of a hybrid IC substrate.

また、上記回路要素形成物の超微粒子を低蒸気圧有機溶
剤を含有する液中に分散させてなるハイブリッド11板
の回路形成液とした。
Further, a circuit forming liquid for a Hybrid 11 board was prepared by dispersing the ultrafine particles of the circuit element formed in a liquid containing a low vapor pressure organic solvent.

また、上記回路要素形成物の超微粒子の製造方法として
は、回路要素形成物の核粒子雰囲気中に、七ツマーガス
を放散し、プラズマ状態に励起させて核粒子表面で重合
反応を起こし、表面をポリマーコートするという手段を
採用した。
In addition, as a method for producing the ultrafine particles of the circuit element formation, a 7-mer gas is diffused into the atmosphere of the core particle of the circuit element formation, and it is excited to a plasma state to cause a polymerization reaction on the surface of the core particle. We adopted a method of polymer coating.

上記回路要素形成物の超微粒子の製造に使用する装置は
、減圧手段にて減圧されるチャンバと、同チャンバ内に
配設された回路要素形成物の原料を核粒子化する粒子化
手段と、同チャンバにモノマーガスを導入するモノマー
ガス導入手段と、導入されたモノマーガスを励起し、重
合活性種とづる励起手段とからなる回路要素形成物の超
微粒子の製造公言とした。
The apparatus used for manufacturing the ultrafine particles of the circuit element formation includes a chamber whose pressure is reduced by a pressure reduction means, a particle generation means arranged in the chamber and which converts the raw material of the circuit element formation into core particles, It was announced that ultrafine particles of circuit element formations would be produced, which consists of a monomer gas introduction means for introducing monomer gas into the chamber, and an excitation means for exciting the introduced monomer gas and producing polymerization active species.

[作用] 上述したように回路要素形成物原わ1の粒子表面をポリ
マーコートした超微粒子は有殿溶剤との親和性がよく、
また有機溶剤に分散させた場合、超微粒子どうしのコア
ギュレーションが起こらず分散性が(奄めでよい。従っ
て、回路形成液を調製した場合の固形分をアップするこ
とが可能であり、分散液の経時女定性も良好である。
[Function] As mentioned above, the ultrafine particles whose particle surfaces of the circuit element forming raw material 1 are coated with a polymer have good affinity with precipitated solvents,
In addition, when dispersed in an organic solvent, coagulation of ultrafine particles does not occur, and the dispersibility is good (it may be slightly weaker. Therefore, it is possible to increase the solid content when preparing a circuit forming liquid, and the dispersion liquid The chronological quality of the test is also good.

また、低蒸気圧有機溶剤を含有する液中に分散さぜるこ
とが可能となったことで回路形成液の粘度安定性がよく
なり、インクジェットノズルでの安定した吹き付けが可
能となるとともにノズル内で溶剤が揮発して回路要素形
成物が堆積することがないため、ノズルの目詰まりが起
こらない。
In addition, by making it possible to disperse the circuit forming liquid in a liquid containing a low vapor pressure organic solvent, the viscosity stability of the circuit forming liquid is improved, making it possible to spray stably with an inkjet nozzle, and Since the solvent does not evaporate and circuit element formation materials do not accumulate, nozzle clogging does not occur.

また、回路要素形成物の核粒子雰囲気中に七ツマーガス
を放散し、プラズマ状態に励起させた場合、重合活性種
としてのプラズマ状態に励起されたモノマー及び励起さ
れていないモノマーが核となる原料粒子表面に付着して
粒子表面で重合反応が進行し、表面がポリマーコートさ
れた回路要素形成物の超微粒子が生成される。
In addition, when a 7-mer gas is diffused into the core particle atmosphere of the circuit element formation and excited to a plasma state, the monomer excited to the plasma state and the unexcited monomer as polymerization active species become the raw material particles that become the core. It adheres to the surface and a polymerization reaction proceeds on the particle surface, producing ultrafine particles of circuit element formation whose surfaces are coated with polymer.

また、前述した超微粒子製造装置においては、モノマー
ガス導入手段によりチャンバ内にモノマーガスを導入し
、これを励起手段でプラズマ状態に励起するとともに、
同上ツマーガス及び原料核粒子がチャンバ内で混合され
、原料核粒子表面での重合反応を誘発して前記超微粒子
を製造する。
In addition, in the ultrafine particle manufacturing apparatus described above, monomer gas is introduced into the chamber by the monomer gas introducing means, and this is excited to a plasma state by the excitation means, and
The Zimmer gas and the raw material core particles are mixed in a chamber to induce a polymerization reaction on the surface of the raw material core particles to produce the ultrafine particles.

[実施例1 以下、この発明を具体化した一実施例を図面に従って説
明する。
[Embodiment 1] An embodiment embodying the present invention will be described below with reference to the drawings.

第1図は回路要素形成物の製造装置の基本構成を示し、
チャンバ1はその底部に排出口2が形成され、同排出口
2を介して減圧手段としての真空減圧装置Vに連通して
いる。そして、同減圧装置Vにてチャンバ1内は減圧さ
れる。チャンバ1内にはモリブデン(MO)又はタング
ステン(W>からなる皿状の粒子化手段としてのエバポ
レータ3が配設され、同エバポレータ3はチャンバ1の
両側壁に設けられた電極4a、4bと電気的に結線され
ている。そして、エバポレータ3は電極4a、4bを介
してチャンバ1の外に設けられた加熱電源5の電圧が印
加されるようになっている。
FIG. 1 shows the basic configuration of a manufacturing device for circuit element formations,
The chamber 1 has a discharge port 2 formed at its bottom, and communicates with a vacuum decompression device V as a pressure reduction means through the discharge port 2. Then, the pressure inside the chamber 1 is reduced by the same pressure reducing device V. An evaporator 3 as a dish-shaped particulate means made of molybdenum (MO) or tungsten (W) is disposed inside the chamber 1, and the evaporator 3 is connected to electrodes 4a and 4b provided on both side walls of the chamber 1 and electrically. A voltage from a heating power source 5 provided outside the chamber 1 is applied to the evaporator 3 via electrodes 4a and 4b.

エバポレータ3にはAu 、 A(+ 、 Cu 、 
Pd 。
The evaporator 3 contains Au, A(+, Cu,
Pd.

Ru 、Ta等の回路要素形成物としての原料金属が収
容され、前記加熱により原料金属は金属微粒子等の蒸気
となりチャンバ1内に飛散する。尚、エバポレータ3の
下側にはアースされた電tfi6が配設されるとともに
、この@極6は図示しない冷却装置によって冷却されて
いる。
Raw metals such as Ru, Ta, etc. for forming circuit elements are accommodated, and the heating causes the raw metals to turn into vapors such as fine metal particles and scatter into the chamber 1. Note that a grounded electric pole tfi 6 is disposed below the evaporator 3, and this @ pole 6 is cooled by a cooling device (not shown).

チャンバ1の中央位置には七ツマーガス尋人手段として
のモノマーガスインレット7が配設されている。モノマ
ーガスインレット7はチャンバ1内にスチレン、MMA
 (メタクリル酸メチル)、プロピレン等の七ツマ−を
尋人プる。
At the center of the chamber 1, a monomer gas inlet 7 is arranged as a seven-day gas supply means. The monomer gas inlet 7 contains styrene and MMA in the chamber 1.
(methyl methacrylate), propylene, etc.

チャンバ1内の上部にはプラズマ発生部8が設(プられ
、チャンバ1の外に設けられた高周波電源9、マツチン
グボックス10等からなる励起手段としての高周波発生
装置から高周波が印加される。
A plasma generating section 8 is installed in the upper part of the chamber 1, and a high frequency is applied from a high frequency generator as excitation means, which is provided outside the chamber 1 and includes a high frequency power source 9, a matching box 10, and the like.

同プラズマ発生部8内にはキャリヤガス導入手段として
のキャリヤガスインレット11が設(プられ、同インレ
ット11からアルゴン、窒素、酸素、水素等のキャリヤ
ガスが導入されるようになっている。そして、これら導
入されたキャリアガスは高周波にてプラズマ状態に励起
され、そのプラズマ状態に励起されたキャリヤガスは前
記七ツマーガスインレット7から導入された七ツマーガ
スをラジカル或いはイオン等の重合活性種にする。
A carrier gas inlet 11 as a carrier gas introducing means is provided in the plasma generating section 8, and a carrier gas such as argon, nitrogen, oxygen, hydrogen, etc. is introduced from the inlet 11. These introduced carrier gases are excited to a plasma state by high frequency, and the carrier gas excited to the plasma state converts the 7-mer gas introduced from the 7-mer gas inlet 7 into polymerization active species such as radicals or ions. .

エバポレータ3とモノマーノコスインレット7の中間位
置にはメツシュ電極12が配設され、七ツマーガスイン
レット7付近で重合反応が行われるようにしている。
A mesh electrode 12 is disposed at an intermediate position between the evaporator 3 and the monomer gas inlet 7, so that the polymerization reaction takes place near the monomer gas inlet 7.

次に、上述のように構成した回路要素形成物の超微粒子
製造装置を使用した、金(Au >の超微粒子の製造の
方法について説明づる。
Next, a method for producing ultrafine particles of gold (Au>) using the apparatus for producing ultrafine particles of a circuit element formed as described above will be explained.

エバポレータ3に金(AU )を配置するとともにチャ
ンバ1内を真空減圧装置Vにて減圧した状態で、同エバ
ポレータ3中の金を加熱電源5にて加熱して金を蒸気に
してチャンバ1内に飛散させる。
With gold (AU) placed in the evaporator 3 and the pressure inside the chamber 1 being reduced by the vacuum depressurizer V, the gold in the evaporator 3 is heated by the heating power source 5 to turn the gold into vapor and put it into the chamber 1. scatter.

一方、キャリヤガスインレット11からキャリアガスと
してアルゴンガスを、又、モノマーガスインレット7か
らモノマーガスとしてスチレンをチャンバ1内に導入す
る。この時、アルゴンガスはプラズマ発生部8にて高周
波電源9、マツチングボックス10等よりなる高周波発
生装置からの高周波によってプラズマ状態に励起される
。プラズマ状態に励起されたアルゴンは前記モノマーと
してのスチレンと衝突してスチレンをラジカル或いはイ
オン等の重合活性種にする。
On the other hand, argon gas is introduced into the chamber 1 from the carrier gas inlet 11 as a carrier gas, and styrene is introduced into the chamber 1 from the monomer gas inlet 7 as a monomer gas. At this time, the argon gas is excited to a plasma state in the plasma generating section 8 by high frequency waves from a high frequency generator including a high frequency power source 9, a matching box 10, and the like. The argon excited to a plasma state collides with the styrene as the monomer and converts the styrene into polymerization active species such as radicals or ions.

スチレンモノマー及びスチレンをラジカル或いはイオン
等に励起した重合活性種が前記エバポレータ3から蒸発
飛散した金の超微粒子の表面に付着するとともに、粒子
表面で重合反応が進行する。
The styrene monomer and styrene excited into radicals or ions, and the polymerization active species adhere to the surface of the ultrafine gold particles evaporated and scattered from the evaporator 3, and a polymerization reaction proceeds on the particle surface.

その結果、金の微粒子表面はポリスチレンで覆われ、即
ちポリマーにてコーティングされた超微粒子となる。そ
して、ポリマーにてコーティングされた超微粒子は真空
減圧装置Vの吸引によって排出口2を経てチャンバ1外
へ排出され回収される。
As a result, the surface of the gold fine particles is covered with polystyrene, that is, the gold particles become ultrafine particles coated with a polymer. The ultrafine particles coated with the polymer are then discharged out of the chamber 1 through the discharge port 2 by suction from the vacuum decompression device V and collected.

回収された超微粒子は活性液面蒸着法等によって、α−
テルピネオール或いはブチルカルピトールアセテート(
BCA)等の低熱気圧有機溶剤に分散され、回路形成液
となる。
The collected ultrafine particles are converted into α-
Terpineol or butylcarpitol acetate (
It is dispersed in a low thermopressure organic solvent such as BCA) and becomes a circuit forming liquid.

上記のように製造された金(AU )の超微粒子は粒子
径が数十ナノメートルの粒子であり、溶媒に対する分散
性が極めて良い。しかも、粒子表面はポリスチレンとい
う有は高分子でコートされていることから、有機溶媒に
対する親和性が良く、コアギュレートし難いものとなっ
ている。勿論、コーティングされた異種金属の超微粒子
を各挿合tて分散させても、コーティングの効果により
コアギュレーションは生じない。
The ultrafine gold (AU) particles produced as described above have a particle diameter of several tens of nanometers and have extremely good dispersibility in a solvent. Moreover, since the particle surface is coated with a polymer called polystyrene, it has good affinity for organic solvents and is difficult to coagulate. Of course, even if the coated ultrafine particles of different metals are dispersed in each intercalation, coagulation does not occur due to the effect of the coating.

従って、この回路形成液は液中の金の含有量を任意に変
化させることができるとともに、インクジェットヘッド
のノズルを目詰りさせる心配がなくなる。その結果、ハ
イブリッドIC基板上の回路パターンを形成覆るために
使用されるインクジェットヘッドに充填される回路形成
液としては非常に1苫頼性の尚いものとなる。
Therefore, the gold content in this circuit forming liquid can be changed arbitrarily, and there is no fear of clogging the nozzles of the inkjet head. As a result, it becomes extremely unreliable as a circuit forming liquid to be filled into an inkjet head used to form and cover a circuit pattern on a hybrid IC substrate.

尚、この実施例では金属原料を金(Au )としたが、
その池、導体用、抵抗用、絶縁用又は誘電体用の回路パ
ターンを形成するために、AC+、Cu 、Pd 、R
u 、Ta等の回路要素の原料を使用して実施してもよ
い。又、キャリヤガスをアルゴンに代えて窒素、酸素、
水素等で実施してもよい。
In this example, gold (Au) was used as the metal raw material, but
In order to form circuit patterns for conductors, resistors, insulators, or dielectrics,
It may be carried out using raw materials for circuit elements such as u, Ta, etc. Also, instead of argon as the carrier gas, nitrogen, oxygen,
It may also be carried out using hydrogen or the like.

この場合、ギヤリヤガスに窒素又は酸素を使用した場合
、窒素プラズマ又は酸素プラズマが光生し。
In this case, when nitrogen or oxygen is used as the gear gas, nitrogen plasma or oxygen plasma is generated.

原料金属の金属蒸気はこれらプラズマによって酸化又は
窒化されて、抵抗用の回路要素形成物として利用できる
金属酸化物又は金属窒化物の超微粒子を得ることができ
る。
The metal vapor of the raw material metal is oxidized or nitrided by these plasmas to obtain ultrafine particles of metal oxide or metal nitride that can be used as circuit element formation materials for resistors.

また、上記実施例ではキャリヤガスをプラズマ状態に励
起して重合反応を誘発する重合活性種としていたが、直
接にモノマーガスを一周波によってプラズマ状態に励起
しても何ら支障はない。この場合、第1図に示(キャリ
ヤガスインレット11からモノマーガスを導入してもよ
い。
Furthermore, in the above embodiments, the carrier gas is excited to a plasma state to serve as a polymerization active species that induces a polymerization reaction, but there is no problem if the monomer gas is directly excited to a plasma state by a single frequency wave. In this case, the monomer gas may be introduced from the carrier gas inlet 11 (as shown in FIG. 1).

また、製造装置は前記実施例に限定されるものではなく
、例えば、第2図に示すように、金属蒸発槽A、プラズ
マ重合槽B、微粒子回収槽Cからなるチャンバ1を股、
け、モノマーガスインレット7をプラズマ重合槽B(金
属蒸発槽Aでもよい)に配設するとともに、キャリヤガ
スインレット11をプラズマ重合槽Bに配設した製造装
置で実施しても超微粒子を製造することができる。この
場合、金属蒸気、モノマーガス、キャリヤガス等のガス
の流れが一方向に限定されるため、連続生産システムの
構築に好適である。
Further, the manufacturing apparatus is not limited to the above embodiment, and for example, as shown in FIG.
However, ultrafine particles can also be produced using a manufacturing apparatus in which the monomer gas inlet 7 is disposed in the plasma polymerization tank B (or the metal evaporation tank A) and the carrier gas inlet 11 is disposed in the plasma polymerization tank B. be able to. In this case, the flow of gases such as metal vapor, monomer gas, carrier gas, etc. is limited to one direction, so it is suitable for constructing a continuous production system.

さらに、前記実施例では原料金属を加熱して金属蒸気を
生成したが、第3図に示すように、イオンビームスパッ
タを利用してもよい。即ち、原料金属よりなるターゲッ
ト13をイオンビームガン14から発射されたイオンビ
ームでスパッタし、金属微粒子をチャンバ1内に飛散さ
せるものである。このスパッタを利用(る場合、ターゲ
ット13に合金材料を使用すれば金属の種類と配合量を
自由に選定でき種々の超微粒子を製造づることができる
Further, in the above embodiments, the raw metal was heated to generate metal vapor, but as shown in FIG. 3, ion beam sputtering may be used. That is, a target 13 made of raw metal is sputtered with an ion beam emitted from an ion beam gun 14 to scatter metal fine particles into the chamber 1. When this sputtering is used, if an alloy material is used for the target 13, the type and amount of metal can be freely selected and various ultrafine particles can be manufactured.

[発明の効果] 本発明は以上説明したように構成されているので、以下
に記載したような効果を奏する。
[Effects of the Invention] Since the present invention is configured as described above, it produces the effects as described below.

回路要素形成物原料の粒子表面をポリマーコートした超
微粒子を低蒸気圧有!a溶剤に分散して回路形成液とす
ることにより、超微粒子の分散安定性がよくなるととも
に、該形成液はインクジエットノス゛ルの目詰まりを起
し雌いものとなる。
Ultra-fine particles with polymer-coated particle surfaces of circuit element forming raw materials have low vapor pressure! By dispersing it in a solvent to form a circuit forming liquid, the dispersion stability of the ultrafine particles is improved, and at the same time, the forming liquid causes clogging of the inkjet nozzle and becomes wasteful.

また、回路形成液中の固形分を任意に変更することが可
能となり、従って、金属含有率も高くすることができる
ため、シート(氏抗の低い回路パターンを形成すること
ができる。
Furthermore, since it is possible to arbitrarily change the solid content in the circuit forming liquid and, therefore, to increase the metal content, it is possible to form a sheet (circuit pattern with low resistance).

また、前述した超微粒子の製造方法又は製造装置によっ
て本発明の回路要素形成液に使用するに適した、大きさ
が数十ナノメートル程度の表面をポリマーコートした超
微粒子を製造することができる。
Further, by the method or apparatus for producing ultrafine particles described above, it is possible to produce ultrafine particles having a surface coated with a polymer and having a size of approximately several tens of nanometers, which are suitable for use in the circuit element forming liquid of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を具体化した超微粒子製造装置の一実施
例を示す概略図、第2図は超微粒子製造装置のチャンバ
の構成の別例を7fX′?!概念図、第3図は金属蒸気
発生装置の別例を示す概念図である。 図中、1はチャンバ、3は粒子化手段としてのエバポレ
ータ、4a、4bは粒子化手段としての電極、5は粒子
化手段としての加熱電源、7は七ツマーガス導入手段と
しての七ツマーガスインレット、9は励起手段としての
高周波電源、10は同じく励起手段としてのマツチング
ボックス、]1は励起手段としてのキャリヤガスインレ
ット、14は粒子化手段としてのイオンビームガン。 特許出願人 株式会社 豊田自動織機製作所第2図
FIG. 1 is a schematic diagram showing an embodiment of an ultrafine particle manufacturing apparatus embodying the present invention, and FIG. 2 is a schematic diagram showing another example of the configuration of the chamber of the ultrafine particle manufacturing apparatus. ! Conceptual diagram, FIG. 3 is a conceptual diagram showing another example of a metal vapor generator. In the figure, 1 is a chamber, 3 is an evaporator as a particulate means, 4a, 4b are electrodes as particulate means, 5 is a heating power source as particulate means, 7 is a seven-day gas inlet as a seven-day gas inlet, 9 is a high frequency power supply as an excitation means; 10 is a matching box also as an excitation means; 1 is a carrier gas inlet as an excitation means; 14 is an ion beam gun as a particulate means. Patent applicant Toyota Industries Corporation Figure 2

Claims (4)

【特許請求の範囲】[Claims] 1.回路要素形成物の粒子表面をポリマーでコートした
ハイブリッドIC基板の回路要素形成物。
1. A circuit element formation of a hybrid IC substrate in which the particle surface of the circuit element formation is coated with a polymer.
2.回路要素形成物の粒子表面をポリマーでコートして
なる超微粒子を低蒸気圧有機溶剤を含有する液中に分散
させてなるハイブリッドIC基板の回路形成液。
2. A circuit forming liquid for a hybrid IC board, which is obtained by dispersing ultrafine particles whose surfaces are coated with a polymer in a liquid containing a low vapor pressure organic solvent.
3.回路要素形成物の核粒子雰囲気中に、モノマーガス
を放散し、プラズマ状態に励起させて、核粒子表面で重
合反応を起こし、表面をポリマーコートするようにした
回路要素形成物の超微粒子の製造方法。
3. Production of ultrafine particles of circuit element formations by dissipating monomer gas in the core particle atmosphere of circuit element formations and exciting it to a plasma state to cause a polymerization reaction on the surface of the core particles and coating the surface with a polymer. Method.
4.減圧手段にて減圧されるチャンバと、同チャンバ内
に配設された回路要素形成物の原料を核粒子化する粒子
化手段と、同チャンバにモノマーガスを導入するモノマ
ーガス導入手段と、導入されたモノマーガスを励起し、
重合活性種とする励起手段とからなる回路要素形成物の
超微粒子の製造装置。
4. A chamber to be depressurized by a depressurizing means, a particulate means to turn a raw material of a circuit element formed in the chamber into nuclear particles, a monomer gas introducing means to introduce a monomer gas into the chamber, and a monomer gas introduction means to introduce a monomer gas into the chamber. excites the monomer gas,
An apparatus for producing ultrafine particles of a circuit element forming product, comprising an excitation means as a polymerization active species.
JP14267988A 1988-06-08 1988-06-08 Circuit element forming substance of hybrid ic substrate Pending JPH01310593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14267988A JPH01310593A (en) 1988-06-08 1988-06-08 Circuit element forming substance of hybrid ic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14267988A JPH01310593A (en) 1988-06-08 1988-06-08 Circuit element forming substance of hybrid ic substrate

Publications (1)

Publication Number Publication Date
JPH01310593A true JPH01310593A (en) 1989-12-14

Family

ID=15320998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14267988A Pending JPH01310593A (en) 1988-06-08 1988-06-08 Circuit element forming substance of hybrid ic substrate

Country Status (1)

Country Link
JP (1) JPH01310593A (en)

Similar Documents

Publication Publication Date Title
Jaworek Electrospray droplet sources for thin film deposition
EP1979101B1 (en) Method and apparatus for low-temperature plasma sintering
US5344676A (en) Method and apparatus for producing nanodrops and nanoparticles and thin film deposits therefrom
US10683579B2 (en) Systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions
GyoáKoo et al. Platinum nanoparticles prepared by a plasma-chemical reduction method
AU2014349815B2 (en) Method for generating an atmospheric plasma jet and atmospheric plasma minitorch device
Graves et al. Ultrasound assisted dispersal of a copper nanopowder for electroless copper activation
KR101813659B1 (en) Substrate of Surface Enhanced Raman Scattering of three dimensions nanoporous-structure and manufacture method thereof
WO2006041657A9 (en) Maskless direct write of copper using an annular aerosol jet
JP2004119790A (en) Method of forming fine wiring pattern using dispersed nano-sized particles in supercritical fluid
RU2380195C1 (en) Method for production of metal or semiconductor nanoparticles deposited on carrier
Samarasinghe et al. Printing gold nanoparticles with an electrohydrodynamic direct-write device
Qin et al. Organic layer-coated metal nanoparticles prepared by a combined arc evaporation/condensation and plasma polymerization process
CN100338257C (en) Method and device for manufacturing semiconductor or insulator/metallic laminar composite cluster
JP4834818B2 (en) Method for producing aggregate of carbon nanotubes
Chowdhuri et al. Ambient microdroplet annealing of nanoparticles
JPH01310593A (en) Circuit element forming substance of hybrid ic substrate
JP6813824B2 (en) Oxide thin film forming method and oxide thin film forming apparatus
JP2006315881A (en) High density carbon nanotube assembly and method for producing the same
JPS63264134A (en) Production of low molecular weight material by microwave
JP4289908B2 (en) Atomizer for forming ceramic thin film and thin film manufacturing method using the same
Alwan et al. Well-controlled generation process of bimetallic Ag//Au colloidal nanoparticles by non-thermal plasma DC glow discharge
KR20070115497A (en) Method for producing nanoparticles and its producing apparatus
RU2265076C1 (en) Method of obtaining nanoparticles
Ramos et al. High‐Flux DC Magnetron Sputtering