JPH01310274A - Heat pump type air-conditioning machine - Google Patents

Heat pump type air-conditioning machine

Info

Publication number
JPH01310274A
JPH01310274A JP14135788A JP14135788A JPH01310274A JP H01310274 A JPH01310274 A JP H01310274A JP 14135788 A JP14135788 A JP 14135788A JP 14135788 A JP14135788 A JP 14135788A JP H01310274 A JPH01310274 A JP H01310274A
Authority
JP
Japan
Prior art keywords
heat exchanger
pipe
pressure refrigerant
indoor heat
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14135788A
Other languages
Japanese (ja)
Inventor
Masami Negishi
正美 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP14135788A priority Critical patent/JPH01310274A/en
Publication of JPH01310274A publication Critical patent/JPH01310274A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To permit the realization of comfortable indoor air conditioning throughout all seasons by a method wherein wet vapor having a low dryness is supplied to an indoor heat exchanger through an expansion valve to cool a space while the wet vapor having a high dryness is supplied directly to the indoor heat exchanger to heat the space. CONSTITUTION:When flow rate control valves 2, 4 are opened in accordance with the rate of space cooling or heating, wet vapor is sent into a high-pressure refrigerant sending pipe 3. When the flow rate control valves 15, 19 of the side of an indoor machine S are closed totally and the flow rate control valves 16, 21 are opened fully upon effecting the cooling, liquid refrigerant having a low dryness among wet vapor is supplied from a high-pressure refrigerant returning pipe 10 to an expansion valve 20 through a communicating pipe 17 and the liquid refrigerant having a low temperature and a low pressure is supplied to an indoor heat exchanger 13 and the heat exchanger 13 effects cooling in the room. When the heating is effected, the flow rate control valves 16, 21 of the side of the indoor machine S are closed totally and the flow rate control valves 15, 19 are opened fully, then, gaseous refrigerant having a high dryness among the wet vapor is supplied to the indoor heat exchanger 13 from the high-pressure refrigerant sending pipe 3 through the communicating pipe 14a and the indoor heat exchanger 13 effects the heating in the space.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は圧縮機を室外熱交換器を介して複数の室内熱交
換器を接続してなるヒートポンプ式空調機に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a heat pump type air conditioner in which a compressor is connected to a plurality of indoor heat exchangers via an outdoor heat exchanger.

(従来の技術) 第2図はこの種ヒートポンプ式空調機の一例を示す回路
図であり、図において101は圧縮機、102は4方切
替弁、103は室外熱交換器、104a、104bは室
内熱交換器、105は膨張弁等の膨脹手段である。前記
室内熱交換器104a、104bは4方切替弁1.02
と膨脹手段1゜5との間の管路に並列に接続されている
(Prior Art) Fig. 2 is a circuit diagram showing an example of this type of heat pump type air conditioner. The heat exchanger 105 is an expansion means such as an expansion valve. The indoor heat exchangers 104a and 104b have four-way switching valves 1.02
and the expansion means 1.5.

この空調機では4方切替弁102が図の実線位置にある
状態では高温の冷媒を各室内熱交換器104a、104
bに供給し放熱作用により室内の暖房が行えるようにな
っており、また4方切替弁102が図の破線位置にある
状態では低温の冷媒を各室内熱交換器104 a、  
104 bに供給し吸熱作用により室内の冷房が行える
ようになっている。
In this air conditioner, when the four-way switching valve 102 is in the solid line position in the figure, high-temperature refrigerant is transferred to each indoor heat exchanger 104a, 104.
When the four-way switching valve 102 is in the position indicated by the broken line in the figure, low-temperature refrigerant is supplied to each of the indoor heat exchangers 104a and 104a.
104b, and the room can be cooled by its endothermic action.

(発明が解決しようとする課8) しかしながら、従来のヒートポンプ式空調機では、4方
切替弁102の位置によって各室内熱交換器104a、
104bにおける冷媒の循環方向が定まってしまうため
、冷房と暖房を各室内熱交換器104a、104bで同
時に行なうことができないことに加え、室内において冷
房と暖房を自由に選択することができないという問題点
があった。
(Problem 8 to be solved by the invention) However, in the conventional heat pump air conditioner, depending on the position of the four-way switching valve 102, each indoor heat exchanger 104a,
Since the circulation direction of the refrigerant in 104b is fixed, cooling and heating cannot be performed simultaneously in each of the indoor heat exchangers 104a and 104b, and the problem is that cooling and heating cannot be freely selected indoors. was there.

本発明は前記問題点に鑑みてなされたものであり、冷房
と暖房を各室内熱交換器で同時に行なうことができると
ともに、室内において冷房と暖房を自由に選択すること
ができるヒートポンプ式空調機を提供することを目的と
する。
The present invention has been made in view of the above-mentioned problems, and provides a heat pump type air conditioner that can perform cooling and heating at the same time using each indoor heat exchanger, and can freely select between cooling and heating indoors. The purpose is to provide.

(課題を解決するための手段) 本発明は前記目的を達成するために、請求項(1)記載
のヒートポンプ式空調機では、圧縮機に室外熱交換器を
介して複数の室内熱交換器を接続してなるヒートポンプ
式空調機において、前記圧縮機の吐出側に、第1の室外
熱交換器を並列に介在した高圧冷媒往き管を接続し、ま
た前記圧縮機の吸入側に、膨脹手段及び第2の室外熱交
換器を順に介在し、且つ前記高圧冷媒往き管と連通した
高圧冷媒戻り管と、低圧冷媒戻り管とを夫々接続すると
ともに、前記室内熱交換器の一方の流通口に接続された
2本の流通管のうち、一方の流通管を第1の制御弁を介
して前記高圧冷媒往き管に接続し、他方の流通管を第2
の制御弁を介して前記低圧冷媒戻り管に接続し、また前
記室内熱交換器の他方の流通口に接続された流通管を分
岐部を介して前記高圧冷媒戻り管に接続し、一方の分岐
管路に第3の制御弁を介在し、他方の分岐管路に室内熱
交換器側から膨脹手段と第4の制御弁とを順に介在した
ことを特徴としている。
(Means for Solving the Problem) In order to achieve the above object, the present invention provides a heat pump air conditioner according to claim (1), in which a plurality of indoor heat exchangers are connected to the compressor via an outdoor heat exchanger. In the heat pump type air conditioner, a high-pressure refrigerant pipe with a first outdoor heat exchanger interposed in parallel is connected to the discharge side of the compressor, and an expansion means and an expansion means are connected to the suction side of the compressor. A second outdoor heat exchanger is interposed in order, and a high-pressure refrigerant return pipe that communicates with the high-pressure refrigerant outgoing pipe is connected to a low-pressure refrigerant return pipe, and is also connected to one of the circulation ports of the indoor heat exchanger. Of the two flow pipes, one flow pipe is connected to the high pressure refrigerant flow pipe via the first control valve, and the other flow pipe is connected to the second flow pipe.
A flow pipe connected to the low-pressure refrigerant return pipe via a control valve of the indoor heat exchanger, and a flow pipe connected to the other flow port of the indoor heat exchanger is connected to the high-pressure refrigerant return pipe via a branch part. A third control valve is interposed in the conduit, and an expansion means and a fourth control valve are interposed in order from the indoor heat exchanger side in the other branch conduit.

また、請求項(2)記載のヒートポンプ式空調機では、
前記高圧冷媒往き管がガス通路と液通路とを内部に有し
、また該高圧冷媒往き管に接続される流通管をガス通路
側に接続したことを特徴としている。
Further, in the heat pump air conditioner according to claim (2),
The high-pressure refrigerant sending pipe has a gas passage and a liquid passage therein, and a flow pipe connected to the high-pressure refrigerant sending pipe is connected to the gas passage side.

(作 用) 請求項(1)記載のヒートポンプ式空調機によれば、圧
縮機の作動により第1の室外熱交換器から先の高圧冷媒
往き管にはガス状の冷媒と液状の冷媒とが混合した湿り
蒸気が送り込まれる。
(Function) According to the heat pump type air conditioner according to claim (1), gaseous refrigerant and liquid refrigerant flow into the high-pressure refrigerant inlet pipe from the first outdoor heat exchanger due to the operation of the compressor. Mixed wet steam is fed.

即ち、室内熱交換器側の第1・第3の制御弁を閉じ、第
2・第4の制御弁を開けた状態では、高圧冷媒戻り管か
ら膨脹手段に乾き度の低い湿り蒸気が供給され、該膨脹
手段から室内熱交換器に低温低圧の冷媒が供給され吸熱
作用により室内の冷房が行なわれる。この室内熱交換器
を通過した低圧の冷媒は低圧冷媒戻り管を通じて圧縮機
に吸入される。また、室内熱交換器側の第2・第4の制
御弁を閉じ、第1・第3の制御弁を開けた状態では、高
圧冷媒往き管から室内熱交換器に乾き度の高い湿り蒸気
が供給され放熱作用により室内の暖房が行なわれる。こ
の室内熱交換器を通過した高圧の冷媒は高圧冷媒戻り管
を通じて膨脹手段及び第2の室外熱交換器に順に送り込
まれて低圧低温となり圧縮機に吸入される。
That is, when the first and third control valves on the indoor heat exchanger side are closed and the second and fourth control valves are opened, wet steam with low dryness is supplied from the high-pressure refrigerant return pipe to the expansion means. A low-temperature, low-pressure refrigerant is supplied from the expansion means to the indoor heat exchanger, and the room is cooled by an endothermic action. The low-pressure refrigerant that has passed through the indoor heat exchanger is sucked into the compressor through the low-pressure refrigerant return pipe. In addition, when the second and fourth control valves on the indoor heat exchanger side are closed and the first and third control valves are open, highly dry wet steam flows from the high-pressure refrigerant pipe to the indoor heat exchanger. The room is heated by the supplied heat and its heat dissipation action. The high-pressure refrigerant that has passed through the indoor heat exchanger is sequentially sent to the expansion means and the second outdoor heat exchanger through the high-pressure refrigerant return pipe, and is brought to a low pressure and low temperature and is sucked into the compressor.

また、請求項(2)記載のヒートポンプ式空調機によれ
ば、暖房時において高圧冷媒往き管からより乾き度の高
いガス状の冷媒が流通管を介して室内熱交換器に供給さ
れ放熱作用により室内の暖房が行なわれる。
Further, according to the heat pump type air conditioner according to claim (2), during heating, a gaseous refrigerant with a higher degree of dryness is supplied from the high-pressure refrigerant sending pipe to the indoor heat exchanger via the flow pipe, and the heat dissipation action is performed. The room is heated.

(実施例) 第1図(a)は本発明の一実施例を示すヒートポンプ式
空調機の回路図であり、図示例では3台の室内熱交換器
を接続したものを示しである。
(Embodiment) FIG. 1(a) is a circuit diagram of a heat pump type air conditioner showing an embodiment of the present invention, and the illustrated example shows one in which three indoor heat exchangers are connected.

圧縮機1の吐出側1aには、流量制御弁2を介在した高
圧冷媒往き管3が接続されている。この高圧冷媒往き管
3は第1図(b)にその断面斜視図を示すように、一部
を互いに連通ずる断面略円形の液通路3aとガス通路3
bとを内部に有しており、ガス状の冷媒と液状の冷媒と
が混合した湿り蒸気が内部を通過する際、ガス状の冷媒
と液状の冷媒とを上下に分離して流通できるようになっ
ている。また、この高圧冷媒往き管3には、圧縮機1側
から流量制御弁4と第1の室外熱交換器5を順に接続し
た管路6が前記流量制御弁2と並列に接続されている。
A high-pressure refrigerant outgoing pipe 3 is connected to a discharge side 1a of the compressor 1 with a flow rate control valve 2 interposed therebetween. As shown in a perspective cross-sectional view in FIG. 1(b), this high-pressure refrigerant inlet pipe 3 has a liquid passage 3a and a gas passage 3, each of which has a substantially circular cross section and which partially communicates with each other.
(b) inside, so that when wet steam containing a mixture of gaseous refrigerant and liquid refrigerant passes through the inside, the gaseous refrigerant and liquid refrigerant can be separated vertically and circulated. It has become. Further, a conduit 6 connecting a flow control valve 4 and a first outdoor heat exchanger 5 in this order from the compressor 1 side is connected to the high-pressure refrigerant sending pipe 3 in parallel with the flow control valve 2 .

また、前記圧縮機1の吸入側1bには、前記高圧冷媒往
き管3と連通し、且つ圧縮機1に向って膨張弁7と第2
の室外熱交換器8と流量制御弁9とを順に介在した高圧
冷媒戻り管10が接続されている。この高圧冷媒戻り管
10は第1図(C)にその断面斜視図を示すように、一
部を互いに連通する断面略円形の液通路10aとガス通
路10bとを内部に有しており、湿り蒸気が内部を通過
する際、ガス状の冷媒と液状の冷媒とを上下に分離して
流通できるようになっている。
Further, the suction side 1b of the compressor 1 is connected to the high-pressure refrigerant inlet pipe 3, and has an expansion valve 7 and a second
A high-pressure refrigerant return pipe 10 is connected to the outdoor heat exchanger 8 and the flow rate control valve 9 in this order. This high-pressure refrigerant return pipe 10, as shown in a perspective cross-sectional view in FIG. When steam passes through the interior, gaseous refrigerant and liquid refrigerant can be separated into upper and lower portions and allowed to flow.

更に、前記圧縮機1の吸入側1bには、断面略円形の低
圧冷媒戻り管11が流量制御弁12を介して接続されて
いる。
Further, a low-pressure refrigerant return pipe 11 having a substantially circular cross section is connected to the suction side 1b of the compressor 1 via a flow rate control valve 12.

一方、各室内機S内に配置された室内熱交換器13の一
方の流通口13aには2本の流通管14a、14bが接
続されており、一方の流通管14aは第1の流量制御弁
15を介して第1図(b)に示すように前記高圧冷媒往
き管3のガス通路3a側に接続されている。また、他方
の流通管14bは第2の流量制御弁16を介して前記低
圧冷媒戻り管12に接続されている。
On the other hand, two flow pipes 14a and 14b are connected to one flow port 13a of the indoor heat exchanger 13 disposed in each indoor unit S, and one flow pipe 14a is connected to a first flow control valve. 15, it is connected to the gas passage 3a side of the high-pressure refrigerant outgoing pipe 3, as shown in FIG. 1(b). Further, the other flow pipe 14b is connected to the low-pressure refrigerant return pipe 12 via a second flow control valve 16.

また、前記室内熱交換器13の他方の流通口13bには
、第1図(C)に示すように一端を前記高圧冷媒戻り管
10の液通路10a側に接続した流通管17の他端が接
続されている。この流通管17は管路途中に2本に分岐
した分岐部18を有しており、一方の分岐管路18aに
は第3の流量制御弁19が介在されており、他方の分岐
管路18bには室内熱交換器13側から膨張弁20と第
4の流量制御弁21とが順に介在されている。
Further, the other end of the flow pipe 17, which has one end connected to the liquid passage 10a side of the high-pressure refrigerant return pipe 10, is connected to the other flow port 13b of the indoor heat exchanger 13, as shown in FIG. 1(C). It is connected. This flow pipe 17 has a branch part 18 that branches into two in the middle of the pipe, one branch pipe 18a is interposed with a third flow rate control valve 19, and the other branch pipe 18b is interposed. An expansion valve 20 and a fourth flow control valve 21 are interposed in this order from the indoor heat exchanger 13 side.

以下に、前記ヒートポンプ式空調機における空調につい
て第3図を参照して説明する。
Below, air conditioning in the heat pump type air conditioner will be explained with reference to FIG. 3.

まず、夏期や冬期等において暖房と冷房とを完全に区別
して行なう場合について説明する。
First, a case will be described in which heating and cooling are completely differentiated in summer, winter, etc.

全ての室内熱交換器13において冷房を行なう場合には
、流量制御弁2.9を全開にし、流量制御弁4,11を
全開にするとともに、室内機S側では第2・第4の流量
制御弁16.21を全開にし、第1・第3の流量制御弁
15.19を全開にする。これにより、圧縮機1から吐
出された高圧高温のガス状の冷媒が第1の室外熱交換器
5において放熱され液化した後、高圧冷媒往き管3から
高圧冷媒戻り管10を通じて膨張弁2oに供給され、該
膨張弁20から室内熱交換器13に低温低圧の液状の冷
媒が供給され、該室内熱交換器13において吸熱作用に
より室内の冷房が行なわれる。
When cooling is performed in all the indoor heat exchangers 13, the flow control valves 2.9 are fully opened, the flow control valves 4 and 11 are fully open, and the second and fourth flow control valves are fully opened on the indoor unit S side. The valve 16.21 is fully opened, and the first and third flow control valves 15.19 are fully opened. As a result, the high-pressure, high-temperature gaseous refrigerant discharged from the compressor 1 radiates heat and liquefies in the first outdoor heat exchanger 5, and then is supplied from the high-pressure refrigerant outgoing pipe 3 to the high-pressure refrigerant return pipe 10 to the expansion valve 2o. A low-temperature, low-pressure liquid refrigerant is supplied from the expansion valve 20 to the indoor heat exchanger 13, and the room is cooled by an endothermic action in the indoor heat exchanger 13.

この室内熱交換器13を通過した低圧のガス状の冷媒は
低圧冷媒戻り管12を通じて圧縮機1に吸入される。
The low-pressure gaseous refrigerant that has passed through the indoor heat exchanger 13 is sucked into the compressor 1 through the low-pressure refrigerant return pipe 12.

また、全ての室内熱交換器13において暖房を行なう場
合には、冷房時とは逆に流量制御弁4゜11を全開にし
、流量制御弁2,9を全開にするとともに、室内機S側
では第1・第3の流量制御弁15.19を全開にし、第
2・第4の流量制御弁16.21を全開にする。これに
より、圧縮機1から吐出された高圧高温のガス状の冷媒
が高圧冷媒往き管3を通じて室内熱交換器13に供給さ
れ、該室内熱交換器13において放熱作用により室内の
暖房が行なわれる。この室内熱交換器】3を通過した高
圧の液状の冷媒は高圧冷媒戻り管10を通じて膨張弁7
及び第2の室外熱交換器に順に送り込まれて低圧低温と
なり圧縮機1に吸入される。
In addition, when performing heating in all the indoor heat exchangers 13, the flow control valves 4 and 11 are fully opened and the flow control valves 2 and 9 are fully open, contrary to the case of cooling, and the indoor unit S side is fully opened. The first and third flow control valves 15.19 are fully opened, and the second and fourth flow control valves 16.21 are fully opened. As a result, the high-pressure, high-temperature gaseous refrigerant discharged from the compressor 1 is supplied to the indoor heat exchanger 13 through the high-pressure refrigerant outgoing pipe 3, and the indoor heat exchanger 13 heats the room by heat radiation. The high-pressure liquid refrigerant that has passed through the indoor heat exchanger 3 passes through the high-pressure refrigerant return pipe 10 to the expansion valve 7.
The air is then sent to the second outdoor heat exchanger, where the pressure becomes low and the temperature becomes low, and the air is sucked into the compressor 1.

次に、冷房と暖房が混在する場合について説明する。Next, a case where cooling and heating are mixed will be explained.

冷・暖房が混在する場合には流量制御弁2.4を冷・暖
房の比率に応じて夫々開く。これにより、圧縮機1の作
動により第1の室外熱交換器5がら先の高圧冷媒往き管
3には湿り蒸気が送り込まれる。この湿り蒸気の未使用
分は高圧冷媒戻り管10を通じて膨張弁7及び第2の室
外熱交換器に順に送り込まれて低圧低温となり圧縮機1
に吸入される。尚、圧縮機1に吸入される冷媒の乾き度
は流量制御弁9,11の開度により適切に調整される。
When cooling and heating are mixed, the flow control valves 2.4 are opened according to the ratio of cooling and heating, respectively. As a result, the operation of the compressor 1 causes wet steam to be sent into the high-pressure refrigerant pipe 3 beyond the first outdoor heat exchanger 5. The unused portion of this wet steam is sent through the high-pressure refrigerant return pipe 10 to the expansion valve 7 and the second outdoor heat exchanger in order, and becomes a low-pressure and low-temperature compressor 1.
is inhaled. Note that the degree of dryness of the refrigerant sucked into the compressor 1 is appropriately adjusted by the opening degree of the flow control valves 9 and 11.

室内機Sで冷房を行なう場合には、室内機S側の第1・
第3の流量制御弁15.19を全開にし、第2・第4の
流量制御弁16.21を全開にする。
When cooling with indoor unit S, the first air conditioner on the indoor unit S side
The third flow control valve 15.19 is fully opened, and the second and fourth flow control valves 16.21 are fully opened.

これにより、高圧冷媒戻り管10から流通管17を介し
て膨張弁20に湿り蒸気のうち乾き度の低い液状の冷媒
が供給され、該膨張弁20から室内熱交換器13に低温
低圧の液状の冷媒が供給され、該熱交換器13において
吸熱作用により室内の冷房が行なわれる。この室内熱交
換器13を通過した低圧のガス状の冷媒は低圧冷媒戻り
管12を通じて圧縮機1に吸入される。
As a result, a liquid refrigerant with a low degree of dryness among wet steam is supplied from the high-pressure refrigerant return pipe 10 to the expansion valve 20 via the distribution pipe 17, and a low-temperature, low-pressure liquid refrigerant is supplied from the expansion valve 20 to the indoor heat exchanger 13. A refrigerant is supplied, and the room is cooled by an endothermic action in the heat exchanger 13. The low-pressure gaseous refrigerant that has passed through the indoor heat exchanger 13 is sucked into the compressor 1 through the low-pressure refrigerant return pipe 12.

室内機Sで暖房を行なう場合には、室内機S側の第2・
第4の流量制御弁16.21を全開にし、第1・第3の
流量制御弁15.19を全開にする。
When performing heating with indoor unit S, the second
The fourth flow control valve 16.21 is fully opened, and the first and third flow control valves 15.19 are fully opened.

これにより、高圧冷媒往き管3から流通管14aを介し
て室内熱交換器13に湿り蒸気のうち乾き度の高いガス
状の冷媒が供給され、該室内熱交換器13において放熱
作用により室内の暖房が行なわれる。この室内熱交換器
13を通過した高圧の液状の冷媒は高圧冷媒戻り管10
を通じて膨張弁7及び第2の室外熱交換器8に順に送り
込まれて低圧低温となり圧縮機1に吸入される。
As a result, a gaseous refrigerant with a high degree of dryness among wet steam is supplied from the high-pressure refrigerant inlet pipe 3 to the indoor heat exchanger 13 via the distribution pipe 14a, and the indoor heat exchanger 13 heats the room by heat dissipation. will be carried out. The high-pressure liquid refrigerant that has passed through the indoor heat exchanger 13 is transferred to the high-pressure refrigerant return pipe 10.
The air is sent through the expansion valve 7 and the second outdoor heat exchanger 8 in order, and becomes low pressure and low temperature, and is sucked into the compressor 1.

このように前記実施例によれば、湿り蒸気のうち乾き度
の低い液状の冷媒を膨張弁20を介して室内熱交換器1
3に供給することで冷房を、また湿り蒸気のうち乾き度
の高いガス状の冷媒を直接室内熱交換器13に供給する
ことで暖房を行なうことができるので、冷房と暖房を各
室内熱交換器13で同時に行なうことができ、また室内
における第1乃至第4の流量制御弁15.16,19゜
21の開閉操作で冷房と暖房を自由に選択することが可
能となる。したがって、夏期及び冬期に限らず、全ての
季節を通じて室内層住者の好みに応じた快適な室内空調
を実現することができる。
In this manner, according to the embodiment, the liquid refrigerant with a low degree of dryness among the wet steam is transferred to the indoor heat exchanger 1 through the expansion valve 20.
3 for cooling, and heating by directly supplying the dry gaseous refrigerant of wet steam to the indoor heat exchanger 13, cooling and heating can be performed by each indoor heat exchanger. This can be done simultaneously using the air conditioner 13, and cooling and heating can be freely selected by opening and closing the first to fourth flow control valves 15, 16, 19° 21 in the room. Therefore, it is possible to realize comfortable indoor air conditioning that meets the preferences of indoor residents not only in summer and winter but throughout all seasons.

尚、高圧冷媒戻り管10内を通過する湿り蒸気は流通と
ともに放熱し高圧冷媒往き管3内を通過する湿り蒸気に
比べてその乾き度が低くなるので、該高圧冷媒戻り管1
0を断面円形の管材から構成しても、冷房時において乾
き度の低い液状の冷媒を高圧冷媒戻り管10から膨張弁
20に供給することができる。また、各室内熱交換器1
3における吸熱及び放熱能力は室内機Sの各流量調整弁
15.16,19.21の開度を調整することで適宜変
更できることは勿論であり、また前記流量制御弁15,
16.19.21は単なる開閉のみの制御弁であっても
用をなす。更に、湿り蒸気の混合割合は各室内機の数及
び運転状況を予測することでも容易に設定することがで
きるので、流量制御弁2.4,9.11は必ずしも必要
なものではなく、オリフィス等で代用することもできる
Note that the wet steam passing through the high-pressure refrigerant return pipe 10 radiates heat as it circulates, and its dryness is lower than that of the wet steam passing through the high-pressure refrigerant return pipe 3.
Even if the refrigerant 0 is made of a pipe material having a circular cross section, liquid refrigerant with low dryness can be supplied from the high-pressure refrigerant return pipe 10 to the expansion valve 20 during cooling. In addition, each indoor heat exchanger 1
It goes without saying that the heat absorption and heat dissipation capabilities in No. 3 can be changed as appropriate by adjusting the opening degree of each flow control valve 15.16, 19.21 of the indoor unit S.
16.19.21 can also be used for control valves that only open and close. Furthermore, the mixing ratio of wet steam can be easily set by predicting the number and operating conditions of each indoor unit, so the flow control valves 2.4 and 9.11 are not necessarily necessary, and the orifice etc. It can also be substituted with .

(発明の効果) 以上説明したように請求項(1)記載のヒートポンプ式
空調機によれば、乾き度の低い湿り蒸気を膨張弁を介し
て室内熱交換器に供給することで冷房を、また乾き度の
高い湿り蒸気を直接室内熱交換器に供給することで暖房
を行なうことができるので、冷房と暖房を各室内熱交換
器で同時に行なうことができ、また室内における簡単な
弁開閉操作で冷房と暖房を自由に選択することが可能と
なる。したがって、夏期及び冬期に限らず、全ての季節
を通じて室内層住者の好みに応じた快適な室内空調を実
現することができる。
(Effects of the Invention) As explained above, according to the heat pump air conditioner according to claim (1), by supplying wet steam with low dryness to the indoor heat exchanger via the expansion valve, cooling can be achieved. Heating can be performed by supplying highly dry wet steam directly to the indoor heat exchanger, so each indoor heat exchanger can perform cooling and heating at the same time. You can freely choose between cooling and heating. Therefore, it is possible to realize comfortable indoor air conditioning that meets the preferences of indoor residents not only in summer and winter but throughout all seasons.

また、請求項(2)記載のヒートポンプ式空調機によれ
ば、暖房時において高圧冷媒往き管からより乾き度の高
いガス状の冷媒を流通管を介して室内熱交換器に供給す
ることができるので、前記効果の他に室内の暖房をより
効果的に行なうことができるという利点がある。
Further, according to the heat pump air conditioner according to claim (2), during heating, a gaseous refrigerant with a higher degree of dryness can be supplied from the high-pressure refrigerant sending pipe to the indoor heat exchanger via the distribution pipe. Therefore, in addition to the above-mentioned effects, there is an advantage that indoor heating can be performed more effectively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)乃至第1図(C)は本発明の一実施例を示
すもので、第1図(a)はヒートポンプ式空調機の回路
図、第1図(b)は高圧冷媒往き管の断面斜視図、第1
図(C)は高圧冷媒戻り管の断面斜視図、第2図は従来
のヒートポンプ式空調機の回路図、第3図は空調説明図
である。 1・・・圧縮機、3・・・高圧冷媒往き管、5・・・第
1の室外熱交換器、7,20・・・膨張弁(膨張手段)
、8・・・第2の室外熱交換器、10・・・高圧冷媒戻
り管、12・・・低圧冷媒戻り管、13・・・室内熱交
換器、14a’、14b、17・・・流通管、15・・
・第1の流量制御弁(第1の制御弁)、16・・・第2
の流量制御弁(第2の制御弁)、17・・・第1の流量
制御弁(第3の制御弁)、18・・・第1の流量制御弁
(第4の制御弁)、S・・・室内機。 特許出願人   サンデン株式会社
Figures 1(a) to 1(C) show an embodiment of the present invention. Figure 1(a) is a circuit diagram of a heat pump air conditioner, and Figure 1(b) is a circuit diagram of a heat pump air conditioner. Cross-sectional perspective view of the tube, 1st
Figure (C) is a cross-sectional perspective view of a high-pressure refrigerant return pipe, Figure 2 is a circuit diagram of a conventional heat pump type air conditioner, and Figure 3 is an explanatory diagram of air conditioning. DESCRIPTION OF SYMBOLS 1... Compressor, 3... High-pressure refrigerant sending pipe, 5... First outdoor heat exchanger, 7, 20... Expansion valve (expansion means)
, 8... Second outdoor heat exchanger, 10... High pressure refrigerant return pipe, 12... Low pressure refrigerant return pipe, 13... Indoor heat exchanger, 14a', 14b, 17... Distribution Tube, 15...
・First flow control valve (first control valve), 16...second
Flow control valve (second control valve), 17... first flow control valve (third control valve), 18... first flow control valve (fourth control valve), S. ...Indoor unit. Patent applicant Sanden Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)圧縮機に室外熱交換器を介して複数の室内熱交換
器を接続してなるヒートポンプ式空調機において、 前記圧縮機の吐出側に、第1の室外熱交換器を並列に介
在した高圧冷媒往き管を接続し、 また前記圧縮機の吸入側に、膨脹手段及び第2の室外熱
交換器を順に介在し、且つ前記高圧冷媒往き管と連通し
た高圧冷媒戻り管と、低圧冷媒戻り管とを夫々接続する
とともに、 前記室内熱交換器の一方の流通口に接続された2本の流
通管のうち、一方の流通管を第1の制御弁を介して前記
高圧冷媒往き管に接続し、他方の流通管を第2の制御弁
を介して前記低圧冷媒戻り管に接続し、 また前記室内熱交換器の他方の流通口に接続された流通
管を分岐部を介して前記高圧冷媒戻り管に接続し、一方
の分岐管路に第3の制御弁を介在し、他方の分岐管路に
室内熱交換器側から膨脹手段と第4の制御弁とを順に介
在した ことを特徴とするヒートポンプ式空調機。
(1) In a heat pump air conditioner in which a plurality of indoor heat exchangers are connected to a compressor via an outdoor heat exchanger, a first outdoor heat exchanger is interposed in parallel on the discharge side of the compressor. A high-pressure refrigerant return pipe is connected to the high-pressure refrigerant return pipe, and an expansion means and a second outdoor heat exchanger are interposed in this order on the suction side of the compressor, and the high-pressure refrigerant return pipe is in communication with the high-pressure refrigerant return pipe. and connecting one of the two flow pipes connected to one of the flow ports of the indoor heat exchanger to the high-pressure refrigerant outgoing pipe via a first control valve. The other flow pipe is connected to the low pressure refrigerant return pipe via a second control valve, and the flow pipe connected to the other flow port of the indoor heat exchanger is connected to the high pressure refrigerant return pipe via a branch part. connected to the return pipe, a third control valve is interposed in one branch pipe, and an expansion means and a fourth control valve are sequentially interposed in the other branch pipe from the indoor heat exchanger side. A heat pump air conditioner.
(2)前記高圧冷媒往き管がガス通路と液通路とを内部
に有し、また該高圧冷媒往き管に接続される流通管をガ
ス通路側に接続したことを特徴とする請求項(1)記載
のヒートポンプ式空調機。
(2) Claim (1) characterized in that the high-pressure refrigerant sending pipe has a gas passage and a liquid passage therein, and a flow pipe connected to the high-pressure refrigerant sending pipe is connected to the gas passage side. The heat pump air conditioner described.
JP14135788A 1988-06-08 1988-06-08 Heat pump type air-conditioning machine Pending JPH01310274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14135788A JPH01310274A (en) 1988-06-08 1988-06-08 Heat pump type air-conditioning machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14135788A JPH01310274A (en) 1988-06-08 1988-06-08 Heat pump type air-conditioning machine

Publications (1)

Publication Number Publication Date
JPH01310274A true JPH01310274A (en) 1989-12-14

Family

ID=15290098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14135788A Pending JPH01310274A (en) 1988-06-08 1988-06-08 Heat pump type air-conditioning machine

Country Status (1)

Country Link
JP (1) JPH01310274A (en)

Similar Documents

Publication Publication Date Title
JP4790974B2 (en) Multi-air conditioner and control method thereof
KR100274257B1 (en) Multi-split air conditioner having bypass unit for controlling amount of refrigerant
CN105953486A (en) Air conditioner system and control method thereof
KR20040080863A (en) Cooling and heating system
CN205747624U (en) Air conditioning system
JP2522361B2 (en) Air conditioner
JPH0886528A (en) Refrigerating device
JP2001099510A (en) Air conditioner
JPH01310274A (en) Heat pump type air-conditioning machine
JP2005147409A (en) Heat pump type cooler/heater
CN109631171B (en) Multi-heat exchanger window type air conditioner with fresh air function
KR100794779B1 (en) A heat pump type multiple air-conditioner
JP4201488B2 (en) Refrigeration equipment
CN218599856U (en) Air conditioner water heater
JPH0297847A (en) Separate type air conditioner designed for multi chambers
CN106288474A (en) Mobile air-conditioner assembly, mobile air-conditioner and control method
CN219103405U (en) Air conditioning unit
JPH10281585A (en) Multi-room type air conditioner
JPH08338668A (en) Multi-room type air conditioner
JPH03164666A (en) Air conditioner
CN208504784U (en) Heat-exchange system and air conditioner
JPH0620053Y2 (en) Heat pump air conditioner
KR0133041B1 (en) Cold material heating type airconditioner
KR100274259B1 (en) Multi-split air conditioner having bypass unit for controlling amount of heat exchange medium
CN116499028A (en) Multi-split air conditioning system