JPH01310220A - Combustion method for coal and water mud - Google Patents

Combustion method for coal and water mud

Info

Publication number
JPH01310220A
JPH01310220A JP13943188A JP13943188A JPH01310220A JP H01310220 A JPH01310220 A JP H01310220A JP 13943188 A JP13943188 A JP 13943188A JP 13943188 A JP13943188 A JP 13943188A JP H01310220 A JPH01310220 A JP H01310220A
Authority
JP
Japan
Prior art keywords
cwm
boiler
coal
exhaust gas
dried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13943188A
Other languages
Japanese (ja)
Inventor
Seiichiro Matsumoto
誠一郎 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP13943188A priority Critical patent/JPH01310220A/en
Publication of JPH01310220A publication Critical patent/JPH01310220A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent consumption of boiler-generating steam and to prevent lowering of boiler efficiency due to the vaporizing latent heat of a moisture content in CWM, by a method wherein a coal and water mud drier to dry coal and water mud by means of exhaust gas is mounted in a boiler exhaust gas flue, and dried coal and water mud is fed to a boiler. CONSTITUTION:A coal and water mud (CWM) drier 3 is disposed in a duct running between the outlet of an electric dust collector 10 located in the middle of an exhaust gas duct 9 and a chimney, and a dried CWM collector 11 in a duct between the drier 3 and a chimney 12. CWM stored in a CWM storage tank 1 is boosted with the aid of a pump and fed in the drier 3 through a CWM piping 2. CWM is brought into direct contact with boiler exhaust gas and dried so that a weight ratio between coal and water is kept at approximate 85:15-95:5, and CWM forms a small lumpform substance which is discharged. Boiler exhaust gas enters the collector 11 in a state that a part of dried pulverized coal in the CWM is brought into a floating state, and after floating dried pulverized coal is separated, the boiler exhaust gas is discharged to the atmosphere. Pulverized coal is dropped onto a conveyor and carried on a concentralized conveyor togetherwith the CWM for recombustion.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は微粉状に粉砕した石炭と水とを混合し、スラリ
状にした石炭・水スラリ〈以下CWMと言う、)の燃焼
方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for burning coal-water slurry (hereinafter referred to as CWM), which is made by mixing finely pulverized coal and water to form a slurry. It is.

[従来の技術] CWMは石油代替燃料としての石炭の利用法の一つとし
て開発されたもので、石炭をミル等によって微粉状に粉
砕し、水と混合させて石炭濃度約65〜70%程度のス
ラリ状にすることによって、液体燃料と同様に陸上にお
いてはパイプ輸送が可能であり、輸送用船舶への積み込
み、積み下しに際しても褐炭設備等を兵役した岸壁を必
要とすることなくパイプによる輸送が可能になるほか、
ボイラ等における燃焼に際してもほぼ重油と同等の取り
扱いが可能であると言う利点を有する優れた燃料形聾で
あるとして研究・開発されるとともに、既に一部で実用
化されているものである。
[Conventional technology] CWM was developed as a method for using coal as an alternative fuel to petroleum, and it involves pulverizing coal into fine powder using a mill, etc., and mixing it with water to obtain a coal concentration of approximately 65 to 70%. By making it into a slurry, it can be transported by pipe on land in the same way as liquid fuel, and when loading and unloading onto and from transport ships, lignite equipment, etc. can be transported via pipes without the need for military quays. In addition to being able to transport
It has been researched and developed as an excellent fuel type that has the advantage of being able to be handled almost in the same way as heavy oil when burned in boilers, etc., and has already been put into practical use in some areas.

しかしながら、上述のごとく、CWMは石炭と水との混
合比が重量比で約65 :35〜70;30程度である
ために、燃焼効率の観点からみればCWM中の水分の蒸
発潜熱による熱損失が大きいほか、ボイラの燃焼炉等で
燃焼する際に噴霧媒体による噴霧が必要であった。CW
Mはその輸送コストの低減あるいは燃焼効率向上の点か
らは石炭濃度が高い程好ましいが、それに伴ってCWM
の粘度も飛躍的に増大するため噴霧媒体の量も従来の重
油燃焼時の必要噴霧蒸気量が燃料量の約5%程度である
のに比較して、CWMの場合は約20%必要としていた
。この噴霧に必要な蒸気量はボイラを対象に考えた場合
、当該CWMを燃焼して得られる蒸気量の約4%に相当
し、ボイラ総合効率に大きく影響していた。第3図は従
来の燃焼方法に基づ<CWM焚ボイラ設備の系統図であ
る。第3図において51はCWM貯槽、52はCWM配
管、53はボイラ、54はCWM噴霧用蒸気配管、55
はボイラ排ガス用のダクト、56は電気集塵器、57は
煙突である。CWM貯槽51に貯蔵されたCWMはポン
プ等によって昇圧され、CW M配管52を経てボイラ
53に付設されたバーナに送入される。バーナに送入さ
れたCWMはボイラから噴霧用蒸気配管54を経由して
供給される噴霧用蒸気によって微粒化され燃焼室内にに
噴霧され、燃焼する。燃焼によって発生したガスはボイ
ラ内で熱交換され、通常約140℃程度まで冷却された
後排ガスダクト55によって電気集塵器56に導かれて
排ガス中のフライアッシュ等のダストを除去された後煙
突57に導かれ大気中に放出される。
However, as mentioned above, in CWM, the mixing ratio of coal and water is about 65:35 to 70; In addition to having a large amount of heat, it also required spraying with an atomizing medium when burning in a combustion furnace of a boiler. C.W.
It is preferable for M to have a higher coal concentration from the point of view of reducing transportation costs or improving combustion efficiency, but along with this, CWM
As the viscosity of fuel increases dramatically, the amount of atomizing medium required for conventional heavy oil combustion is approximately 5% of the amount of fuel, whereas in the case of CWM, approximately 20% of the amount of vapor is required. . When considering a boiler, the amount of steam required for this spraying corresponds to about 4% of the amount of steam obtained by burning the CWM, and has a large effect on the overall efficiency of the boiler. FIG. 3 is a system diagram of a CWM-fired boiler facility based on a conventional combustion method. In Fig. 3, 51 is a CWM storage tank, 52 is a CWM pipe, 53 is a boiler, 54 is a CWM spraying steam pipe, 55
5 is a duct for boiler exhaust gas, 56 is an electric precipitator, and 57 is a chimney. The CWM stored in the CWM storage tank 51 is pressurized by a pump or the like, and is sent to a burner attached to a boiler 53 via a CWM pipe 52. The CWM fed into the burner is atomized by the atomizing steam supplied from the boiler via the atomizing steam pipe 54, and is atomized into the combustion chamber, where it is combusted. The gas generated by combustion undergoes heat exchange in the boiler, and is cooled down to about 140°C. After that, it is led to an electrostatic precipitator 56 through an exhaust gas duct 55 to remove dust such as fly ash in the exhaust gas, and then the chimney. 57 and released into the atmosphere.

[発明が解決しようとする課題] このように、上記従来の技術においても本来固体の石炭
を微粉化し、水と混合してスラリ状とすることにより液
体燃料として取り扱うことが可能になり、ボイラ等の燃
焼設備においては重油燃焼時とほぼ同程度の設備によっ
て燃焼を行なうことが可能になると言う利点を有してい
た。しかしながらCWMをバーナで噴霧する際、CWM
に大きい圧力を加えた場合に、配管内のCWMに局部的
な濃度変化を生じ、高濃度部のCWMは粘度が極端に上
昇して流動性を失い配管内に閉塞部を生じることから、
噴霧に際しては通常蒸気を媒体として使用していた。そ
の際に消費される噴霧用蒸気はCWMを燃焼することに
よって得られる全蒸気量の約4%にも相当してボイラ総
合効率を低下させると言う不具合を有していた。
[Problems to be Solved by the Invention] As described above, even in the above-mentioned conventional technology, coal, which is originally solid, is pulverized and mixed with water to form a slurry, which makes it possible to handle it as a liquid fuel. This has the advantage that combustion equipment can be used to carry out combustion using almost the same equipment as when burning heavy oil. However, when spraying CWM with a burner, CWM
When a large pressure is applied to the CWM, local concentration changes occur in the CWM in the pipe, and the CWM in the high concentration area becomes extremely viscous, loses fluidity, and creates a blockage in the pipe.
Steam was usually used as the medium for spraying. The atomizing steam consumed at this time corresponds to about 4% of the total amount of steam obtained by burning the CWM, which has the disadvantage of reducing the overall efficiency of the boiler.

[課題を解決するための手段] 上記課題を解決するための手段は、前記特許請求の範囲
に記載のとおり、石炭・水スラリを燃焼するボイラにお
いて、ボイラ排ガス煙道にボイラ排ガスによって乾燥す
る石炭・水スラリ乾燥機を取設し、乾燥させた石炭・水
スラリをボイラに供給することを特徴とする石炭・水ス
ラリの燃焼方法か、またはミルを取設し、石炭・水スラ
リ乾燥機によって乾燥された石炭・水スラリを粉砕して
ボイラに供給する石炭・水スラリの燃焼方法である。
[Means for solving the problem] As described in the claims, the means for solving the above problem is as described in the claims, in a boiler that burns a coal/water slurry, the coal that is dried by the boiler exhaust gas is placed in the boiler exhaust gas flue.・A coal/water slurry combustion method characterized by installing a water slurry dryer and supplying the dried coal/water slurry to a boiler, or a coal/water slurry combustion method characterized by installing a mill and supplying the dried coal/water slurry to a boiler. This is a coal/water slurry combustion method in which dried coal/water slurry is crushed and supplied to a boiler.

[作用] ボイラの排ガスダクト途中に兵役された電気集塵器出口
と煙突との間のダクト中にCWM乾燥機と、更に該CW
M乾燥機と煙突との間のダクト中に乾燥CWM集塵器を
配設する。CWM貯槽に貯蔵されたCWMはポンプ等に
よって昇圧されCWM配管を経てCWM乾燥機内に送入
される。送入されたCWMはCWM配管内から排出され
、ボイラ排ガスと直接接触して石炭と水との重量比が8
5+15〜95:5程度になるまで乾燥され、小塊状に
なって搬送設備、例えばコンベヤ上に排出される。CW
M乾燥機内で、CWMと接触し、CWMを乾燥させたボ
イラ排ガスはCWM中の乾燥微粉炭の一部を浮遊させた
状態で乾燥CWM集塵器内に入り、浮遊させた乾燥微粉
炭を分離したのち煙突から大気中に放出される。CWM
fi塵器内で捕集された乾踊微粉炭はコンベヤ上に落下
し、CWM乾燥機から排出された乾燥CWMと共に集会
コンベヤ上に送入される。ボイラが流動床ボイラ等、塊
状石炭の燃焼が可能な場合は上記のCWM乾燥機から排
出された塊状の乾燥CWMを送入し燃焼を行なうが、ボ
イラが微粉炭焚ボイラの場合にはミルを設置し、CWM
乾燥機から排出された塊状の乾燥CWMを再び微粉状に
してボイラに供給する。したがって本発明によれば従来
煙突から排出していたボイラ排ガスを利用することによ
ってCWMを乾燥し、CWM噴霧用蒸気を消費すること
なくボイラに送入することによってボイラ発生蒸気の消
費を防止するとともにCWM中の水分の蒸発潜熱による
ボイラ効率の低下を防止し、ボイラ設備の総合効率を上
昇させ得ると言う効果を有する。
[Function] A CWM dryer is installed in the duct between the outlet of the electrostatic precipitator and the chimney, which is installed in the middle of the exhaust gas duct of the boiler, and the CW
A dry CWM dust collector is installed in the duct between the M dryer and the chimney. The CWM stored in the CWM storage tank is pressurized by a pump or the like and sent into the CWM dryer via CWM piping. The injected CWM is discharged from the CWM piping and comes into direct contact with the boiler exhaust gas, resulting in a coal-to-water weight ratio of 8.
It is dried to a ratio of about 5+15 to 95:5, and is discharged onto a conveying facility, for example, a conveyor, in the form of small lumps. C.W.
In the M dryer, the boiler exhaust gas that comes into contact with the CWM and dries the CWM enters the dry CWM dust collector with a part of the dry pulverized coal in the CWM suspended, and the suspended dry pulverized coal is separated. It is then released into the atmosphere through chimneys. C.W.M.
The dry-dried pulverized coal collected in the duster falls onto the conveyor and is fed onto the gathering conveyor together with the dry CWM discharged from the CWM dryer. If the boiler is capable of burning lump coal, such as a fluidized bed boiler, the dry lump CWM discharged from the CWM dryer described above is fed and combusted, but if the boiler is a pulverized coal-fired boiler, the mill is Install and CWM
The lumpy dry CWM discharged from the dryer is again pulverized and supplied to the boiler. Therefore, according to the present invention, the CWM is dried by using the boiler exhaust gas that was conventionally discharged from the chimney, and the CWM spraying steam is sent to the boiler without being consumed, thereby preventing the consumption of the boiler-generated steam. This has the effect of preventing a decrease in boiler efficiency due to the latent heat of vaporization of water in the CWM and increasing the overall efficiency of the boiler equipment.

[実施例] 以下に本発明の実施例を図面および表に基づいて説明す
る。
[Example] Examples of the present invention will be described below based on drawings and tables.

第1図は本発明に基づく、CWMを燃焼するボイラにお
いて排ガス系にCWM乾燥機と乾燥CWM@塵器を配設
し、ボイラのバーナに送入する燃料系にミルを配設した
場合のCWM焚ボイラ設備の系統図、第2図は第1図に
おいて燃料系にミルを配設しない場合の系統図、第1表
は従来型CWM焚ボイラと本発明に基づ<CWM焚ボイ
ラとにおけるボイラ効率あるいは蒸気節約量等の対比を
示した表である。第1〜2図において1はCWM貯槽、
2はCWM配管、3はCWM乾燥機、4はCWM乾燥機
から排出される乾燥CWM用コシコンベヤ′は乾燥CW
M集塵器から排出される乾燥CWM用コシコンベヤは乾
燥CWMの集合コンベヤ、6は乾燥CWMを再粉砕する
ためのミル、7は微粉状に再粉砕した乾燥CWM輸送管
、8はボイラ、9はボイラ排ガス用のダクト、10は電
気集塵器、11は乾燥CWM捕集用の集塵器、12は煙
突である。第1図において、ボイラ1の排ガスダクト9
部に兵役されている電気集塵器10と煙突註) (1)
 11は流動状態でないCWMの乾燥度である。
Figure 1 shows the CWM in a boiler that burns CWM according to the present invention, in which a CWM dryer and a dry CWM @ duster are installed in the exhaust gas system, and a mill is installed in the fuel system that feeds the boiler to the burner. A system diagram of the boiler-fired equipment, Fig. 2 is a system diagram when the mill is not installed in the fuel system in Fig. 1, and Table 1 shows the system diagram of the conventional CWM-fired boiler and the CWM-fired boiler based on the present invention. This is a table showing a comparison of efficiency, steam savings, etc. In Figures 1 and 2, 1 is a CWM storage tank;
2 is a CWM pipe, 3 is a CWM dryer, and 4 is a drying CWM stiff conveyor discharged from the CWM dryer.
The dust conveyor for dry CWM discharged from the M dust collector is a collection conveyor for dry CWM, 6 is a mill for re-pulverizing the dry CWM, 7 is a transport pipe for dry CWM re-pulverized into fine powder, 8 is a boiler, and 9 is a conveyor for dry CWM. A duct for boiler exhaust gas, 10 an electric precipitator, 11 a dust collector for collecting dry CWM, and 12 a chimney. In FIG. 1, the exhaust gas duct 9 of the boiler 1
Electrostatic precipitator 10 and chimney used in military service (Note) (1)
11 is the dryness of CWM that is not in a fluidized state.

(2)引よCWM乾燥乾燥機出方排ガス温度る。(2) Pull out the CWM dryer and check the temperature of the exhaust gas at the exit of the dryer.

(3)ボイラの年間稼動時間は11,000時間とした
(3) The annual operating time of the boiler was 11,000 hours.

ヌ1表 12との間のダクト部にCWM乾燥機3および12燥C
WM$塵器11を配設する。CWM貯槽1に貯蔵された
CWMをポンプ等によって昇圧し、CWM配管2を経由
してCWM乾燥機3内に送入する。送入されたCWMは
CWM乾燥機3内で電気集塵器10で除塵されたボイラ
排ガスと直接接触して石炭と水との重量比が約85:1
5〜95:5程度まで乾燥され、比較的脆性の大きい小
塊状でコンベヤ4上に排出される。
CWM dryer 3 and 12 dryer C in the duct between Nu1 Table 12
A WM$ duster 11 will be installed. The CWM stored in the CWM storage tank 1 is pressurized by a pump or the like, and is sent into the CWM dryer 3 via the CWM piping 2. The injected CWM directly contacts the boiler exhaust gas from which dust has been removed by the electrostatic precipitator 10 in the CWM dryer 3, and the weight ratio of coal to water is approximately 85:1.
It is dried to a ratio of about 5 to 95:5 and is discharged onto the conveyor 4 in the form of relatively brittle small lumps.

CWM乾燥機3内でCWMと接触し、CWMを乾燥させ
たボイラ排ガスは、乾燥させたCWMの一部を微粉状態
で排ガス中に浮遊させ、乾燥CWM集塵器11内に入る
。乾燥CWM#&塵器11内器11内状態の微粉炭と排
ガスとを分離し、排ガスを煙突に送入させて大気中に放
出させる一方、分離捕集した微粉炭はコンベヤ4゜上に
排出する。CWM乾燥機3および乾燥CWM集塵器11
から排出された乾燥状態のCWMはコンベヤ4および4
′を経て集合コンベヤ5上に送入される。ボイラ8が微
粉炭燃焼ボイラである場合、集合コンベヤ5によって搬
送された乾燥CWMは大部分が小塊状であるため゛にミ
ル6を配設して一旦乾燥CWMの全量をミル6内に送入
し、微粉状に再粉砕したのち1次送風機13から送入さ
れる1次空気によってボイラ8のバーナに送入し燃焼を
行なう、その際使用するミル6は、乾燥CWMが本来微
粉炭によって形成されたものであり、脆性が大きいこと
から極めて小さい動力で短時間に再粉砕を行なうことが
可能である。第2図は例えば流動床ボイラのように、塊
状石炭の燃焼が可能なボイラの場合を示すもので、該ボ
イラの場合には第1図におけるミル6および微粉炭搬送
用の1次送風機13を配設することなく、集合コンベヤ
5によって搬送された小塊状の乾燥CWMを直接ボイラ
8の燃焼室に送入することによって燃焼を行なうことが
可能である。第1表は従来型CWM焚ボイラと本発明に
基づ(CWM焚ボイラとにおけるボイラ効率あるいは蒸
気節約量等の対比を示した表で、語表に記載の数値は、
蒸気発生量1’OOt/h、蒸気圧力100Aり/ c
x2G、蒸気温度500℃のボイラ1基を対象にして算
出したものである。語表において本発明に基づ(CWM
焚ボイラに送入するCWMの濃度を石炭と水との重量比
で85:15,90:10,95:5の3種類想定し、
それぞれに対して比較を行なっている。
The boiler exhaust gas that contacts the CWM in the CWM dryer 3 and dries the CWM causes a part of the dried CWM to be suspended in the exhaust gas in a fine powder state, and enters the dry CWM dust collector 11 . Dry CWM# & dust container 11 The pulverized coal in the internal container 11 is separated from the exhaust gas, and the exhaust gas is sent into the chimney and released into the atmosphere, while the separated and collected pulverized coal is discharged onto the conveyor 4°. do. CWM dryer 3 and dry CWM dust collector 11
The dry CWM discharged from conveyors 4 and 4
' and then sent onto the collecting conveyor 5. When the boiler 8 is a pulverized coal combustion boiler, since most of the dry CWM conveyed by the collection conveyor 5 is in the form of small lumps, a mill 6 is provided to send the entire amount of dry CWM into the mill 6. After being re-pulverized into a fine powder, the primary air sent from the primary blower 13 is sent to the burner of the boiler 8 for combustion. Because of its high brittleness, it can be re-pulverized in a short time with extremely low power. FIG. 2 shows the case of a boiler capable of burning lump coal, such as a fluidized bed boiler. It is possible to carry out combustion by directly feeding the dry CWM in the form of small pieces conveyed by the collection conveyor 5 into the combustion chamber of the boiler 8 without any installation. Table 1 is a table showing a comparison of boiler efficiency, steam savings, etc. between a conventional CWM-fired boiler and a CWM-fired boiler based on the present invention.
Steam generation amount 1'OOt/h, steam pressure 100A/c
Calculated for one boiler with x2G and steam temperature of 500°C. Based on the present invention in the word list (CWM
Assuming three concentrations of CWM to be fed into the boiler, the weight ratio of coal to water is 85:15, 90:10, and 95:5.
A comparison is made for each.

[発明の効果] 本発明は、以上説明したように構成されているので、以
下に記載されるような効果を奏する。
[Effects of the Invention] Since the present invention is configured as described above, it produces effects as described below.

CWM乾燥に使用する熱源として、本来煙突から大気中
に放出されていた排ガスを利用することにより、熱源自
体のコストは発生しない。
By using the exhaust gas that was originally released into the atmosphere from the chimney as a heat source for CWM drying, there is no cost for the heat source itself.

CWMが有する輸送あるいは貯蔵に際しての利点を損な
うことなく、従来の微粉炭焚ボイラあるいは流動床ボイ
ラ等においてCWMを燃料として使用することが可能に
なる。
It becomes possible to use CWM as a fuel in conventional pulverized coal-fired boilers or fluidized bed boilers, etc., without sacrificing the advantages of CWM in transportation or storage.

CWMを乾燥させ、石炭と水との重量比を当初の65:
35から85+15〜95:5程度にし、ボイラへの送
入に際して媒体として蒸気を使用しないことによる経済
的メリットは、ボイラ効率で約4〜5%の上昇をもたら
し、蒸気の節約量は蒸気発生量100 t/hのボイラ
において年問約32,000tonに達する。これによ
って得られる経済的利益は本発明の実施に際して必要な
諸設備、例えばCWM乾燥機、乾燥CWM集塵器、コン
ベヤ、ミルあるいは排ガス温度の低下による低温111
食対策としての脱硫装置等の施設費を考慮しても尚充分
な経済性を確保し得ると言う効果を有する。
Dry the CWM and reduce the coal to water weight ratio to the original 65:
The economic advantage of increasing the ratio from 35 to 85 + 15 to 95:5 and not using steam as a medium when feeding the boiler is that the boiler efficiency increases by about 4 to 5%, and the amount of steam saved is equal to the amount of steam generated. In a 100 t/h boiler, the annual output reaches approximately 32,000 tons. The economic benefits obtained from this are due to the equipment required to carry out the invention, such as CWM dryers, dry CWM precipitators, conveyors, mills or lower temperatures due to lower exhaust gas temperatures.
Even when considering the cost of facilities such as desulfurization equipment as food countermeasures, it has the effect of ensuring sufficient economic efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に基づく、排ガス系にCWM乾燥機と乾
燥CWM集塵器を配設し燃料系にミルを配設したボイラ
設備の系統図、第2図は第1図において燃料系にミルを
配設しない場合の系統図である。 第3図は従来技術の例である。 1・・・・・・CWM貯槽、2・・・・・・CWM配管
、3・・・・・・CWM乾燥機、4.4′、5・・・・
・・乾燥CWM用コンベヤ、6・・・・・・ミル、7・
・・・・・乾燥CWM輸送管、8・・・・・・ボイラ、
9・・・・・・排ガスダクト、10・・・・・・電気集
塵器、11・・・・・・乾燥CWM集塵器、12・・・
・・・煙突、51・・・・・・CWM貯槽、52・・・
・・・CWM配管、53・・・・・・ボイラ、54・・
・・・・CWM噴霧用蒸気配管、55・・・・・・排ガ
スダクト、56・・・・・・電気集塵器、57・・・・
・・煙突。
Figure 1 is a system diagram of a boiler facility based on the present invention in which a CWM dryer and a dry CWM precipitator are installed in the exhaust gas system and a mill is installed in the fuel system. It is a system diagram when a mill is not arranged. FIG. 3 is an example of the prior art. 1... CWM storage tank, 2... CWM piping, 3... CWM dryer, 4.4', 5...
・・Conveyor for drying CWM, 6・・・・Mill, 7・
...Dry CWM transport pipe, 8...Boiler,
9...Exhaust gas duct, 10...Electric precipitator, 11...Dry CWM dust collector, 12...
...Chimney, 51...CWM storage tank, 52...
...CWM piping, 53...Boiler, 54...
... CWM spraying steam piping, 55 ... Exhaust gas duct, 56 ... Electric precipitator, 57 ...
··chimney.

Claims (1)

【特許請求の範囲】 1、石炭・水スラリを燃焼するボイラにおいて、ボイラ
排ガス煙道にボイラ排ガスによって乾燥する石炭・水ス
ラリ乾燥機を取設し、乾燥させた石炭・水スラリをボイ
ラに供給することを特徴とする石炭・水スラリの燃焼方
法。 2、ミルを取設し、石炭・水スラリ乾燥機によって乾燥
された石炭・水スラリを粉砕してボイラに供給する請求
項1、記載の石炭・水スラリの燃焼方法。 3、ボイラ排ガスによって乾燥する石炭・水スラリ乾燥
機と煙突との間の排ガス煙道に乾燥石炭・水スラリ捕集
用の集塵器を取設した請求項1、または2、記載の石炭
・水スラリの燃焼方法。
[Claims] 1. In a boiler that burns coal/water slurry, a coal/water slurry dryer that is dried by boiler exhaust gas is installed in the boiler exhaust gas flue, and the dried coal/water slurry is supplied to the boiler. A method for burning coal/water slurry, characterized by: 2. The method for combustion of a coal/water slurry according to claim 1, wherein a mill is provided, and the coal/water slurry dried by the coal/water slurry dryer is pulverized and supplied to the boiler. 3. The coal/water slurry according to claim 1 or 2, wherein a dust collector for collecting the dried coal/water slurry is installed in the exhaust gas flue between the coal/water slurry dryer and the chimney, which are dried by the boiler exhaust gas. How to burn water slurry.
JP13943188A 1988-06-08 1988-06-08 Combustion method for coal and water mud Pending JPH01310220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13943188A JPH01310220A (en) 1988-06-08 1988-06-08 Combustion method for coal and water mud

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13943188A JPH01310220A (en) 1988-06-08 1988-06-08 Combustion method for coal and water mud

Publications (1)

Publication Number Publication Date
JPH01310220A true JPH01310220A (en) 1989-12-14

Family

ID=15245037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13943188A Pending JPH01310220A (en) 1988-06-08 1988-06-08 Combustion method for coal and water mud

Country Status (1)

Country Link
JP (1) JPH01310220A (en)

Similar Documents

Publication Publication Date Title
SU1732821A3 (en) Hybrid system of burning coal and coal dust in fluidized- bed
KR100927875B1 (en) Coal Drying System Using Exhaust Gas as Sealant
US4689949A (en) Coal gasification composite power generator
CN102889609B (en) Smoke drying steel ball brown-coal milling system
US20110209647A1 (en) Biomass-to-energy combustion method
CN102889608B (en) Direct fired pulverizing system of smoke pre-drying lignite fan mill
CN106224997A (en) The Combined type pulverizing system generated electricity for coal and mud coupling combustion
CZ128294A3 (en) Process and apparatus for drying fuel of a heat-exchange apparatus with fluidized bed
US4414905A (en) Method and equipment for treatment of fuel for fluidized bed combustion
CN106322404A (en) Sludge and coal fluidization-suspension coupled combustion system based on direct blowing type high-temperature flue gas drying
JPH10281443A (en) Method for drying coal and drying facility
JPH01310220A (en) Combustion method for coal and water mud
Sosin et al. Experience of burning sunflower husks in the Kumertau CHP pulverized coal-fired boilers
KR102169127B1 (en) Stoker type incinerator equipped with waste pre-dryer and bicone type waste compressing and crushing apparatus
Kobyłecki Unburned carbon in the circulating fluidised bed boiler fly ash
CN204084309U (en) The coal of fan mill and medium-speed pulverizer powder process and the green electricity generation system of coal slime multifuel combustion
CN204176667U (en) The coal of fan mill powder process and the green electricity generation system of coal slime multifuel combustion
JPH03117807A (en) Coal burning boiler
CN204114896U (en) The coal of fan mill and air swept mill powder process and the green electricity generation system of coal slime multifuel combustion
JPH04327706A (en) Drying and incinerating method for water-containing solid
CN104132360A (en) Open powder making steam warm air type boiler unit and power generation system thereof
CN219454002U (en) Pipeline conveying system from exhaust gas to bellows
CN204176666U (en) The coal of fan mill and Ball Mill powder process and the green electricity generation system of coal slime multifuel combustion
RU2211192C1 (en) Method of processing dehydrated waste water sediments
Pak et al. Innovative Technologies in the Repowering of the Nizhnekamsk CHPP by Upgrading the TGME-464 Boiler to Combust Pulverized Petroleum Coke