JPH01310166A - Classifying and assembling method for fuel injection valve of multicylinder internal combustion engine - Google Patents

Classifying and assembling method for fuel injection valve of multicylinder internal combustion engine

Info

Publication number
JPH01310166A
JPH01310166A JP13869388A JP13869388A JPH01310166A JP H01310166 A JPH01310166 A JP H01310166A JP 13869388 A JP13869388 A JP 13869388A JP 13869388 A JP13869388 A JP 13869388A JP H01310166 A JPH01310166 A JP H01310166A
Authority
JP
Japan
Prior art keywords
fuel
fuel injection
air
cylinder
cylinders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13869388A
Other languages
Japanese (ja)
Other versions
JP2585719B2 (en
Inventor
Toru Niwa
徹 丹羽
Akio Tomobe
友部 了夫
Minoru Muroya
室屋 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP63138693A priority Critical patent/JP2585719B2/en
Publication of JPH01310166A publication Critical patent/JPH01310166A/en
Application granted granted Critical
Publication of JP2585719B2 publication Critical patent/JP2585719B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To aim at improving the accuracy of air-fuel ratio control by measuring the fuel flow values of plural fuel injection valves so as to classify them into groups and assembling the fuel injection valves of the same group to a cylinder corresponding to one exhaust density detector. CONSTITUTION:In the fuel injection valve 6 judged as being within the fixed standard in the manufacturing process, the flow characteristics are measured at least in two points, that is, in small flow and large flow, classified into the groups of similar flow characteristics, and the fuel injection valves of the same group are provided with the same identification code. For example, in a six-cylinder engine 1, in case of detecting the density of the exhaust gas out of cylinders 21-23 by means of an O2 sensor 12a and the density of the exhaust gas out of cylinders 24-26 by means of an O sensor 12b, and providing them with air fuel ratio control by means of an ECU 7, the fuel injection valves 61-63 and 64-66 of the cylinders corresponding to the O sensor 12a, 12b respectively are provided with the same identification codes. The accuracy of air-fuel ratio control is thus improved.

Description

【発明の詳細な説明】 (技術分野) 本発明は多気筒内燃エンジンの燃料噴射弁の選別組(=
Jけ方法に関し、特に排気ガス中の酸素濃度に応じて各
気筒に供給される混合気の空燃比を制御する燃料噴射制
御装置を備える内燃エンジンの燃料噴射弁の選別組付は
方法に関する。
Detailed Description of the Invention (Technical Field) The present invention relates to a selection set (=
In particular, the present invention relates to a method for selecting and assembling fuel injection valves for an internal combustion engine including a fuel injection control device that controls the air-fuel ratio of the air-fuel mixture supplied to each cylinder in accordance with the oxygen concentration in exhaust gas.

(従来技術) 従来、多気筒内燃エンジンの各気筒に対応して配された
燃料噴射弁の開弁時間を、例えばエンジン回転数および
吸気管内絶対圧に応じた基準開弁時間に、エンジンの排
気系に配された排気濃度検出器(以下「02センサ」と
云う)により検出された排気中の酸素濃度を含むパラメ
ータに応じた補正値により補正することにより設定し、
エンジンに供給される混合気の空燃比をエンジンの排気
系に配された三元触媒の最大変換効率が得られる理論混
合比14.7になるようにフィードバック制御する多気
筒内燃エンジンの燃料噴射制御装置が一般に使用されて
いる(特開昭61−116044号)。
(Prior art) Conventionally, the valve opening time of a fuel injection valve arranged corresponding to each cylinder of a multi-cylinder internal combustion engine is set to a reference valve opening time depending on the engine speed and the absolute pressure in the intake pipe, for example, and the engine exhaust Set by correcting with a correction value according to parameters including the oxygen concentration in the exhaust gas detected by the exhaust gas concentration detector (hereinafter referred to as "02 sensor") installed in the system,
Fuel injection control for a multi-cylinder internal combustion engine that performs feedback control to control the air-fuel ratio of the air-fuel mixture supplied to the engine to the stoichiometric mixture ratio of 14.7, which provides the maximum conversion efficiency of the three-way catalyst disposed in the engine's exhaust system. A device is commonly used (Japanese Patent Application Laid-open No. 116044/1983).

斯かる多気筒内燃エンジンでは、制御装置のコストダウ
ン及び、簡略化を図るため、排気系に配される02セン
サは、lないし2本設けられるのが通常であり、従って
1本の02センサは2つ以上の気筒からの排気ガス中の
酸素濃度を検出することになる。ところで、n;j述の
空燃比フィードバック制御を、例えば排気系に2本の0
2センサが配されている6気筒内燃エンジンにて行なう
場合、各02センサからの出力信号を別個に処理して夫
々の補正値を求め、夫々の02センサが検出する対応す
る3気筒への燃料噴射量(開弁時間)を上記夫々の補正
値にて補正することにより混合気の空燃比がある程度精
度良く理論混合比に制御される。
In such a multi-cylinder internal combustion engine, in order to reduce the cost and simplify the control device, one or two 02 sensors are usually installed in the exhaust system, so one 02 sensor is The oxygen concentration in the exhaust gas from two or more cylinders will be detected. By the way, the air-fuel ratio feedback control described in n;
When performing this on a 6-cylinder internal combustion engine equipped with 2 sensors, the output signals from each 02 sensor are processed separately to obtain their respective correction values, and the fuel output to the corresponding 3 cylinders detected by each 02 sensor is calculated. By correcting the injection amount (valve opening time) using each of the above correction values, the air-fuel ratio of the air-fuel mixture is controlled to the stoichiometric mixture ratio with a certain degree of accuracy.

ところで、上記燃料噴射制御装置にrよ、流量特性が一
定規格内であると判定された燃料噴射弁のみが用いられ
る。より具体的には、前記噴射弁の流量特性は、燃料の
小流量時(例えば開弁時間が2m5ec)での実際の燃
料流J’kQl (mm”)と、大流量時(例えば開弁
時間が24 m5ec)での燃料流ff1Q2(+nm
”)とにより表わされ、噴射弁が上記一定規路内である
か否かは夫々の燃料流ffi Q l。
By the way, only fuel injection valves whose flow characteristics are determined to be within a certain standard are used in the fuel injection control device. More specifically, the flow rate characteristics of the injection valve are the actual fuel flow J'kQl (mm'') at a small fuel flow rate (for example, the valve opening time is 2 m5ec) and the actual fuel flow J'kQl (mm'') at the time of a large fuel flow rate (for example, the valve opening time is 24 m5ec) and the fuel flow ff1Q2 (+nm
”), and whether or not the injector is within the above-mentioned constant regulation path is determined by the respective fuel flow ffi Q l.

Q2が設計目標値(中央値)を中心とした燃料噴射制御
に適している所定許容誤差範囲(小流量時±3%、大流
量時±2%)内にあるか否かに応じて判断される(第4
図)。
It is judged based on whether Q2 is within a predetermined tolerance range (±3% at small flow rate, ±2% at high flow rate) suitable for fuel injection control centered on the design target value (median value). (4th
figure).

(発明が解決しようとする課題) しかしながら、上記一定規路を表わす所定許容範囲は、
燃料噴射ブ「の製造過程に於ける良・否の判定基準であ
るため、たとえ一定規路を満たす良品の燃料噴射弁であ
っても依然燃料噴射弁の間で個体差があり、この個体差
は実際の空燃比制御に影響を与え得る。
(Problem to be Solved by the Invention) However, the predetermined tolerance range representing the above-mentioned fixed path is
Since this is a criterion for determining pass/fail in the manufacturing process of fuel injection valves, there are still individual differences between fuel injection valves, even if they are good quality fuel injection valves that meet certain standards. may affect the actual air-fuel ratio control.

即ち、複数の燃料噴射弁を同一の前述した基準開弁時間
に亘って開弁した場合、上記個体差により対応する気筒
に噴射供給される燃料量が若干具なる。かかる燃料量の
ずれは本来空燃比フィードバック制御による燃料量の補
正によって補償される程度のものである。しかしながら
0;j述した1本の02センサで複数気筒からの排気ガ
ス中の酸素濃度を検出するタイプの多気筒内燃エンジン
の燃料噴射制御装置に於ては、各気筒の燃料量のずれ、
即ち各気筒毎の空燃比の偏りを個別に検出することが出
来ず、02センサによる見かけ上の混合気の空燃比が理
論混合比と一致していると判断されても、実際には空燃
比がリッチ側になる気筒とリーン側になる気筒とが混在
している場合があり、このときには三元触媒による排気
ガス中のLrC1Go、NOx成分の浄化作用が全気筒
に亘って十分行なえないと云う不具合が生じる。
That is, when a plurality of fuel injection valves are opened for the same reference valve opening time described above, the amount of fuel injected and supplied to the corresponding cylinder varies depending on the individual differences. Such a difference in fuel amount is originally to the extent that it can be compensated for by correcting the fuel amount using air-fuel ratio feedback control. However, in the fuel injection control device for a multi-cylinder internal combustion engine that detects the oxygen concentration in the exhaust gas from multiple cylinders using one 02 sensor as described above, there is a difference in the amount of fuel in each cylinder,
In other words, it is not possible to individually detect the air-fuel ratio bias for each cylinder, and even if the apparent air-fuel ratio of the mixture determined by the 02 sensor matches the theoretical mixture ratio, the air-fuel ratio is actually There are cases where some cylinders are on the rich side and some cylinders are on the lean side, and in this case, the three-way catalyst cannot sufficiently purify the LrC1Go and NOx components in the exhaust gas across all cylinders. A problem occurs.

(発明の目的) 本発明は上記事情に鑑みてなされたもので、l木のo2
センサが複数気筒からの排気ガス中の酸素濃度を検出す
る構成の多気筒内燃エンジンの燃料噴射装置に於て、当
該02センサからの出力信号に応じた空燃比制御の精度
をより一層向上させるように共通の02センサに対応す
る燃料噴射弁を選別し組イ・1ける選別組付は方法を提
供することを目的とする。
(Object of the invention) The present invention has been made in view of the above circumstances, and
In a fuel injection device for a multi-cylinder internal combustion engine in which a sensor detects oxygen concentration in exhaust gas from multiple cylinders, the accuracy of air-fuel ratio control according to the output signal from the 02 sensor is further improved. The purpose of this invention is to provide a method for sorting and assembling fuel injection valves corresponding to common 02 sensors.

(課題を解決するための手段) 上記目的を達成するため本発明に依れば、多気筒内燃エ
ンジンの対応する気筒に燃料を間欠的に噴射供給する複
数の燃料噴射弁と、少なくとも2つ以−Lの気筒より排
出される排気ガス中の酸素濃度を検出する排気濃度検出
器と、該排気濃度検出器からの出力信号に基づいて前記
気筒に対応する燃料噴射弁により供給される燃料量を決
定し、前記気筒に供給される混合気の空燃比を目標空燃
比に制御する燃料噴射制御装置とを備える多気筒内燃エ
ンジンの燃料噴射弁の選別組利は方法において、燃料流
量値が所定の許容誤差範囲内にある複数の燃料噴射弁の
燃料流量値を、小流量時と大流量時の少なくとも2点で
測定し、該測定した燃料流量値により前記燃料噴射弁を
複数のグループに分類すると共に、該分類した同一グル
ープに属する燃料噴射弁に同一の識別記号を付り、し、
同一識別記号が(=1与された燃料噴射弁のみを1つの
排気濃度検出器に対応する気筒に組付けるようにしたこ
とを特徴とする多気筒内燃エンジンの燃料噴射弁の選別
組付は方法が提供される。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a plurality of fuel injection valves that intermittently inject and supply fuel to corresponding cylinders of a multi-cylinder internal combustion engine, and at least two or more fuel injection valves. - an exhaust concentration detector that detects the oxygen concentration in the exhaust gas discharged from the L cylinder; and an exhaust concentration detector that detects the amount of fuel supplied by the fuel injection valve corresponding to the cylinder based on the output signal from the exhaust concentration detector. and a fuel injection control device for controlling an air-fuel ratio of an air-fuel mixture supplied to the cylinders to a target air-fuel ratio. Fuel flow values of a plurality of fuel injection valves within a tolerance range are measured at at least two points, one at a small flow rate and one at a large flow rate, and the fuel injectors are classified into a plurality of groups based on the measured fuel flow values. At the same time, the same identification symbol shall be attached to the fuel injection valves belonging to the same classified group.
A method for selectively assembling fuel injectors for a multi-cylinder internal combustion engine, characterized in that only fuel injectors given the same identification symbol (=1) are assembled into a cylinder corresponding to one exhaust gas concentration detector. is provided.

(作用) 製造時に一定規格内であると判定された燃料噴射弁を、
更に流量特性の類似したもの同士のグループに分類して
同一グループの燃料噴射ブrに同一の識別記号を付与す
るので、噴射弁の良・否の判定を従来通り行なって使用
可能な噴射弁の数を従来通り確保すると共に、1つの0
2センサがセンシングする複数気筒に同一識別記号を付
与したもののみを装着するので空燃比制御の精度がより
一層向」ニする。
(Function) A fuel injection valve that was determined to be within a certain standard at the time of manufacture,
Furthermore, since fuel injection valves in the same group are classified into groups with similar flow characteristics and the same identification symbol is given to the fuel injection valves in the same group, it is possible to determine whether the injector is good or not and determine which injector is usable. In addition to securing the number as usual, one 0
Since the cylinders sensed by the two sensors are only equipped with the same identification symbol, the accuracy of air-fuel ratio control is further improved.

更に、メンテナンス時等に故障した燃料噴射弁を交換す
る場合にも該噴射弁と同一識別記号が付与された噴射弁
との交換が容易に行なえるので引き続き精度の良い空燃
比制御が行なえる。
Furthermore, when replacing a malfunctioning fuel injector during maintenance or the like, the injector can be easily replaced with an injector that has the same identification symbol, so that highly accurate air-fuel ratio control can continue to be performed.

(発明の実施例) 以下、本発明の一実施例を図面を参照して詳細に説明す
る。
(Embodiment of the Invention) Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

第2図は本発明の燃料噴射弁の選別組付は方法を適用す
る内燃エンジンの燃料噴射制御装置の全体構成を示すブ
ロック図で、同図中1はV型6気筒の内燃エンジンを示
す。
FIG. 2 is a block diagram showing the overall configuration of a fuel injection control device for an internal combustion engine to which the method of selecting and assembling fuel injection valves of the present invention is applied, and 1 in the figure indicates a V-type 6-cylinder internal combustion engine.

0(I記エンジンlの一側バンクl^には第1、第2及
び第3気筒21.22及び23(第1気筒グループ)が
、他側バンク18には第4. f115及び第6気筒2
L  25及び26(第2気筒グループ)が配され0;
j記第1気筒グループの排気通路3^と第2気筒グルー
プの排気通路3Bとは互いに独立して分割形成されてい
る。これに対して吸気通路4はnij記両気筒グループ
について共通となっており、該吸気通路4の途中にはス
ロットル弁5が介装されている。
0 (I) The first, second and third cylinders 21, 22 and 23 (first cylinder group) are in one bank l^ of the engine l, and the fourth cylinder 115 and the sixth cylinder are in the other bank 18. 2
L 25 and 26 (second cylinder group) are arranged and 0;
The exhaust passage 3^ of the first cylinder group and the exhaust passage 3B of the second cylinder group are formed separately from each other. On the other hand, the intake passage 4 is common to both cylinder groups, and a throttle valve 5 is interposed in the middle of the intake passage 4.

前記第1〜第6気筒21〜26の各吸入ボートには燃料
噴射弁61〜66が夫々設けられており、これら燃料噴
射弁61〜66の制御系統は第1気筒グループ(第1〜
第3気筒21〜23)と第2気筒グループ(第4〜第6
気筒24〜26)とに独立分離されている。前記各燃料
噴射弁61〜66は燃料噴射ポンプ(図示省略)に接続
されると共に、空燃比制御に必要なデータの演算処理を
実行する電子コントロールユニット(以下ECUと云う
)7に電気的に接続され該ECU7から供給される駆動
信号によって開閉作動される。
Each intake boat of the first to sixth cylinders 21 to 26 is provided with fuel injection valves 61 to 66, respectively, and the control system for these fuel injection valves 61 to 66 is controlled by the first cylinder group (first to sixth cylinders).
3rd cylinder group 21-23) and 2nd cylinder group (4th-6th cylinder group)
The cylinders 24 to 26) are independently separated. Each of the fuel injection valves 61 to 66 is connected to a fuel injection pump (not shown) and electrically connected to an electronic control unit (hereinafter referred to as ECU) 7 that executes arithmetic processing of data necessary for air-fuel ratio control. The opening/closing operation is performed by a drive signal supplied from the ECU 7.

前記スロットル弁5より下流側の吸気通路4には接続管
8を介して該吸気通路4内の絶対圧Pa^を検出する絶
対圧センサ(以下PB^センサという)9が接続されて
おり、該PB^センサから出力される電気的検出信号は
前記ECU7に入力される。
An absolute pressure sensor (hereinafter referred to as PB sensor) 9 is connected to the intake passage 4 on the downstream side of the throttle valve 5 via a connecting pipe 8, and detects the absolute pressure Pa^ in the intake passage 4. The electrical detection signal output from the PB^ sensor is input to the ECU 7.

前記エンジンlのカム軸又はクランク軸くいずれも図示
省略)の周囲にはエンジン回転数Neを検出して電気的
信号を出力するエンジン回転数センサ(以下Neセンサ
という)10が取すイτ1けられている。前記Neセン
サ10は所定クランク角度位置でクランク軸の120度
回転毎に【パルスの信号を出力し、該パルス信号はエン
ジン回転数信号及び上死点(”17Dc)信号としてへ
11記IE CU7に人力される。
An engine rotation speed sensor (hereinafter referred to as Ne sensor) 10 that detects the engine rotation speed Ne and outputs an electrical signal is located around the camshaft or crankshaft of the engine l (both of which are not shown). It is being The Ne sensor 10 outputs a pulse signal every 120 degree rotation of the crankshaft at a predetermined crank angle position, and the pulse signal is sent to the IE CU 7 as an engine rotation speed signal and a top dead center ("17Dc) signal. Man-powered.

前記第1気筒グループの排気通路3^の下流側端と第2
気筒グループの排気通路3Bの下流側端は互いに合流し
ており、該合流部分には触媒コンバータ装置である三元
触媒11が介装され、これにより排気ガス中のIIC,
Go、NOx成分の浄化作用が待われる。該三元触媒1
.1より上流側の前記排気通路3^及び3Bには夫々排
気ガス中の酸素(02)の濃度を検出して電気的信号を
出力する2つの酸素センサ(以下02センサという)1
2^、12Bが設けられており、これら02センサ12
^、+2eから出力される酸素濃度検出信号は共ニni
j、tL!ECU7G:入力すレル。
The downstream end of the exhaust passage 3^ of the first cylinder group and the second
The downstream ends of the exhaust passages 3B of the cylinder groups merge with each other, and a three-way catalyst 11, which is a catalytic converter device, is interposed at the merged portion, thereby reducing IIC, IIC, and the like in the exhaust gas.
The purification effect of Go and NOx components is awaited. The three-way catalyst 1
.. Two oxygen sensors (hereinafter referred to as 02 sensors) 1 are installed in the exhaust passages 3^ and 3B on the upstream side of 1, respectively, to detect the concentration of oxygen (02) in the exhaust gas and output an electrical signal.
2^, 12B are provided, and these 02 sensors 12
^, The oxygen concentration detection signal output from +2e is
j,tL! ECU7G: Input rail.

ECU7は、上記各種パラメータセンサ及び例えばエン
ジン温度センサ等の池のエンジン運転パラメータセンサ
13からの入力信号の波形を整形し、或は入力信号の電
圧レベルを所定レベルに修正した後、修正アナログ信号
値をデジタル信号11αに変換する等の機能を有する入
力回路7aと、中央演算処理回路(以下CPUという)
71)と、演算結果等を記憶する記憶手段7Cと、前記
燃料噴射弁61〜66に駆動信号を供給する出力回路7
d等から構成されている。
The ECU 7 shapes the waveform of the input signal from the various parameter sensors and the engine operating parameter sensor 13 such as an engine temperature sensor, or corrects the voltage level of the input signal to a predetermined level, and then converts the input signal into a corrected analog signal value. an input circuit 7a having functions such as converting the signal into a digital signal 11α, and a central processing circuit (hereinafter referred to as CPU).
71), a storage means 7C for storing calculation results, etc., and an output circuit 7 for supplying drive signals to the fuel injection valves 61 to 66.
It is composed of d, etc.

前記ECU7は上述の各種信号を入力して、前記第1気
筒グループである第1〜第3気筒21〜23の燃料噴射
弁61〜63の開弁時間TOUT(L)及び第2気筒グ
ループである第4〜第6気筒21〜26の燃料噴射弁6
4〜66の開弁時間T OUT(J)を夫々次式により
演算する。
The ECU 7 inputs the various signals described above and determines the valve opening time TOUT (L) of the fuel injection valves 61 to 63 of the first to third cylinders 21 to 23 of the first cylinder group and the second cylinder group. Fuel injection valves 6 for fourth to sixth cylinders 21 to 26
The valve opening times T OUT (J) of 4 to 66 are calculated using the following equations.

T ouT(L)=TiX KO,(L)XK、 +に
、−(1)1’our(i)=TiXKo、(lりXK
、+に、−(2)ここで、Tiは燃料噴射弁61〜66
に対し共通して用いられる基準開弁時間であり、エンジ
ン運転状態を代表するNeセンサlOからのエンジン回
転数検出信号とPB^センサ9からの絶対圧検出信号と
に応じて演算される。又、KO2(L)は第1気筒グル
ープ(第1〜第3気筒21〜23)側の空燃比補正係数
、KO2(R)は第2気筒グループ(第4〜第6気筒2
4”−26)側の空燃比補正係数であり、これらの空燃
比補正係数KO2(L)及びKoz(R)は、空燃比の
フィードバック制御時に各気筒グループに対応する02
センサ12^、128の検出信号により示される酸素濃
度に応じて夫々設定される。
T out (L) = TiX KO, (L)
, +, -(2) Here, Ti is the fuel injection valve 61 to 66
This is a reference valve opening time commonly used for the engine operating conditions, and is calculated according to the engine rotational speed detection signal from the Ne sensor IO and the absolute pressure detection signal from the PB^ sensor 9, which represent the engine operating state. Furthermore, KO2(L) is the air-fuel ratio correction coefficient for the first cylinder group (first to third cylinders 21 to 23), and KO2(R) is for the second cylinder group (fourth to sixth cylinders 21 to 23).
4"-26) side, and these air-fuel ratio correction coefficients KO2 (L) and Koz (R) are the 02"-26) side air-fuel ratio correction coefficients corresponding to each cylinder group during air-fuel ratio feedback control.
They are set according to the oxygen concentrations indicated by the detection signals of the sensors 12^ and 128, respectively.

K1及びに2は夫々各種エンジンパラメータ信号に応じ
て演算される補正係数及び補正変数であり、エンジン運
転状態に応じて燃費特性、排気ガス特性等の最適化が図
られるような所要値に設定される。
K1 and K2 are a correction coefficient and a correction variable respectively calculated according to various engine parameter signals, and are set to required values to optimize fuel consumption characteristics, exhaust gas characteristics, etc. according to engine operating conditions. Ru.

ところで上述の空燃比補正係数KO2(L)、Koz(
+りは、エンジンの空燃比フィードバック領域において
第1図の02センサ12^、12Bの出力に応じて値が
設定されるが、この値KO2(L)、KO2(1りは上
記基準開弁時間Tiに乗算されて、これを補正するもの
で、その結果得られた開弁時間’「our(t)、’I
’ o uy(t)に従ってエンジンlの各気筒グルー
プに供給される混合気の空燃比が三元触媒11の変換効
率が最大となる理論混合比(例えば14.7)に制御さ
れる。具体的には、Cr’ U7b内で02センサI2
^、12Bの酸素濃度を表わす出力値(電圧値)が夫々
所定の基準値(例えば0.6ボルト)と比較される。そ
して排気通路3^側の02センサ12^の出ツノ値が該
所定の基準値に関してリッチ側からリーン側又はその逆
に変化したときには、その変化毎に該02センサ12^
に対応する第1気筒グループの噴射弁61〜63に適用
される補正係数KO2(L)に第1の補正値Piが加減
され(P項制a1)、基準値に関してリーン側又はリッ
チ側に留まる限りは所定時間経過毎、例えばTDC信号
が所定パルス数発生する度毎に補正係数KO2(L)に
第2の補正値Δkが加減される(1項制御)。
By the way, the above-mentioned air-fuel ratio correction coefficients KO2(L) and Koz(
+ is set in the air-fuel ratio feedback region of the engine according to the outputs of the 02 sensors 12^ and 12B shown in Fig. This is multiplied by Ti to correct this, and the resulting valve opening time 'our(t), 'I
According to 'o uy(t), the air-fuel ratio of the air-fuel mixture supplied to each cylinder group of the engine 1 is controlled to the stoichiometric mixture ratio (for example, 14.7) at which the conversion efficiency of the three-way catalyst 11 is maximized. Specifically, 02 sensor I2 in Cr' U7b
The output values (voltage values) representing the oxygen concentration of ^ and 12B are each compared with a predetermined reference value (for example, 0.6 volts). When the output value of the 02 sensor 12^ on the exhaust passage 3^ side changes from the rich side to the lean side or vice versa with respect to the predetermined reference value, the output value of the 02 sensor 12^ on the exhaust passage 3^ side changes from the rich side to the lean side or vice versa.
The first correction value Pi is added or subtracted to the correction coefficient KO2 (L) applied to the injection valves 61 to 63 of the first cylinder group corresponding to As far as possible, the second correction value Δk is added to or subtracted from the correction coefficient KO2(L) every time a predetermined time elapses, for example, every time the TDC signal generates a predetermined number of pulses (one-term control).

一方、排気通路3B側の02センサ12Bの出力値が該
所定の基準値に関してリッチ側がらリーン側又はその逆
に変化したときにはその変化毎に該02センサ12Bに
対応する第2気筒グループの噴射064〜66に適用さ
れる補正係数Koz(z)に第1の補正値P i カj
]Il!、す11. (Pfn:l11n) 、 MF
Pl+’flに関してリーン側又はリッチ側に留まる限
り前記所定時間経過毎に補正係数KO2(1りに第2の
補正値Δkが加減される(1項制御)。
On the other hand, when the output value of the 02 sensor 12B on the exhaust passage 3B side changes from the rich side to the lean side or vice versa with respect to the predetermined reference value, the injection 064 of the second cylinder group corresponding to the 02 sensor 12B changes every time the output value changes from the rich side to the lean side or vice versa. The first correction value P i k j
] Il! , S11. (Pfn: l11n), MF
As long as Pl+'fl remains on the lean side or rich side, the second correction value Δk is increased or decreased by the correction coefficient KO2 (1 term control) every time the predetermined time elapses.

この結果、02センサ12^の検出信号がリッチ側を示
すとき、Ecu7は第1気筒グループに属する気筒(第
1〜第3気筒)に配された燃料噴射弁61〜63の開弁
時間TOLIT(L)が小さくなるように補正係数1(
02(L)の値を小さくし当該第1気筒グループに供給
される混合気の空燃比をリーン側に偏らせる。反対に0
2センサ12^の検出信号がリーン側を示すときは開弁
時間’I’0UT(L)が大きくなるように補正係数K
O2(L)の値を大きくして混合気の空燃比をリッチ側
に偏らせる。
As a result, when the detection signal of the 02 sensor 12^ indicates the rich side, the ECU 7 calculates the valve opening time TOLIT( The correction coefficient 1(
The value of 02(L) is decreased to bias the air-fuel ratio of the air-fuel mixture supplied to the first cylinder group toward the lean side. On the contrary 0
When the detection signal of the second sensor 12^ indicates the lean side, the correction coefficient K is adjusted so that the valve opening time 'I'0UT(L) becomes larger.
The value of O2(L) is increased to bias the air-fuel ratio of the mixture toward the rich side.

一方、02センサ12Bの検出信号がリッチ側を示すと
きは、ECU7は第2気筒グループに属する気筒(第4
〜第6気筒)に配された燃料噴射弁61〜66の開弁時
間TOIJT(R)が小さくなるように補正係数KO2
(R)を小さくし当該第2気筒グループに供給される混
合気の空燃比をリーン側に偏らせ、反対に02センサ1
2Bの検出信号がリーン側を示すときは開弁時間Tou
r(g)が大きくなるように補正係数KO2(1りの値
を大きくして混合気の空燃比をリッチ側に偏らせる。
On the other hand, when the detection signal of the 02 sensor 12B indicates the rich side, the ECU 7 detects the cylinder belonging to the second cylinder group (the fourth
The correction coefficient KO2 is set so that the valve opening time TOIJT(R) of the fuel injection valves 61 to 66 arranged in the cylinders 61 to 6) is reduced.
(R) to bias the air-fuel ratio of the air-fuel mixture supplied to the second cylinder group toward the lean side, and conversely, the 02 sensor 1
When the detection signal of 2B indicates the lean side, the valve opening time Tou
The value of the correction coefficient KO2 (1) is increased so that r(g) becomes larger, and the air-fuel ratio of the air-fuel mixture is biased towards the rich side.

前記rE CU 7は前述の式(1)及び(2)により
夫々求めた開弁時間TOUT(L)及び1−OUT(R
)に基づく駆動制御信号を夫々に対応する気筒グループ
の燃料噴射弁61〜63.64〜66に供給し、その噴
射時間(開弁時間)を制御する。
The rE CU 7 is the valve opening time TOUT (L) and 1-OUT (R
) is supplied to the fuel injection valves 61 to 63 and 64 to 66 of the corresponding cylinder groups, respectively, to control the injection time (valve opening time).

次に、上記構成の燃料噴射制御装置等に適用される本発
明の燃料噴射ブ「の選別組伺は方法について説明する。
Next, a method for selecting and assembling fuel injection valves according to the present invention, which is applied to the fuel injection control device and the like having the above structure, will be explained.

前述したように、燃料噴射+ryr 御装置に組イ()
けられる燃料噴射弁は製造時にその流量特性が一定規格
内(第4図の斜線内)にあるか否かにより良、不良が判
定される。
As mentioned above, the fuel injection + ryr control device is assembled ()
At the time of manufacture, a fuel injector that is used in a fuel injection valve is determined to be good or bad depending on whether its flow rate characteristics are within a certain standard (within the diagonal lines in FIG. 4).

しかしながら斯かる判定により良品であると判定された
後でも依然、燃料噴射弁の個体差があり、この個体差が
0;i述の如き空燃比制御に与える影響は無視出来ない
。従って本発明では製造時に良品と判定された燃料噴射
弁を更に、その流量特性が類似する複数のグループに分
類し、同一の分類グループに属する噴射ブrに同一の識
別記号を付与し、1つの02センサがセンシングする1
つの気筒グループに同一の識別記号を付与した噴射弁の
みを装着するものである。
However, even after it is determined that the fuel injection valve is a good product, there are still individual differences between fuel injection valves, and the influence of these individual differences on air-fuel ratio control as described above cannot be ignored. Therefore, in the present invention, fuel injection valves determined to be non-defective at the time of manufacture are further classified into a plurality of groups with similar flow characteristics, and the injection valves belonging to the same classification group are given the same identification symbol, and one 02 sensor senses 1
Only injection valves with the same identification symbol are installed in each cylinder group.

以下、燃料噴射弁の流量特性に基づくグループ分けにつ
いて説明する。
Grouping based on the flow rate characteristics of fuel injection valves will be described below.

良品と判定された燃料噴射弁の流量特性は、概ね第2図
に示すA−Dの4つのパターンに分類することが出来る
。表−1,2は上記4つのパターンを判別する手法を示
すものである。
The flow characteristics of fuel injection valves determined to be non-defective can be roughly classified into four patterns A to D shown in FIG. Tables 1 and 2 show methods for determining the above four patterns.

まず、分類する噴射弁の燃t’を流量Qの、内燃エンジ
ンがアイドル運転状態にあるときに対応する燃料の小流
量時(開弁時間2 rnsee)での実際の値が、噴射
弁の設d1目標である小流量時の中央値Q1からl限値
までの間(O〜+3%の間)にあるか(区分゛」ユ”)
あるいは該中央値Q+から下限値までの間(0〜−3%
の間)にあるが(区分下″)をfj1定し、更に内燃エ
ンジンが高負荷高回転状態にあるときに対応する燃料の
大流量時(開ブr時間24 m5ec)の実際の燃料流
flQが大流量時の中央値Qwかも上限値までの間(0
〜+2%の間)にあるか(区分上″)あるいは該中央値
Qwから下限値までの間(0〜−2%の間)にあるかく
区分パ下”)を夫々判定する(表−1)。
First, the fuel t' of the injector to be classified is determined by the actual value of the flow rate Q at a small fuel flow rate (valve opening time 2 rnsee) when the internal combustion engine is in an idling operating state. Is it between the median value Q1 at the time of small flow rate, which is the d1 target, and the l limit value (between O and +3%)? (Category ``Y'')
Or between the median value Q+ and the lower limit (0 to -3%
In addition, the actual fuel flow flQ at the time of a large fuel flow rate (opening time 24 m5ec) when the internal combustion engine is in a high-load, high-speed state is is the median value Qw at high flow rate up to the upper limit (0
-+2%) (category upper") or between the median value Qw and the lower limit (0 to -2%) (category lower") (Table 1) ).

表−1表−2 次に、分類した噴射弁の小流量時(2msec)と大流
量時(24m5ec)とで判定した区分が共に゛上″の
とき(第2図の実線Aのパターン)には当該噴射弁に識
別記号Aを付与する。−力、小流量時に゛′上″、大流
量時に″下″のとき(第2図の一点破線Bのパターン)
には識別記号13を、小流量時に″下″°大流量時に゛
′上″のとき(第2図の二点破線Cのパターン)には識
別記号Cを、小流量時、大流量時とち゛′下″のとき(
第2図の破線りのパターン)には識別記号りを、夫々分
類した噴射弁に付与する(表−2)。
Table-1 Table-2 Next, when the classification determined for the small flow rate (2 msec) and high flow rate (24 m5 ec) of the classified injection valve are both "upper" (pattern of solid line A in Figure 2), gives identification symbol A to the injector. - When the force is "up" when the flow rate is small, and "down" when the flow rate is large (pattern indicated by dot-dashed line B in Figure 2)
Identification symbol 13 is used for "lower" when the flow rate is small, "upper" when the flow rate is large (pattern of the two-dot broken line C in Fig. 2), and identification symbol C is used for the small flow rate and large flow rate. When it is below (
In the broken line pattern in Figure 2), identification symbols are given to the respective classified injection valves (Table 2).

第3図は上述の手法にて分類された燃料噴射弁のうち同
一識別記号が付しであるもののみを第1図に示した燃料
噴射制御装置に装着して実際に空燃比を理論混合比にフ
ィードバック制御した場合の排気ガス成分の含有量を表
わすグラフである。
Figure 3 shows that among the fuel injection valves classified using the above method, only those with the same identification symbol are installed in the fuel injection control device shown in Figure 1, and the air-fuel ratio is actually adjusted to the stoichiometric mixture ratio. 3 is a graph showing the content of exhaust gas components when feedback control is performed.

含有量はNox/Co及びN Ox / I Cの関係
で表わされる。本発明の方法を適用した装置によって得
られた実験結果をブロットシた点(◇印)と、製造時の
一定規格を満たす燃料噴射ブrを識別せずに、燃料噴射
制御装置に装着して空燃比フィードバック制御を行なっ
た場合の排気ガス成分を同様にプロットした点(Δ印)
とは、第3図に示すように、バラツキ幅に大きな差異が
ある。即ち、識別していない燃料噴射弁を用いて従来通
りの空燃比制御を行なうと排気ガス成分含有量を表わす
点(△印)は、第3図の斜線で表わす範囲内で点在する
が、1つの02センサがセンシングする気筒に、前記A
−Dのうちの同一識別記号が付与された燃料噴射弁のみ
を装着して空燃比制御を行なうと排気ガス成分含有面を
表わす点(◇印)はおよそ、第3図の実線で囲まれた範
囲内に収束することが判る。これは同一の識別記号を付
与した燃料噴射弁のみを同一のo2センサに対応する気
筒に装着して空燃比制御を行なうと、開弁時間と燃料流
量との関係が互いに類似しているので、1つの02セン
サがセンシングする複数の気筒に供給される混合気の空
燃比が路間−の値になるからであり、これにより空燃比
制御の精度がより一層向上する。
The content is expressed in terms of Nox/Co and NOx/IC relationships. The experimental results obtained by the device to which the method of the present invention is applied are plotted (◇), and the fuel injection brake r that meets certain standards at the time of manufacture was not identified and was installed in the fuel injection control device and then Similar plot of exhaust gas components when fuel ratio feedback control is performed (Δ mark)
As shown in FIG. 3, there is a large difference in the variation width. That is, when conventional air-fuel ratio control is performed using an unidentified fuel injector, points (△ marks) representing the content of exhaust gas components are scattered within the range indicated by diagonal lines in Fig. 3; The above A is attached to the cylinder sensed by one 02 sensor.
- When air-fuel ratio control is performed by installing only fuel injectors with the same identification symbol in D, the point (◇ mark) representing the exhaust gas component-containing surface will approximately be surrounded by the solid line in Figure 3. It can be seen that it converges within the range. This is because when air-fuel ratio control is performed by installing only fuel injection valves with the same identification symbol in the cylinders corresponding to the same O2 sensor, the relationship between valve opening time and fuel flow rate is similar. This is because the air-fuel ratio of the air-fuel mixture supplied to the plurality of cylinders sensed by one 02 sensor becomes the road-to-road value, which further improves the accuracy of air-fuel ratio control.

(発明の効果) 以上詳述したように本発明に依れば、多気筒内燃エンジ
ンの対応する気筒に燃料を間欠的に噴射供給する複数の
燃料噴射弁と、少なくとも2つ以上の気筒より排出され
る排気ガス中の酸素濃度を検出する排気濃度検出器と、
該排気濃度検出器からの出力信号に基づいて前記気筒に
対応する燃料噴射弁により供給される燃料量を決定し、
前記気筒に供給される混合気の空燃比を目標空燃比に制
御する燃料噴射Yii御装置とを備える多気筒内燃エン
ジンの燃t″を噴UIftの選別組付は方法において、
燃Ft流散値が所定のdv容詔差範囲内にある複数の燃
料噴射弁の燃料流量値を、小流量時と大流量時の少なく
とも2点で測定し、該測定した燃料流量値により前記燃
?’)噴射ブrを複数のグループに分類すると共に、該
分類した同一グループに属する燃判噴a・1介に同一の
、識別記号を付与し、同一識別記号が(・Jqされた燃
料噴射ブrのみを1つの排気濃度検出RNに対応する気
筒に組イ(1けるようにしたので、1つの排気濃度検出
器に対応する気筒に供給される混合気の空燃比が路間−
の値となり、該u1゛気濃度検出藷の出力信号に基づい
て行なわれる空燃比制御の精度がより一層向上する。
(Effects of the Invention) As detailed above, according to the present invention, a plurality of fuel injection valves intermittently inject and supply fuel to corresponding cylinders of a multi-cylinder internal combustion engine, and a plurality of fuel injection valves that intermittently inject fuel into corresponding cylinders of a multi-cylinder internal combustion engine, and an exhaust concentration detector that detects the oxygen concentration in the exhaust gas;
determining the amount of fuel supplied by the fuel injection valve corresponding to the cylinder based on the output signal from the exhaust gas concentration detector;
A method for selecting and assembling a fuel injection unit for a multi-cylinder internal combustion engine comprising a fuel injection control device for controlling an air-fuel ratio of an air-fuel mixture supplied to the cylinder to a target air-fuel ratio,
The fuel flow values of a plurality of fuel injection valves whose fuel Ft dispersion values are within a predetermined dv capacity difference range are measured at at least two points, one at a small flow rate and one at a large flow rate, and the fuel flow rate values are determined based on the measured fuel flow values. ? ') Classify the injection valves r into multiple groups, and give the same identification symbol to the fuel injection valves a and 1 belonging to the same classified group, and the same identification symbol Since only r is set in the cylinder corresponding to one exhaust concentration detection RN (by 1), the air-fuel ratio of the mixture supplied to the cylinder corresponding to one exhaust concentration detector is
Therefore, the accuracy of the air-fuel ratio control performed based on the output signal of the air concentration detection unit u1 is further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の燃料噴射ブr選別組(ツは方法が適用
される多気同内燃エンジンの全体構成を示すブロック図
、第2図は燃料噴射ブ【の流量特性の4つのパターンを
示すグラフ、第3図は内燃エンジンの排気ガス成分含有
量と従来の内燃エンジンの排気ガス成分合有量とを比較
したグラフ、第4rgJは燃料噴射弁の流量特性による
良、不良の判定基準を表わすグラフである。 1・・・内燃エンジン、21〜26・・・気筒、3^、
  3a・・排気通路、61〜66・・・燃料噴射弁、
7・・・電子コントロールユニッl−(ECU)、] 
l・・・三元触媒、12^、12e・・・酸素(02)
センサ。 出願人  本田技研工業株式会社
Figure 1 is a block diagram showing the overall configuration of a multi-gas internal combustion engine to which the fuel injection valve screening method of the present invention is applied, and Figure 2 shows four patterns of flow rate characteristics of the fuel injection valve. The graph, Figure 3 is a graph comparing the exhaust gas component content of an internal combustion engine and the exhaust gas component content of a conventional internal combustion engine, and 4th rgJ represents the criteria for determining good or bad based on the flow rate characteristics of the fuel injection valve. It is a graph. 1... Internal combustion engine, 21 to 26... Cylinder, 3^,
3a...exhaust passage, 61-66...fuel injection valve,
7...Electronic control unit (ECU),]
l... Three-way catalyst, 12^, 12e... Oxygen (02)
sensor. Applicant Honda Motor Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、多気筒内燃エンジンの対応する気筒に燃料を間欠的
に噴射供給する複数の燃料噴射弁と、少なくとも2つ以
上の気筒より排出される排気ガス中の酸素濃度を検出す
る排気濃度検出器と、該排気濃度検出器からの出力信号
に基づいて前記気筒に対応する燃料噴射弁により供給さ
れる燃料量を決定し、前記気筒に供給される混合気の空
燃比を目標空燃比に制御する燃料噴射制御装置とを備え
る多気筒内燃エンジンの燃料噴射弁の選別組付け方法に
おいて、燃料流量値が所定の許容誤差範囲内にある複数
の燃料噴射弁の燃料流量値を、小流量時と大流量時の少
なくとも2点で測定し、該測定した燃料流量値により前
記燃料噴射弁を複数のグループに分類すると共に、該分
類した同一グループに属する燃料噴射弁に同一の識別記
号を付与し、同一識別記号が付与された燃料噴射弁のみ
を1つの排気濃度検出器に対応する気筒に組付けるよう
にしたことを特徴とする多気筒内燃エンジンの燃料噴射
弁の選別組付け方法。
1. A plurality of fuel injection valves that intermittently inject and supply fuel to corresponding cylinders of a multi-cylinder internal combustion engine, and an exhaust concentration detector that detects oxygen concentration in exhaust gas discharged from at least two or more cylinders. , a fuel that determines the amount of fuel to be supplied by the fuel injection valve corresponding to the cylinder based on the output signal from the exhaust gas concentration detector, and controls the air-fuel ratio of the air-fuel mixture supplied to the cylinder to a target air-fuel ratio. In a method for selecting and assembling fuel injectors for a multi-cylinder internal combustion engine equipped with an injection control device, the fuel flow values of a plurality of fuel injectors whose fuel flow values are within a predetermined tolerance range are divided into small flow rates and high flow rates. The fuel injectors are classified into a plurality of groups based on the measured fuel flow rate values, and the same identification symbol is given to the fuel injectors belonging to the same classified group to ensure the same identification. 1. A method for selecting and assembling fuel injectors for a multi-cylinder internal combustion engine, characterized in that only fuel injectors given symbols are assembled into cylinders corresponding to one exhaust gas concentration detector.
JP63138693A 1988-06-06 1988-06-06 Selection and assembly method of fuel injection valve for multi-cylinder internal combustion engine Expired - Lifetime JP2585719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63138693A JP2585719B2 (en) 1988-06-06 1988-06-06 Selection and assembly method of fuel injection valve for multi-cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63138693A JP2585719B2 (en) 1988-06-06 1988-06-06 Selection and assembly method of fuel injection valve for multi-cylinder internal combustion engine

Publications (2)

Publication Number Publication Date
JPH01310166A true JPH01310166A (en) 1989-12-14
JP2585719B2 JP2585719B2 (en) 1997-02-26

Family

ID=15227910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63138693A Expired - Lifetime JP2585719B2 (en) 1988-06-06 1988-06-06 Selection and assembly method of fuel injection valve for multi-cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JP2585719B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006264607A (en) * 2005-03-25 2006-10-05 Advics:Kk Brake liquid pressure control device for vehicle
JP2007055560A (en) * 2005-08-26 2007-03-08 Advics:Kk Brake hydraulic pressure control device
JP2010043603A (en) * 2008-08-12 2010-02-25 Hitachi Ltd Fuel injection system for internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006264607A (en) * 2005-03-25 2006-10-05 Advics:Kk Brake liquid pressure control device for vehicle
US7699409B2 (en) 2005-03-25 2010-04-20 Advics Co., Ltd. Vehicle brake fluid pressure control device
JP4552720B2 (en) * 2005-03-25 2010-09-29 株式会社アドヴィックス Brake hydraulic pressure control device for vehicles
JP2007055560A (en) * 2005-08-26 2007-03-08 Advics:Kk Brake hydraulic pressure control device
JP2010043603A (en) * 2008-08-12 2010-02-25 Hitachi Ltd Fuel injection system for internal combustion engine

Also Published As

Publication number Publication date
JP2585719B2 (en) 1997-02-26

Similar Documents

Publication Publication Date Title
US5228287A (en) Exhaust system for internal combustion engine
US8805609B2 (en) Apparatus and method for detecting abnormal air-fuel ratio variation
US9188075B2 (en) Diagnostic for engine cam profile switching system
US9279378B2 (en) Apparatus for detecting imbalance abnormality in air-fuel ratio between cylinders in multi-cylinder internal combustion engine
KR930006057B1 (en) System for feedback-controlling the air-fuel ratio of an air-fuel mixture to be supplied to an internal combustion engine
US7562653B2 (en) Method for detecting a cylinder-specific air/fuel ratio in an internal combustion engine
US8812220B2 (en) Diagnostic apparatus for internal combustion engine
US9416735B2 (en) Emissions control during cam profile switching diagnostic operation
US20120109497A1 (en) Abnormal inter-cylinder air-fuel ratio imbalance detection apparatus for multi-cylinder internal combustion engine
JP2002213284A (en) Method and apparatus for controlling internal combustion engine
US20040111211A1 (en) Air flow sensor failure determination apparatus and method
JPWO2002081888A1 (en) Control device for internal combustion engine
US7762244B2 (en) Method and device for adapting the recording of a measured signal for an exhaust probe
JP5741499B2 (en) Air-fuel ratio variation abnormality detection device
US7721711B2 (en) Engine control system including means for learning characteristics of individual fuel injectors
US7284545B2 (en) Device for controlling an internal combustion engine
JPH01310166A (en) Classifying and assembling method for fuel injection valve of multicylinder internal combustion engine
JP5640967B2 (en) Cylinder air-fuel ratio variation abnormality detection device
US6901790B2 (en) Internal combustion engine induction air volume calculating apparatus
US5067466A (en) System for measuring air flow rate for internal combustion engines
JP2018168701A (en) EGR control device
JP2012057480A (en) Device for determining inter-cylinder imbalance of air-fuel ratio in multi-cylinder internal combustion engine
JP3888838B2 (en) Air-fuel ratio control device for internal combustion engine
US20120116644A1 (en) Inter-cylinder air-fuel ratio imbalance abnormality detection apparatus for multi-cylinder internal combustion engine
JPS588240A (en) Electronic fuel injector for multi-cylinder four cycle internal-combustion engine