JPH01310129A - Support device for bearing receiving radial load - Google Patents

Support device for bearing receiving radial load

Info

Publication number
JPH01310129A
JPH01310129A JP14051388A JP14051388A JPH01310129A JP H01310129 A JPH01310129 A JP H01310129A JP 14051388 A JP14051388 A JP 14051388A JP 14051388 A JP14051388 A JP 14051388A JP H01310129 A JPH01310129 A JP H01310129A
Authority
JP
Japan
Prior art keywords
bearing
bearing support
support member
radial load
buckling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14051388A
Other languages
Japanese (ja)
Inventor
Yutaka Utakoji
宇多小路 豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KOUKUUKI ENGINE KYOKAI
Original Assignee
NIPPON KOUKUUKI ENGINE KYOKAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KOUKUUKI ENGINE KYOKAI filed Critical NIPPON KOUKUUKI ENGINE KYOKAI
Priority to JP14051388A priority Critical patent/JPH01310129A/en
Publication of JPH01310129A publication Critical patent/JPH01310129A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To avoid the proceeding of breakage by supporting a bearing with a plurality of flexibly deformable beams after the buckling of a bearing support member to convert it to a flexible structure so that it follows the displacement due to the circular motion defining the radius of the bearing support member. CONSTITUTION:When moving blades of a fan are scattered to give a large radial load to a bearing 1, the intermediate portion of connecting portions 5 in two spots of a conical bearing support member 3 is buckled so that a large radial load is avoided from being applied to a main body side strength member through bolt connecting portion 2. Also, after the buckling of the support member 3, the bearing 1 is supported with a plurality of cylindrical pipes 6 or flexible deformable beams 4-1, 4-2... so that the rotational frequency of primary danger of a shaft system including a bearing support device becomes lower than the rotational frequency of running of a rotary system. Thus, only smaller radial load is applied to the bearing 1, while the rotation is continued stably. Next, after the buckling of the support member 3, the possibility of breakage also exists. However, since the bending rigidity of individual beams in the independent beams 4-1, 4-2... or cylindrical pipes 6 is low, the occurrence of breakage can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、航空機用のハイバイパスターボファンのファ
ン回転部ターボプロップ(含アドバンストターボプロッ
プ)のプロペラ部、もしくはその他の産業用ターボ機械
のラジアル荷重を受ける軸受の支持装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is applied to the fan rotating part of a high-bypass turbofan for aircraft, the propeller part of a turboprop (including an advanced turboprop), or the radial part of other industrial turbomachinery. The present invention relates to a support device for a bearing that receives a load.

〔従来の技術〕[Conventional technology]

従来の航空機用ハイバイパスターボファンエンジンのフ
ァンは、第5図に示すように、プロペラに近いような長
い動翼10を備えている。これをターボ機械としてみた
場合にはそのボス比は大変小さく、シたがって、多数の
動翼lOを回転軸側のディスク等に取付けることは寸法
的に困難である。このため、ファン動翼の枚数は少なく
せざるを得ない。他方、動翼の先端側では翼弦の大きい
翼断面形状が必要となるので、動翼は真根側から翼先端
側に向かって末広がり状に大きくなった1枚当りの重置
の大きい設計にせざるを得ない。
As shown in FIG. 5, a conventional high-bypass turbofan engine fan for an aircraft includes a long rotor blade 10 that is similar to a propeller. When this is viewed as a turbomachine, its boss ratio is very small, and therefore it is dimensionally difficult to attach a large number of rotor blades 1O to a disk or the like on the rotating shaft side. For this reason, the number of fan moving blades must be reduced. On the other hand, the tip side of the rotor blade requires a blade cross-sectional shape with a large chord, so the rotor blade is designed to widen from the true root side toward the blade tip, with each blade being heavily overlapped. I have no choice but to.

動翼の先端の空気に対する相対速度は、普通の“壁”と
の関係で流体力学的に許される限界−杯まで高くとって
、要求出力をみたすのに最小で最軽量の設計を行うのが
普通である。
The relative velocity of the tips of the rotor blades to the air should be set as high as the hydrodynamic limit allowed in relation to normal "walls," and the design should be the smallest and lightest to meet the required output. It's normal.

このため、航空機の飛行中に、大きな鳥が衝突したよう
な場合には、1枚の動翼の翼根部を残して先端側が破断
し飛散することがあり、この場きの回転体側に残った不
釣合によるふれまわり荷重は、 (回転角度比)2であって、バイパス比の大きいエンジ
ンはど、この荷重の大きさは大きくなる傾向がある。
For this reason, if a large bird collides with an aircraft while it is in flight, the tip of one rotor blade may break off and be scattered, leaving only the root of the blade. The whirling load due to unbalance is (rotation angle ratio) 2, and the magnitude of this load tends to increase in engines with a large bypass ratio.

旅客機用のエンジンは、燃料経済性を高めるためにバイ
パス比を従来よりも高く設計する傾向があるのて、ファ
ン動翼が飛散した場合の、不釣合によるふれまわり荷重
は大きくなる傾向がある。
Engines for passenger aircraft tend to be designed with higher bypass ratios than conventional ones in order to improve fuel economy, so when fan rotor blades fly off, the unbalanced swinging load tends to be large.

また、従来よりも著しくバイパス比の高いウルトラバイ
パス比のダクテッドファン(ファンカウル付)や、アン
ダクテッドファン(ファンカウルなし)あるいは、アド
バンストターボプロップといわれる種類の新しい型式の
航空エンジンにおいても、以上に述べた動翼飛散時の不
釣合にもとづくふれまわり荷重に軽量構造で耐えること
は、ますます重要な技術になっていく。
In addition, the above-mentioned ducted fans (with fan cowl), unducted fans (without fan cowl), and new types of aero engines called advanced turboprops have ultra-bypass ratios that are significantly higher than conventional ones. It is becoming increasingly important to have a lightweight structure that can withstand the swinging load caused by the unbalance of flying blades.

このような巨大なふれまわり荷重(軸受支持装置のよう
な静止構造に対しては、荷重方向が回転する“回転荷重
゛′である)による構造材料の疲労現象を考えると、材
料の許容応力を低く設定せざるを得ないので、設計上の
何らかの工夫がない限り、軒数な航空エンジンの設計は
できない。
Considering the fatigue phenomenon of structural materials due to such huge whirling loads (for stationary structures such as bearing support devices, this is a "rotating load" in which the direction of the load rotates), it is important to consider the allowable stress of the material. Since it has to be set low, it is not possible to design a large number of aero engines unless there is some kind of design ingenuity.

第6図は、ファン動翼が飛散した場合の状態を示す説明
図である。
FIG. 6 is an explanatory diagram showing a state when the fan rotor blades are scattered.

第6図(a)は、ファン部分が、回転系の一次の危険速
度よりも低い回転速度で回転している場合を示す。動翼
飛散後のファン回転部の重心Gの回転中心Aからの半径
は次第に増していくので遠心荷重は増大し、これに伴っ
て回転系を支える軸受に大きなラジアル荷重をおよぼす
FIG. 6(a) shows a case where the fan section is rotating at a rotational speed lower than the primary critical speed of the rotating system. Since the radius of the center of gravity G of the fan rotating part from the center of rotation A gradually increases after the rotor blades are scattered, the centrifugal load increases, and accordingly, a large radial load is applied to the bearings that support the rotating system.

第6図(b)は、ファン部分が、回転系の一次の危険速
度よりも高い回転速度で回転している場合を示す。動翼
飛散後のファン回転部の重心Gは、物理的な運動の回転
中心A′とファン回転部の幾何学的中心A(ファン動翼
の飛散する前の回転の中心と一致する)の中間に位置し
て、安定な回転を続行できるので、第6図(a)の場合
のように遠心荷重が著しく大きくなることはない。
FIG. 6(b) shows a case where the fan section is rotating at a rotation speed higher than the primary critical speed of the rotation system. The center of gravity G of the fan rotating part after the rotor blades are scattered is the center of rotation between the physical rotation center A' and the geometric center A of the fan rotating part (which coincides with the center of rotation of the fan rotor blades before they are scattered). Since the rotor can continue to rotate stably at this position, the centrifugal load does not increase significantly as in the case of FIG. 6(a).

回転系の危険回転速度は、回転軸上に分布している質量
の大きさと分布のパターンならびに軸系の撓みの特性で
きまる。軸系の撓みは、軸そのものの剛性の大きさとそ
の分布パターンと、回転軸を支える軸受支持装置の剛性
できまる。したがってファンの実用回転数よりも軸系(
軸受支持系を含む)の−次の危険回転数の方が高くなる
ように設計しておき、動翼飛散時にその巨大な遠心荷重
を利用して、軸受支持装置の一部を意図的に破断あるい
は座屈させてばね常数をかえ、軸系の一次の危険回転数
を運転回転数よりも下に下げてやれば巨大なふれまわり
荷重に関連部品をさらす危険が避けられる。
The critical rotational speed of a rotating system is determined by the size and distribution pattern of the mass distributed on the rotating shaft, as well as the characteristics of the deflection of the shaft system. The deflection of the shaft system is determined by the rigidity of the shaft itself and its distribution pattern, as well as the rigidity of the bearing support device that supports the rotating shaft. Therefore, the shaft system (
(including the bearing support system) is designed so that the next critical rotational speed is higher, and when the rotor blades fly off, the huge centrifugal load is used to intentionally break a part of the bearing support system. Alternatively, by buckling and changing the spring constant, the critical rotational speed of the primary shaft system can be lowered below the operating rotational speed, thereby avoiding the risk of exposing related parts to huge whirling loads.

最初から、運転回転数範囲よりも軸系の一次危険回転数
の方が低くなるように設計して、軸受支持装置の一部を
破断あるいは座屈させるといったコントロールのむつか
しいプロセスを回避できるとの考え方もあるが、そのよ
うに弱い(まがりやすい)軸系〈軸受支持系を含む)を
採用すると、動翼飛散後に第6図(b)に示す状態に到
達するまでの過渡的段階で軸系が大きくたわむ現象が生
じるので、現実的な解決策ではない。
The idea is that by designing the shaft system from the beginning so that the primary critical rotational speed is lower than the operating rotational speed range, it is possible to avoid processes that are difficult to control, such as breaking or buckling parts of the bearing support device. However, if such a weak (easily bent) shaft system (including the bearing support system) is adopted, the shaft system may become damaged in the transitional stage until the state shown in Figure 6(b) is reached after the rotor blades fly off. This is not a realistic solution because a large bending phenomenon occurs.

以上のような背景によって、動翼飛散後の回転体の不釣
合による巨大な遠心荷重がエンジン等の構造部材にかか
るのを避けるために、軸受支持装置の一部を意図的に座
屈/塑性変形させる方法も考えられる。
Due to the above background, in order to avoid applying a huge centrifugal load due to the unbalance of the rotating body after the rotor blades fly off to structural members such as the engine, a part of the bearing support device is intentionally buckled/plastically deformed. There are also ways to do this.

しかし、この場合には、座屈/塑性変形といった取扱の
むつかしい要素を含んでいるため、結果にばらつきがで
てくること、および、回転部分が停止するまでの間に座
屈/塑性変形部分はhpし変形させられる恐れがあって
、結局は破断に到るであろうなどの不確定な面がある。
However, in this case, since it includes elements that are difficult to handle such as buckling/plastic deformation, the results will vary, and the buckling/plastic deformation part will be removed before the rotating part stops. There are uncertainties such as there is a risk that the material will be damaged due to hp and deformation, and that it will eventually break.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の技術の項で述べたとおり、軸受支持装置を座
屈/塑性変形させるようにした場合には、(1) 大荷
重をうけて塑性変形をはじめた早い段階でクラックが発
生し、このクラックがその強度部材の全断面におよんで
、早期に@断してしまう。
As mentioned in the prior art section above, when a bearing support device is made to undergo buckling/plastic deformation, (1) cracks occur at an early stage when plastic deformation begins under heavy load; The crack spreads over the entire cross section of the strength member, causing it to break prematurely.

(2)塑性変形を繰返しうけて最終的にはその部分から
破断してしまう。
(2) It undergoes repeated plastic deformation and eventually breaks from that part.

ことが考えられる。しかし、上記いずれの場きも、回転
側を正規の位置に近い場所に保持する機能が失われるの
で好ましくない。
It is possible that However, in any of the above cases, the function of holding the rotating side close to its normal position is lost, which is not preferable.

本発明は、このような問題点の解決を計ろうとするしの
である。
The present invention attempts to solve these problems.

〔課題を解決するための手段〕[Means to solve the problem]

本発明では、軸受支持装置において、 (1)必要な剛性を備えた円筒状あるいは円錐状あるい
は箱状等の回転軸のまわりに設けられた軸受支持部材 (2) 各々の両端がそれぞれ軸受支持部材に固着され
て副木的に再配置されしなやかで変形し易く、かつ互い
に独立した複数個の梁 を備えている。
In the present invention, in a bearing support device, (1) a bearing support member provided around a rotating shaft having a cylindrical, conical, or box shape having necessary rigidity; (2) bearing support members each having both ends thereof; It has a plurality of flexible and easily deformable beams that are fixed to the body and rearranged like a splint, and that are independent of each other.

〔作  用〕[For production]

第6図(a)で説明したとおり、回転軸の回転数が回転
系の一次危険振動数より低いときは、不釣合による遠心
力に耐えるだけの剛性を軸受支持装置がもたねばならな
い。本発明においては、軸受支持部材は必要な剛性を有
しているので、一定限度内の不釣きによる遠心力に対し
ては軸受支持部材は耐えることができる。
As explained in FIG. 6(a), when the rotational speed of the rotating shaft is lower than the primary critical frequency of the rotating system, the bearing support device must have enough rigidity to withstand the centrifugal force due to unbalance. In the present invention, since the bearing support member has the necessary rigidity, the bearing support member can withstand centrifugal force due to unbalance within a certain limit.

しかし、遠心力がこの限度を超えた場合には、剛性の高
い軸受支持部材は座屈を起こす。
However, if the centrifugal force exceeds this limit, the highly rigid bearing support member will buckle.

軸受支持装置の中の剛性の高い軸受支持部材がこのよう
に座屈したあとは軸受は、しなやかで変形しやすい複数
の梁で支持されることとなり、軸受支持装置を含む軸系
の一次危険回転数は、回転軸の運転回転数よりも下に下
がる結果となる。
After the highly rigid bearing support member in the bearing support device buckles in this way, the bearing is supported by multiple beams that are flexible and easily deformed, resulting in the primary dangerous rotation of the shaft system including the bearing support device. The result is that the number falls below the operating speed of the rotary shaft.

従って、第6図(b)について説明したとおり、回転系
は重心に近い部分を中心として回転するので動翼飛散後
の軸心は回転中心のまわりを半径一定の円を画いて回転
する、すなわち軸受支持装置も半径を規定された円運動
を行うことになるが、本発明においては軸受支持部材が
座屈を起した後は軸受はしなやかで変形しやすい複数個
の梁で支持されて、しなやかな構造に転換されるので、
軸受支持装置の上記半径を規定された円運動による変位
に追随するようにすることができ、軸受支持装置はそれ
以上の破損をまぬがれることができる。
Therefore, as explained with reference to FIG. 6(b), since the rotating system rotates around the part close to the center of gravity, the axis after flying off the rotor blade rotates in a circle with a constant radius around the center of rotation, i.e. The bearing support device also performs circular motion with a defined radius, but in the present invention, after the bearing support member buckles, the bearing is supported by a plurality of flexible beams that are easily deformed, and Because the structure is converted to
The radius of the bearing support device can be made to follow the displacement due to the defined circular motion, and the bearing support device can be prevented from further damage.

〔実施例〕〔Example〕

第1図及び第2図に本発明の第一の実施例を示す。本実
施例は第5図においてファン動翼の回転部に最も近い軸
受を支える「軸受支持装置」と記した部分に本発明を適
用したものである。
A first embodiment of the present invention is shown in FIGS. 1 and 2. In this embodiment, the present invention is applied to the part labeled "bearing support device" that supports the bearing closest to the rotating part of the fan rotor blade in FIG.

第1図及び第2図において、1はファン回転部を支える
軸受、3は必要な剛性を有する円錐状の軸受支持部材で
、その1端は軸受1を支持しており、その他端にはボル
ト結合部2が形成されて、図示しないエンジンの主要強
度メンバーに取付けられている。4は、互いに独立する
複数の梁部4−1.4−2.4−3.・・・・・・を有
し、第2図に示すように全体として円錐状の形状をもつ
副木部である。同梁部4−1.4−2.4−3は回転軸
の軸方向に伸び互いに間隔をおいて設けられ、その両端
は集合して環状の端部4′、4″を形成している。
In Figures 1 and 2, 1 is a bearing that supports the rotating part of the fan, 3 is a conical bearing support member having the necessary rigidity, one end of which supports the bearing 1, and the other end with bolts. A joint 2 is formed and attached to a main strength member of the engine, not shown. 4 is a plurality of mutually independent beam portions 4-1.4-2.4-3. It is a splint having an overall conical shape as shown in FIG. The beam portions 4-1.4-2.4-3 extend in the axial direction of the rotating shaft and are spaced apart from each other, and both ends thereof come together to form annular end portions 4', 4''. .

同端部4−2.4−3は、軸受支持部材3の内側に設け
られた環状の突条3−1. 、3−2に符号5で示す部
分で溶接、ろう付は等の手段によって結合されている。
The same end portion 4-2.4-3 is an annular protrusion 3-1. provided inside the bearing support member 3. , 3-2 and 5 are connected by welding, brazing, or other means.

上記梁部4−1.4−2.4−3は、しなやかで変形し
やすいように構成されていて、かつ互いに間隔をおいて
配置されて、各々独立した副木的に配置された梁を形成
している。
The beam portions 4-1.4-2.4-3 are constructed to be flexible and easily deformable, and are arranged at intervals from each other to form independent splint-like beams. is forming.

第3図及び第4図に本発明の第二の実施例を示す。本実
施例も、上記実施例と同様に、第5図にE軸受支持装置
」として記した部分に本発明を適用したものであり、軸
受1、結合部2及び軸受支持部材3はト記第−の実施例
と同様な構成を有している。本実施例においては、上記
第一の実施例の副木的に相当する部分が、複数のしなや
かで変形しやすい円管6によって構成されている。複数
の同円管6は互いに間隔をおいて回転軸のまわりに環状
に配置され、その両端は、軸受支持部材3の内側に説け
られた環状の突条3−1.3−2の孔に挿入され、符号
5に示す部分で溶接、ろう付け等の手段によって軸受支
持部材3に結合されていて、互いに独立した副木的に配
置された複数の梁を形成している。また、同複数の円管
6は、しなやかで変形しやすいように構成される。
A second embodiment of the present invention is shown in FIGS. 3 and 4. Similarly to the above-mentioned embodiments, this embodiment also applies the present invention to the part marked as "E bearing support device" in Fig. 5, and the bearing 1, coupling part 2, and bearing support member 3 are This embodiment has the same configuration as the embodiment of -. In this embodiment, a portion corresponding to the splint of the first embodiment is constituted by a plurality of flexible and easily deformable circular tubes 6. A plurality of circular tubes 6 are arranged in an annular shape around the rotating shaft at intervals from each other, and both ends thereof are inserted into holes of annular protrusions 3-1 and 3-2 formed inside the bearing support member 3. It is inserted and connected to the bearing support member 3 by means of welding, brazing, etc. at a portion indicated by the reference numeral 5, forming a plurality of beams arranged like mutually independent splints. Further, the plurality of circular tubes 6 are configured to be flexible and easily deformable.

七記両実施例は以上のように構成されているので、ファ
ン動翼が飛散して軸受1に巨大なラジアル荷重がかかっ
たときは、円錐形の軸受支持部材3の、2個所の結合部
5の中間部分が座屈する。
7. Both embodiments are constructed as described above, so when a huge radial load is applied to the bearing 1 due to the fan rotor blades flying off, the two joints of the conical bearing support member 3 The middle part of 5 is buckled.

これによって、巨大なラジアル荷重がボルト結合部2を
通じて本体側の強度部材に掛ることが回避される。また
、軸受支持部材3が座屈した後は、軸受1は、しなやか
で変形しやすい梁、即ち、複Rの梁M4 1,4 2.
4 3・・・・・・又は複数の円管6で支持されること
となり、軸受支持装置を含む軸系の一次危険回転数が回
転系の運転回転数よりも下に下がる結果となり、これに
よって第6図(b)について説明した通りより少ないラ
ジアル荷重のみを軸受1に及ぼしつつ安定に回転が続行
される。
This prevents a huge radial load from being applied to the strength member on the main body side through the bolt joint 2. Further, after the bearing support member 3 buckles, the bearing 1 is formed into a flexible and easily deformable beam, that is, a double-R beam M4 1, 4 2.
4 3... or supported by multiple circular tubes 6, the primary dangerous rotational speed of the shaft system including the bearing support device will fall below the operating rotational speed of the rotating system, and as a result, As explained with reference to FIG. 6(b), stable rotation is continued while only a smaller radial load is applied to the bearing 1.

軸受支持部3が座屈した後においても、回転体のもつ大
きな慣性モーメントと高速の回転速度のため座屈部には
、塑性変形がくり遅して加えられ、やがて破断のおそれ
がある。しかし、梁部4−1゜4−2.4−3・・・・
・・もしくは円管6は、各々独立していて、かつ個々の
梁の曲げ剛性が低いので、外部から強制される変位に対
し、余り高くない応力で対応できるため、このような破
断が起ることを防止できる。
Even after the bearing support part 3 buckles, plastic deformation is applied to the buckled part with a delay due to the large moment of inertia and high rotational speed of the rotating body, and there is a risk that it will eventually break. However, the beam part 4-1゜4-2.4-3...
...Or, since the circular tubes 6 are each independent and the bending rigidity of each beam is low, such a rupture occurs because it can respond to externally forced displacement with not very high stress. This can be prevented.

また、座屈後の早い段階で軸受支持部材3の一部にクラ
ックが発生し、全周に伝播するようなケースが起っても
、梁部4−1.4−2.4−3.・・・・・・もしくは
複数の円管6は軸受支持部材3とは別の部材であるので
、これに影響を受けることはない。
Moreover, even if a crack occurs in a part of the bearing support member 3 at an early stage after buckling and propagates to the entire circumference, the beam portion 4-1.4-2.4-3. Or, since the plurality of circular tubes 6 are separate members from the bearing support member 3, they are not affected by this.

また、仮に梁部4−1.4−2.4−3・・・・・・も
しくは複数の円管6のうちのいずれかにクラックが発生
した場合でも、これらは夫々が独立しているので、クラ
ックが隣接部に伝播することがない9以上のとおり、上
記各実施例は、軸受支持部材の座屈後の予想外の破断に
よる事故の拡大を防止することができる。
Furthermore, even if a crack occurs in any of the beam parts 4-1.4-2.4-3... or the plurality of circular pipes 6, each of them is independent. As described above, the cracks do not propagate to adjacent parts, and each of the above embodiments can prevent the spread of an accident due to unexpected breakage after buckling of the bearing support member.

なお、上記の実施例においては、軸受支持部材として円
錐状のものが示されているが、本発明において軸受支持
部材としては、回転軸を囲む円筒状、箱状等適当なもの
を採用することができる。
In the above embodiments, a conical bearing support member is shown, but in the present invention, a suitable bearing support member such as a cylindrical shape, a box shape, etc. that surrounds the rotating shaft may be adopted. I can do it.

また、以上本発明を主として航空機用バイパスターボフ
ァンのファン回転部の軸受支持装置に関連して説明を行
ったが、前記した通り本発明はこれに止まらず航空機用
ターボプロップのプロペラ部もしくは広くその他の産業
用ターボ機械の軸受支持装置に適用することができる。
In addition, although the present invention has been mainly described in relation to a bearing support device for a fan rotating part of an aircraft bypass turbofan, the present invention is not limited to this, but is applicable to a propeller part of an aircraft turboprop or a wide range of other applications. It can be applied to bearing support devices for industrial turbomachinery.

〔発明の効果〕〔Effect of the invention〕

以上説明したとおり本発明によって次の効果が生じる。 As explained above, the following effects are produced by the present invention.

(1)軸受に所定値以上のラジアル荷重がかかると、軸
受支持部材に座屈が起り、これによって大きなラジアル
荷重が他に伝播されることがない。
(1) When a radial load of a predetermined value or more is applied to the bearing, the bearing support member buckles, thereby preventing the large radial load from being transmitted to other parts.

(2)軸受支持部材が座屈すると、軸受けしなやかで変
形しやすい梁で支持されることとなり、ばね常数が変化
し、その結果軸受支持装置を含む軸系の一次危険回転数
が低下し回転軸の運転回転数よりも下に下がる。このた
めに、回転部の重心は物理的な運動の回転中心(回転軸
軸心)と回転部の幾何学的中心との中間に位置して安定
な回転が続行され、従って、回転軸の軸心は回転部の幾
何学的中心のまわりを半径一定の円を描いて回転する。
(2) When the bearing support member buckles, the bearing is supported by a flexible and easily deformable beam, and the spring constant changes. As a result, the primary critical rotational speed of the shaft system including the bearing support device decreases, and the rotating shaft The rotation speed drops below the operating speed. For this reason, the center of gravity of the rotating part is located midway between the rotation center of physical motion (rotating shaft axis center) and the geometric center of the rotating part, and stable rotation is continued. The heart rotates in a circle with a constant radius around the geometric center of the rotating part.

しかも、本発明においては、このとき軸受はしなやかで
変形しやすい梁で支持されているので、本発明に係る軸
受支持装置はこの半径を規定された円運動による変位に
追随することができる。
Furthermore, in the present invention, since the bearing is supported by a flexible and easily deformable beam, the bearing support device according to the present invention can follow the displacement due to the circular motion with the defined radius.

(3) 座屈後軸受支持部材の一部にクラックが発生し
ても、これが別体の梁に伝わることがない。
(3) Even if a crack occurs in a part of the bearing support member after buckling, this crack will not be transmitted to a separate beam.

(4)梁のうちのいずれかにクラックが発生しても、各
々の梁は独立しているのでこれが隣接する梁に伝播され
ることがない。
(4) Even if a crack occurs in any of the beams, since each beam is independent, the crack will not propagate to adjacent beams.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第一の実施例の縦断面図、第2図は上
記実施例の要部の斜視図、 第3図は本発明の第二の実施例の縦断面図、第4図は第
3図A−A線に沿う断面図、第5図は従来の航空機用バ
イパスターボファンの軸受支持装置の説明図、 第6図はファン動翼の一部が飛散した場合の回転状態の
説明図、 である。 1・・・軸受、      2・・・ボルト結合部13
・・・軸受支持部材2 4・・・副木部材。 6・・・円管。 代理人  弁理士    坂 間    暁外2名 第2図
FIG. 1 is a longitudinal sectional view of a first embodiment of the present invention, FIG. 2 is a perspective view of the main parts of the above embodiment, FIG. 3 is a longitudinal sectional view of a second embodiment of the invention, The figure is a sectional view taken along the line A-A in Figure 3, Figure 5 is an explanatory diagram of a bearing support device for a conventional aircraft bypass turbo fan, and Figure 6 is a rotational state when a part of the fan rotor blade is blown off. This is an explanatory diagram of . 1... Bearing, 2... Bolt joint part 13
... Bearing support member 2 4 ... Splint member. 6...Circular tube. Agent: Patent Attorney Akigai Sakama (2 people) Figure 2

Claims (1)

【特許請求の範囲】[Claims] 回転軸を囲んで設けられ必要な剛性を備えた軸受支持部
材、及び各々の両端がそれぞれ前記軸受支持部材に固着
されて副木的に配置され互いに独立したしなやかで変形
しやすい複数の梁からなることを特徴とするラジアル荷
重を受ける軸受の支持装置。
Consisting of a bearing support member that surrounds the rotating shaft and has the necessary rigidity, and a plurality of flexible and easily deformable beams that are independent of each other and are arranged like a splint, with each end fixed to the bearing support member. A support device for a bearing that receives a radial load, characterized by:
JP14051388A 1988-06-09 1988-06-09 Support device for bearing receiving radial load Pending JPH01310129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14051388A JPH01310129A (en) 1988-06-09 1988-06-09 Support device for bearing receiving radial load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14051388A JPH01310129A (en) 1988-06-09 1988-06-09 Support device for bearing receiving radial load

Publications (1)

Publication Number Publication Date
JPH01310129A true JPH01310129A (en) 1989-12-14

Family

ID=15270396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14051388A Pending JPH01310129A (en) 1988-06-09 1988-06-09 Support device for bearing receiving radial load

Country Status (1)

Country Link
JP (1) JPH01310129A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2538036A3 (en) * 2011-06-24 2017-05-31 United Technologies Corporation Integral bearing support and centering spring assembly for a gas turbine engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6022164A (en) * 1983-07-19 1985-02-04 Canon Inc Temperature controller of recorder
JPS6316599A (en) * 1986-07-09 1988-01-23 松下電器産業株式会社 Radio frequency heater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6022164A (en) * 1983-07-19 1985-02-04 Canon Inc Temperature controller of recorder
JPS6316599A (en) * 1986-07-09 1988-01-23 松下電器産業株式会社 Radio frequency heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2538036A3 (en) * 2011-06-24 2017-05-31 United Technologies Corporation Integral bearing support and centering spring assembly for a gas turbine engine

Similar Documents

Publication Publication Date Title
US5486086A (en) Blade containment system
US10815825B2 (en) Post FBO windmilling bumper
US5746391A (en) Mounting for coupling a turbofan gas turbine engine to an aircraft structure
CN107975425B (en) Load reduction assembly for gas turbine engine
US4875655A (en) Vibration isolating engine mount
US10808622B2 (en) Turbine engine case mount and dismount
US7097413B2 (en) Bearing support
US4452038A (en) System for attaching two rotating parts made of materials having different expansion coefficients
US4695220A (en) Actuator for variable vanes
US4375906A (en) System for supporting a rotor in a conditions of accidental dynamic imbalance
EP2080879B1 (en) Mounting system for a gas turbine engine
US4022540A (en) Frangible airfoil structure
US10041534B2 (en) Bearing outer race retention during high load events
US20060000944A1 (en) Aircraft engine with means of suspension from the structure of an aircraft
EP0298898A2 (en) Crossed I-beam structural strut
GB2289720A (en) Blade containment system
GB2322914A (en) Gas turbine engine with emergency bearing support
US6079200A (en) Ducted fan gas turbine engine with fan shaft frangible connection
US5165850A (en) Compressor discharge flowpath
US11725591B2 (en) High power epicyclic gearbox and operation thereof
US5226288A (en) Torque link fan jet engine support for reducing engine bending
US10975729B2 (en) Gas turbine engine
US5108259A (en) Flexible connector for use in aircraft
JPH0238200A (en) Duct-less fan-engine installed to wing
EP2546460A2 (en) Turbine engine and load reduction device thereof