JPH01309966A - Sputtering device - Google Patents

Sputtering device

Info

Publication number
JPH01309966A
JPH01309966A JP14108888A JP14108888A JPH01309966A JP H01309966 A JPH01309966 A JP H01309966A JP 14108888 A JP14108888 A JP 14108888A JP 14108888 A JP14108888 A JP 14108888A JP H01309966 A JPH01309966 A JP H01309966A
Authority
JP
Japan
Prior art keywords
substrate
target
magnetic
magnetic field
magnetic means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14108888A
Other languages
Japanese (ja)
Inventor
Kunio Tanaka
田中 邦生
Zenichi Yoshida
善一 吉田
Yoichi Onishi
陽一 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14108888A priority Critical patent/JPH01309966A/en
Publication of JPH01309966A publication Critical patent/JPH01309966A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To prevent the abnormal rise of substrate temp. at the time of increasing sputter electric power by providing an auxiliary magnetic means having specific properties to the rear of a substrate to be treated and also interposing an intermediate electrode between a target and the substrate to be treated in a magnetron sputtering device. CONSTITUTION:An auxiliary electrode 11 is provided to the rear of a holder 9 for a substrate 10 in a vacuum tank 8 in a magnetron sputtering device, and flowing of electrons moving along leakage magnetic force lines 12 from the surface of a target 4 into the substrate is prevented by the magnetic field formed by the lines 13 of magnetic force from the above electrode 11. Further, by impressing a positive voltage of <=100V by means of an electric power source 15 on an intermediate electrode 14 provided between the substrate 10 and the target 4 or carrying out grounding, high-speed electrons are captured by the intermediate electrode 14 and the flowing of the high-speed electrons into the substrate 10 is reduced, by which the abnormal temp. rise in the substrate 10 and the resulting deformation of the substrate 10 can be prevented even if sputter electric power is increased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体プロセス技術、表面処理技術等において
、スパッタ処理により基板上へ薄膜形成を行うスパッタ
リング装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a sputtering apparatus for forming a thin film on a substrate by sputtering in semiconductor processing technology, surface treatment technology, etc.

従来の技術 現在、マグネトロンスパッタリング法による薄膜形成が
T業的に広く用いられているが、成膜速度を増加させる
ために陰極に大電力を投入すると、プラズマからの電子
流入等により基板温度が上昇するため基板冷却が行なわ
れている。
Conventional technology Currently, thin film formation by magnetron sputtering is widely used in the T industry, but when high power is applied to the cathode to increase the film formation rate, the substrate temperature rises due to electron inflow from plasma, etc. Therefore, substrate cooling is performed.

以下、図面を参照しながら従来のスパッタリング装置に
ついて説明する。第4図は従来のスパッタ装置の構成を
示したものである。17は磁石18゜ヨーク19を固定
するカソード本体、520はターゲット、21はプラズ
マシールド、22はターゲット20を冷却するための冷
却水の入口、23は冷却水出入口でちる。24はカソー
ド本体1了及び基板ホルダー26を支持する内部が真空
排気可能なチャンバーである。26は基板ホルダー25
を冷却すSための基板冷却装置である。また27はスパ
ッタリングによシ膜が形成される基板で、基板ホルダー
26に装着されている。
A conventional sputtering apparatus will be described below with reference to the drawings. FIG. 4 shows the configuration of a conventional sputtering apparatus. 17 is a cathode body for fixing a magnet 18° yoke 19, 520 is a target, 21 is a plasma shield, 22 is a cooling water inlet for cooling the target 20, and 23 is a cooling water inlet/outlet. Reference numeral 24 denotes a chamber that supports the cathode body 1 and the substrate holder 26 and whose interior can be evacuated. 26 is a board holder 25
This is a substrate cooling device for cooling S. Further, 27 is a substrate on which a film is formed by sputtering, and is mounted on a substrate holder 26.

以下その動作について説明する。チャンバー24内を真
空ポンプにより10Torr 台の圧力まで排気する。
The operation will be explained below. The inside of the chamber 24 is evacuated to a pressure on the order of 10 Torr using a vacuum pump.

その後アルゴンガスを導入して5×10Torr程度に
圧力を制御し、カソード本体17へ電源28により直流
まだは高周波の電圧を印加する。これによりチャンバー
24内にプラズマが発生し、そのためアルゴンイオンが
発生する。また、磁石18の磁界29によりプラズマ密
度の高い部分が発生し、それによりアルゴンイオンのタ
ーゲット20への衝突量が増加し、基板1γへ膜が形成
される。一方、ターゲット表面からの洩れ磁界30の作
用により、基板27ヘプラズマから電子が流入し基板2
7の温度が上昇するが、基板冷却装置26により基板2
7は冷却され、温度」二昇を防ぐ。
Thereafter, argon gas is introduced and the pressure is controlled to about 5×10 Torr, and a direct current or high frequency voltage is applied to the cathode body 17 by the power source 28. This generates plasma within the chamber 24, thereby generating argon ions. Further, a region with high plasma density is generated by the magnetic field 29 of the magnet 18, thereby increasing the amount of argon ions colliding with the target 20, and forming a film on the substrate 1γ. On the other hand, due to the leakage magnetic field 30 from the target surface, electrons flow from the plasma into the substrate 27.
Although the temperature of the substrate 2 rises, the temperature of the substrate 2 increases due to the substrate cooling device 26.
7 is cooled and prevents the temperature from rising.

発明が解決しようとする課題 しかしながら上記のような構成では、基板27の材料と
してプラスチックやガラス等の熱伝導率の低い材料を用
いた場合、基板冷却装置26が有効に作動せず、基板温
度が上昇するため、印加できるスパッタ電力に制限があ
り成膜速度が遅いという問題があった。スパッタ電力と
基板温度・成膜速度の関係を第5図に示す。横軸はスパ
ッタ電力、縦軸は基板温度及び成膜速度である。基板冷
却装置2θを作動させた場合でも、2KW以」二電力を
印加すると基板温度が100℃以上に上昇して基板の変
形がみられた。
Problems to be Solved by the Invention However, with the above configuration, if a material with low thermal conductivity such as plastic or glass is used for the substrate 27, the substrate cooling device 26 will not operate effectively and the substrate temperature will rise. As a result, there is a problem that the sputtering power that can be applied is limited and the film formation rate is slow. FIG. 5 shows the relationship between sputtering power, substrate temperature, and film formation rate. The horizontal axis is sputtering power, and the vertical axis is substrate temperature and film formation rate. Even when the substrate cooling device 2θ was operated, when a power of 2 KW or more was applied, the substrate temperature rose to 100° C. or more, and deformation of the substrate was observed.

本発明は上記問題点に鑑み、スパッタ電力を増加させた
ときの基板温度上昇を防止するようにしたものである。
In view of the above problems, the present invention is designed to prevent a rise in substrate temperature when sputtering power is increased.

課題を解決するための手段 本発明の第1の発明は、被処理基板表面に垂直に磁力線
を有L2、ターゲット表面に磁界を形成する磁気手段か
らの被処理基板表面への洩れ磁界を打ち消す方向に磁界
を形成する基板用補助磁気手段を有することを特徴とす
るものである。
Means for Solving the Problems A first aspect of the present invention provides magnetic lines of force L2 perpendicular to the surface of the substrate to be processed, in a direction that cancels the leakage magnetic field from the magnetic means that forms a magnetic field on the target surface to the surface of the substrate to be processed. The present invention is characterized in that it has an auxiliary magnetic means for the substrate that forms a magnetic field.

また、本発明の第2の発明は、ターゲット表面に磁界を
形成する磁気手段と基板用補助磁気手段間に100v以
下の正電圧ないしは接地された中間電極を設けることを
特徴とするものである。
A second aspect of the present invention is characterized in that an intermediate electrode with a positive voltage of 100 V or less or grounded is provided between the magnetic means for forming a magnetic field on the target surface and the auxiliary magnetic means for the substrate.

作  用 本発明の第1の発明は上記した構成によシ、ターゲット
表面からの基板表面への洩れ磁力線に沿って基板へ流入
する電子を、基板用補助磁気手段によシ形成される磁界
により反射させ基板への電子流入を減らし、基板温度上
昇が抑制される。
The first aspect of the present invention has the above-described configuration, and the electrons flowing into the substrate along the leakage magnetic field lines from the target surface to the substrate surface are redirected by the magnetic field formed by the auxiliary magnetic means for the substrate. The reflected electrons reduce the flow of electrons into the substrate, and the rise in substrate temperature is suppressed.

本発明の第2の発明は上記した構成により、基板用補助
磁気手段では反射しにくいターゲットからの高速電子を
中間電極に流入させ基板への電子流入を更に減らし、基
板温度上昇を抑制する。
According to the second aspect of the present invention, with the above-described configuration, high-speed electrons from the target, which are difficult to reflect by the substrate auxiliary magnetic means, flow into the intermediate electrode, further reducing the flow of electrons into the substrate, and suppressing a rise in substrate temperature.

実施例 以下、本発明の一実施例を第1図にもとづいて説明する
。1は磁石2、ヨーク3を固定するカソード本体、4は
ターゲット、5はプラズマシールド、6はターゲット4
を冷却するだめの冷却水の入口、7は冷却水出口である
。8はカソード本体1及び磁性材料でつくられた基板ホ
ルダ9を支持する内部が真空排気可能なチャンバーであ
る。1゜はスパッタリングにより膜が形成される基板で
基板ホルダ9に装着されている。11は基板10表面に
磁界を印加するための補助磁石である。12゜13は磁
石2、補助磁石11により形成される磁力線である。1
4は磁石2と補助磁石11の磁界が打ち消しあう位置に
設けられたリング状の中間電極である。15は中間電極
に10Qv以下の正電圧を印加するための電源である。
EXAMPLE Hereinafter, an example of the present invention will be described based on FIG. 1 is the magnet 2, the cathode body that fixes the yoke 3, 4 is the target, 5 is the plasma shield, 6 is the target 4
7 is the cooling water inlet of the reservoir, and 7 is the cooling water outlet. Reference numeral 8 denotes a chamber that supports the cathode body 1 and the substrate holder 9 made of a magnetic material and whose interior can be evacuated. 1° is a substrate on which a film is formed by sputtering and is mounted on a substrate holder 9. Reference numeral 11 denotes an auxiliary magnet for applying a magnetic field to the surface of the substrate 10. 12° 13 are lines of magnetic force formed by the magnet 2 and the auxiliary magnet 11. 1
4 is a ring-shaped intermediate electrode provided at a position where the magnetic fields of the magnet 2 and the auxiliary magnet 11 cancel each other out. 15 is a power source for applying a positive voltage of 10 Qv or less to the intermediate electrode.

以下その動作について説明する。チャンバー8内を真空
ポンプにより10Torr  台の圧力まで排気する。
The operation will be explained below. The inside of the chamber 8 is evacuated to a pressure on the order of 10 Torr using a vacuum pump.

その後、アルゴンガヌを導入して6×10 Toττ程
度に圧力を制御して、カソード本体1へ電源16によシ
直流まだは高周波の電圧を印加する。これによシチャン
パー8内にプラズマが発生し、そのためアルゴンイオン
が発生する。
Thereafter, argon gas is introduced, the pressure is controlled to about 6×10 4 Toττ, and a direct current or high frequency voltage is applied to the cathode body 1 by the power source 16. As a result, plasma is generated within the chamber 8, and therefore argon ions are generated.

また、磁石2の磁界17によりプラズマ密度の高い部分
が発生し、それによシアルゴンイオンのターゲット4へ
の衝突量が増加し、アルゴンイオンのスパッタにより基
板10へ薄膜が形成される。
Furthermore, a region with high plasma density is generated by the magnetic field 17 of the magnet 2, thereby increasing the amount of sialygon ions colliding with the target 4, and a thin film is formed on the substrate 10 by sputtering of argon ions.

一方、ターゲット表面からの洩れ磁力線12に沿って電
子が移動するが、補助磁石11により形成される磁界に
反射され基板10への流入が阻止される。また、中間電
極14に正電圧を印加することによシ、磁力線12.1
3でトラップしにくい高速電子を中間電極14で補獲し
、基板10への電子流入を更に減少させる。第2図に反
射磁界強度と基板温度上昇の相関を示す。横軸は反射磁
界強度、縦軸は基板温度上昇である。反射磁界を20ガ
ウス以上にすることにより基板温度上昇を減らし、プラ
スチック等の熱伝導率の低い材料を用いた基板10にも
大電力スパッタによυ高速成膜が可能になる。まだ第3
図に中間電極の有無による基板温度上昇の差を示す。中
間電極の設置により基板温度上昇を抑制して大軍カスバ
ッタによる高速成膜を可能とした。
On the other hand, electrons move along leakage lines of magnetic force 12 from the target surface, but are reflected by the magnetic field formed by the auxiliary magnet 11 and are prevented from flowing into the substrate 10. In addition, by applying a positive voltage to the intermediate electrode 14, the magnetic field lines 12.1
3, high-speed electrons that are difficult to trap are captured by the intermediate electrode 14, and the inflow of electrons into the substrate 10 is further reduced. Figure 2 shows the correlation between reflected magnetic field strength and substrate temperature rise. The horizontal axis is the reflected magnetic field strength, and the vertical axis is the substrate temperature rise. By setting the reflected magnetic field to 20 Gauss or more, the rise in substrate temperature is reduced, and high-speed film formation by high-power sputtering becomes possible even on the substrate 10 made of a material with low thermal conductivity such as plastic. Still the third
The figure shows the difference in substrate temperature rise depending on the presence or absence of an intermediate electrode. The installation of an intermediate electrode suppresses the rise in substrate temperature and enables high-speed film formation using a large scale batter.

なお、本実施例において基板用補助磁石11は永久磁石
としたが電磁石としてもよい。
In this embodiment, the substrate auxiliary magnet 11 is a permanent magnet, but it may also be an electromagnet.

また、本実施例では中間電極14はリング状としたが、
メッンユ状等に形状を変更してもよい。
Furthermore, in this embodiment, the intermediate electrode 14 is ring-shaped; however,
The shape may be changed to a menyu shape or the like.

発明の効果 以上のように本発明の第1の発明は、被処理基板表面に
垂直に磁力線を有し、ターゲット表面に磁界を形成する
磁気手段からの被処理基板表面での洩れ磁界を打ち消す
方向に磁界を形成する基板用補助磁気手段を設けること
により、ターゲット表面からの基板表面への洩れ磁力線
に沿って基板へ流入する電子を、基板用補助磁気手段で
形成される磁界により反射させ、基板への電子流入を減
らし、基板温度上昇を抑制することができる。
Effects of the Invention As described above, the first aspect of the present invention is a magnetic means having lines of magnetic force perpendicular to the surface of the substrate to be processed, and a magnetic means that forms a magnetic field on the target surface in a direction that cancels the leakage magnetic field on the surface of the substrate to be processed. By providing an auxiliary magnetic means for the substrate that forms a magnetic field on the substrate, electrons flowing into the substrate along the leakage magnetic field lines from the target surface to the substrate surface are reflected by the magnetic field formed by the auxiliary magnetic means for the substrate. It is possible to reduce the inflow of electrons into the substrate and suppress the rise in substrate temperature.

本発明の第2の発明は、ターゲット表面に磁界を形成す
る磁気手段と基板用補助磁気手段間に100V以下の正
電圧ないしは接地された中間電極を設けることにより、
基板用補助磁気手段では反射しにくいターゲットからの
高速電子を補獲し基板への電子流入を更に減らし、基板
温度上昇を抑制することができる。
The second aspect of the present invention is to provide a positive voltage of 100 V or less or a grounded intermediate electrode between the magnetic means for forming a magnetic field on the target surface and the auxiliary magnetic means for the substrate.
The substrate auxiliary magnetic means captures high-speed electrons from a target that is difficult to reflect, further reduces the inflow of electrons into the substrate, and suppresses a rise in substrate temperature.

【図面の簡単な説明】 第1図は本発明の実施例のスパッタリング装置の構成図
、第2図は反射磁界強度と基板温度上昇の関係を示した
図、第3図は中間電極の有無による基板温度上昇の差を
示した図、第4図は従来のスパッタリング装置の構成図
、第5図はスパッタ電力と基板温度、成膜速度の関係を
示した図である。 1・・・・・・カソード本体、2・・・・・・磁石、3
・・・・・・ヨーク、4・・・・・・ターゲット、8・
・・・・・チャンバー、9・・・・・・基板ホルダ、1
o・・・・・・基板、11・・・・・・補助磁石、14
・・・・・・中間電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名1−
 カソード本体 2・・−磁石 4− ターゲット a−4−yソバ ?−・・基板ホルダ IQ−一一基 板 11・・−補助1楢 !4・−中間t!& 第1図 篤 2 図 OTo     加3D40 反射磁界踵崖(7iフス〕 第3図 中闇電優に  ハ・ 第4図 あ
[Brief Description of the Drawings] Figure 1 is a configuration diagram of a sputtering apparatus according to an embodiment of the present invention, Figure 2 is a diagram showing the relationship between reflected magnetic field strength and substrate temperature rise, and Figure 3 is a diagram showing the relationship between the intensity of the reflected magnetic field and the rise in substrate temperature. FIG. 4 is a diagram showing the difference in substrate temperature rise, FIG. 4 is a configuration diagram of a conventional sputtering apparatus, and FIG. 5 is a diagram showing the relationship between sputtering power, substrate temperature, and film formation rate. 1...Cathode body, 2...Magnet, 3
...Yoke, 4...Target, 8.
...Chamber, 9...Substrate holder, 1
o...Substrate, 11...Auxiliary magnet, 14
・・・・・・Intermediate electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person1-
Cathode body 2...-Magnet 4- Target a-4-y buckwheat? -... Board holder IQ-11 board 11... - Auxiliary 1 oak! 4.-Middle t! & Figure 1 Atsushi 2 Figure OTo Ka3D40 Reflected magnetic field heel cliff (7i Hus) Figure 3 Nakayami Den Yu Ha Figure 4 A

Claims (3)

【特許請求の範囲】[Claims] (1)真空容器内で被スパッタ物質から成る成膜源とし
てのターゲットと、このターゲットを載置する陰極と、
この陰極に電圧を印加する電源と、前記ターゲット表面
に隣接して磁界を形成する磁気手段と、前記ターゲット
と所定の間隔を隔てて対面する被処理基板とを備え、か
つ前記被処理基板表面に垂直に磁力線を有し、前記磁気
手段からの前記被処理基板表面への洩れ磁界を打ち消す
方向に磁界を形成する基板用補助磁気手段を設けたスパ
ッタリング装置。
(1) A target as a film forming source made of a material to be sputtered in a vacuum container, and a cathode on which this target is placed;
A power supply that applies a voltage to the cathode, a magnetic means that forms a magnetic field adjacent to the target surface, and a substrate to be processed that faces the target with a predetermined distance therebetween; A sputtering apparatus provided with a substrate auxiliary magnetic means that has vertical lines of magnetic force and forms a magnetic field in a direction that cancels a leakage magnetic field from the magnetic means to the surface of the substrate to be processed.
(2)真空容器内で被スパッタ物質から成る成膜源とし
ての陰極に電圧を印加する電源と、前記ターゲット表面
に隣接して磁界を形成する磁気手段と、前記ターゲット
と所定の間隔を隔てて対面する被処理基板とを備え、か
つ前記被処理基板表面に垂直に磁力線を有し、前記磁気
手段からの前記被処理基板表面での洩れ磁界を打ち消す
方向に磁界を有する基板用補助磁気手段と、前記磁気手
段と前記基板用補助磁気手段間に設けられた100V以
下の正電圧ないしは接地された中間電極を設けたスパッ
タリング装置。
(2) A power source that applies voltage to a cathode as a film forming source made of a material to be sputtered in a vacuum container, a magnetic means that forms a magnetic field adjacent to the target surface, and a predetermined distance from the target; auxiliary magnetic means for a substrate, comprising a substrate to be processed facing each other, having lines of magnetic force perpendicular to the surface of the substrate to be processed, and having a magnetic field in a direction to cancel a leakage magnetic field from the magnetic means at the surface of the substrate to be processed; . A sputtering apparatus comprising an intermediate electrode connected to a positive voltage of 100 V or less or grounded between the magnetic means and the substrate auxiliary magnetic means.
(3)磁気手段と基板用補助磁気手段により形成される
各々の磁界が打ち消しあう位置に中間電極を配置する特
許請求の範囲第2項記載のスパッタリング装置。
(3) The sputtering apparatus according to claim 2, wherein the intermediate electrode is disposed at a position where the respective magnetic fields formed by the magnetic means and the auxiliary magnetic means for substrate cancel each other out.
JP14108888A 1988-06-08 1988-06-08 Sputtering device Pending JPH01309966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14108888A JPH01309966A (en) 1988-06-08 1988-06-08 Sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14108888A JPH01309966A (en) 1988-06-08 1988-06-08 Sputtering device

Publications (1)

Publication Number Publication Date
JPH01309966A true JPH01309966A (en) 1989-12-14

Family

ID=15283924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14108888A Pending JPH01309966A (en) 1988-06-08 1988-06-08 Sputtering device

Country Status (1)

Country Link
JP (1) JPH01309966A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336506A (en) * 2004-05-24 2005-12-08 National Institute For Materials Science Single power source type sputtering apparatus having anode subjected to magnetic field control
WO2019038531A1 (en) * 2017-08-21 2019-02-28 Gencoa Ltd Improvements in and relating to coating processes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127465A (en) * 1985-11-28 1987-06-09 Fujitsu Ltd Sputtering device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127465A (en) * 1985-11-28 1987-06-09 Fujitsu Ltd Sputtering device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336506A (en) * 2004-05-24 2005-12-08 National Institute For Materials Science Single power source type sputtering apparatus having anode subjected to magnetic field control
WO2019038531A1 (en) * 2017-08-21 2019-02-28 Gencoa Ltd Improvements in and relating to coating processes

Similar Documents

Publication Publication Date Title
US4657619A (en) Diverter magnet arrangement for plasma processing system
KR100659828B1 (en) Method and apparatus for ionized physical vapor deposition
US5451259A (en) ECR plasma source for remote processing
CA1195951A (en) Shaped field magnetron electrode
KR920004847B1 (en) Sputtering apparatus
KR100390540B1 (en) Magnetron plasma etching apparatus
JPH08176807A (en) Method and apparatus for vapor-depositing highly ionized medium in electromagnetically controlled environment
JPS6348952B2 (en)
JPH05502971A (en) Low frequency induction type high frequency plasma reactor
KR20010099597A (en) Physical vapor processing of a surface with non-uniformity compensation
JPH1027782A (en) Method and apparatus for plasma treatment
JP2010248576A (en) Magnetron sputtering apparatus
JPH01309966A (en) Sputtering device
KR20060089207A (en) Back biased face target sputtering
JPS59144133A (en) Plasma dry processing apparatus
JPH01309963A (en) Sputtering device
JPS62216637A (en) Device for plasma treatment
JPH02312231A (en) Dryetching device
JPH0488165A (en) Sputtering type ion source
JPS63277756A (en) Counter target type sputtering device
JPH07268624A (en) Electric discharge device
JP3100242B2 (en) Plasma processing equipment
JPS6342707B2 (en)
JP2002256431A (en) Magnetron sputtering device
GB2265635A (en) Cathodic sputtering device comprising at least four targets using plasma produced by microwaves