JPH01309752A - Manufacture of high heat conductive complex die - Google Patents

Manufacture of high heat conductive complex die

Info

Publication number
JPH01309752A
JPH01309752A JP8861088A JP8861088A JPH01309752A JP H01309752 A JPH01309752 A JP H01309752A JP 8861088 A JP8861088 A JP 8861088A JP 8861088 A JP8861088 A JP 8861088A JP H01309752 A JPH01309752 A JP H01309752A
Authority
JP
Japan
Prior art keywords
mold
copper
copper alloy
steel
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8861088A
Other languages
Japanese (ja)
Other versions
JP2642661B2 (en
Inventor
Toshio Okuno
奥野 利夫
Isao Tamura
庸 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of JPH01309752A publication Critical patent/JPH01309752A/en
Application granted granted Critical
Publication of JP2642661B2 publication Critical patent/JP2642661B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To restrain deformation of a die, to improve the forming efficiency and to prevent the development of heat crack by heating and melting copper or copper alloy having high heat conductivity under non-oxidizing atmosphere and directly metal-joining with steel or cast iron at back surface of working face. CONSTITUTION:The die 1 containing the working face is produced with casting and oxide on the surface for executing joining is removed with mechanical or chemical treatment. Successively, after charging the copper or the copper alloy 2 having >=0.1cal/cm. deg.C.sec the heat conductivity, they are heated and melted under non-oxidizing atmosphere to directly join with the steel or the cast iron at the back surface of the working face. In this result, by making the heat conductivity in inner part of the die 1 high and cooling effect in the inner part large, unevenness of the temp. in the die is made small to restrain the deformation of the die, and also cycle time for forming products is shortened and the forming efficiency can be improved. Further, the development of the heat crack is restrained to improve the service life of the die.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶融金属の鋳造用金型、若しくは溶融プラス
チック、溶融ガラスや砂中子などを成形する金型の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a mold for casting molten metal, or a mold for molding molten plastic, molten glass, sand core, or the like.

〔従来の技術〕[Conventional technology]

従来溶融金属の鋳造用金型やプラスチック・ガラス成形
用金型、砂中子成形型等、高温で使用する用途の金型材
料には、熱間ダイス鋼、ステンレス鋼などの鋼や鋳鉄ま
た一部これらより熱伝導性の大きい銅合金が一体型とし
て用いられてきた。
Conventional mold materials for applications that are used at high temperatures, such as molds for casting molten metal, molds for plastic/glass molding, and sand core molds, include steels such as hot die steel, stainless steel, cast iron, and metal molds. Copper alloys with higher thermal conductivity than these have been used as an integral part.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

これらの金型は、溶融被成形物の熱を奪って成形させる
ため、金型が昇温するが、n4または鋳鉄による金型の
場合、熱伝導性の水準が必ずしも高くないため、金型の
形状あるいは構造によっては。
These molds take away the heat from the molten material to form it, which causes the mold to rise in temperature. However, in the case of molds made of N4 or cast iron, the level of thermal conductivity is not necessarily high, so the temperature of the mold increases. Depending on the shape or structure.

金型内に大きな温度ムラが生じ、金型の変形をまねき、
また単位時間当りの成形サイクル数を上げることが困難
であった。このほか、熱伝導性の大きい銅合金において
も強度が小さいので、本問題点を解決できていなかった
。本発明の目的は、金型内部の熱伝導性を大きくし、内
部冷却効果を大きくすることにより、金型内の温度ムラ
を小さくして金型の変形を抑え、しかも製品成形サイク
ル時間を短縮し成形能率を向上することができ、さらに
ヒートクラックの発生進展を抑え、金型寿命を向上する
高熱伝導性複合金型の製造方法を提供するものである。
Large temperature irregularities occur within the mold, leading to mold deformation.
Furthermore, it was difficult to increase the number of molding cycles per unit time. In addition, copper alloys with high thermal conductivity also have low strength, so this problem has not been solved. The purpose of the present invention is to increase the thermal conductivity inside the mold and increase the internal cooling effect, thereby reducing temperature unevenness within the mold, suppressing mold deformation, and shortening the product molding cycle time. The present invention provides a method for manufacturing a highly thermally conductive composite mold that can improve molding efficiency, suppress the development of heat cracks, and improve mold life.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記問題点を解決する高熱伝導性複合金型の
製造方法を提供するものである。すなわち、金型作業面
が鋼または鋳鉄からなり、前記作業面の裏面が銅またi
Jo、1cal/cm・℃・sec以上の熱伝導率を有
する銅合金と直接金属接合された高熱伝導性複合金型の
製造方法において、作業面を含む金型を鋳造または鍛造
品から切削加工によって作製し、接合を行う面の酸化物
を機械的処理または化学的処理により除去したのち、銅
または銅合金を装入してから無酸化雰囲気中で加熱し銅
または銅合金を溶融させ接合する鋼または鋳鉄と直接金
属接合させることを特徴とするものである6また接合面
の酸化物除去後、接合面とあとから装入する銅または銅
合金の間に金属ろう材とフラックスを介在させ、銅また
は銅合金を装入してから無酸化雰囲気中で加熱し、金属
ろう材を溶融させ作業面の裏面の鋼または鋳鉄と内部の
銅または銅合金をろう材を介して接合させてもよい。さ
らに。
The present invention provides a method for manufacturing a highly thermally conductive composite mold that solves the above problems. That is, the working surface of the mold is made of steel or cast iron, and the back surface of the working surface is made of copper or i
Jo, in a method for manufacturing a high thermal conductive composite mold that is directly metal-bonded with a copper alloy having a thermal conductivity of 1 cal/cm・℃・sec or more, the mold including the working surface is formed by cutting from a cast or forged product. After manufacturing and removing oxides on the surfaces to be joined by mechanical or chemical processing, copper or copper alloy is charged and then heated in a non-oxidizing atmosphere to melt the copper or copper alloy and join. Or, it is characterized by direct metal joining with cast iron.6 Also, after removing oxides from the joint surface, a metal brazing material and flux are interposed between the joint surface and the copper or copper alloy to be charged later. Alternatively, the copper alloy may be charged and then heated in a non-oxidizing atmosphere to melt the metal brazing material and join the steel or cast iron on the back side of the working surface and the copper or copper alloy inside through the brazing material. moreover.

飼または銅合金が溶融状態から凝固する際に中心部を凹
状に凝固させることもできる。この凹状に凝固させる手
段としては、銅系材料の融液との粘着性が小さいセラミ
ックスや黒鉛などからなる中子を所望する凹状形に相当
する凸型とした後、装入する銅または銅合金の中心部に
設置した後加熱溶融して凝固させる方法で、中子に使用
するセラミックスや黒鉛は一体型またはこれらを被覆し
た状態で使用することもできる。
When the copper alloy or copper alloy solidifies from the molten state, it is also possible to solidify the central part into a concave shape. As a means for solidifying this concave shape, a core made of ceramics, graphite, etc. that has low adhesion to the melt of the copper-based material is made into a convex shape corresponding to the desired concave shape, and then the copper or copper alloy is charged. Ceramics and graphite used in the core can be used in an integrated form or in a covered state.

銅または銅合金面にできた凹状部はそのまま。Recesses formed on the copper or copper alloy surface remain as they are.

または機械加工して水冷構造部として使用し、複合金型
全体の冷却効果をさらに向上させることができるほか、
銅または銅合金が溶融後、凝固収縮する際に接合面と剥
離するのを防止する効果がある。
Alternatively, it can be machined and used as a water cooling structure to further improve the cooling effect of the entire composite mold.
It has the effect of preventing separation from the joint surface when copper or copper alloy solidifies and shrinks after melting.

鋼または鋳鉄からなる金型の裏面に銅または銅合金を溶
融して直接金属接合する工程と、前記鋼または鋳鉄の焼
入工程とを同じ工程で行なうことができる。さらには、
鋼または鋳鉄からなる金型の裏面に金属ろう材を溶融さ
せて内部の銅または銅合金をろう材を介して接合する工
程と、前記鋼または鋳鉄の焼入工程とを同じ工程で行な
ってもよい。
The step of melting copper or copper alloy to the back surface of a mold made of steel or cast iron and directly metal bonding it, and the step of quenching the steel or cast iron can be performed in the same step. Furthermore,
Even if the process of melting a metal brazing metal on the back side of a mold made of steel or cast iron and joining the copper or copper alloy inside through the brazing metal and the quenching process of the steel or cast iron are performed in the same process. good.

金型の作業面の鋼が適正な特性を得るためには、重量比
でC0.1−1,1%、Si≦3.00%、Mn≦3.
00%、Ni≦4.00%、Cr≦18.00%、Wお
よびMoの単独または複合で(1/2W+Mo)512
.00%を含有し、さらにV≦3.00%%Go≦6.
5%、Al≦1.50%、Cu≦3.00%の一種以上
を含有し、残部実質Feであることが望ましい。
In order for the steel on the working surface of the mold to have appropriate properties, the weight ratio must be C0.1-1.1%, Si≦3.00%, Mn≦3.
00%, Ni≦4.00%, Cr≦18.00%, W and Mo alone or in combination (1/2W+Mo)512
.. 00%, and further V≦3.00%%Go≦6.
5%, Al≦1.50%, Cu≦3.00%, and the balance is preferably substantially Fe.

〔実施例〕〔Example〕

以下実施例に基づき詳細に説明する。 A detailed explanation will be given below based on examples.

実施例l 5KD61の60mφ鍛伸材鍛伸後40+m+φの穴を
カップ状に機械加工し作業面を含む金型を作製した。
Example 1 After forging and drawing a 60 mφ forged material of 5KD61, a 40+m+φ hole was machined into a cup shape to produce a mold including a working surface.

前記カップ状の金型に第1表に示す条件によって複合金
型を作製した。ここで第1表中に示す銅合金1は、本発
明者が既に優良な熱伝導性および金型として適度な強度
を有する材料として提案(特開昭59−133357号
)しているNi−9i析出強化型銅合金、銅合金2は6
0/40黄銅、銅合金3は70/30黄銅である。これ
らの熱伝導性を第2表に示す。ここでは使用される銅合
金の例として三つ示したが。
A composite mold was produced using the cup-shaped mold according to the conditions shown in Table 1. Copper alloy 1 shown in Table 1 is Ni-9i, which the present inventor has already proposed as a material with excellent thermal conductivity and suitable strength as a mold (Japanese Patent Application Laid-Open No. 133357/1982). Precipitation strengthened copper alloy, copper alloy 2 is 6
0/40 brass, copper alloy 3 is 70/30 brass. Their thermal conductivities are shown in Table 2. Here, three examples of copper alloys used are shown.

一般的に金型に使用される鉄鋼材料の熱伝導性の水準は
、熱伝導* 0,1cal/cm・℃・secより小さ
く。
Generally, the level of thermal conductivity of steel materials used for molds is less than the thermal conductivity * 0.1 cal/cm・℃・sec.

これ以上の熱伝導率をもつ同合金を用いることにより金
型の熱伝導性が高められることになり、0.1cal/
cm・℃・sec以上の熱伝導率を持つ銅合金であれば
種類は問わず有効である。
By using the same alloy with a thermal conductivity higher than this, the thermal conductivity of the mold will be increased, and it will be 0.1 cal/
Any type of copper alloy is effective as long as it has a thermal conductivity of cm/°C/sec or higher.

第2表 また、金属ろう材を介在させる場合には、フラックスを
コーティングした金属ろう(材質Cu−Zn合金)の溶
接棒を第1図に示す3通りの方法で作業面を含む金型の
接合面に装着した。第1図(a)は溶接棒をバーナーで
加熱し、溶融させて内壁に付着させる方法で、第1図(
b)は溶接棒を適当な大きさに切断し、内壁に添うよう
に置く方法である。第1図(c)は、(a)と同じ方法
で金属ろう材とフラックスを接合表面に一様に付着させ
るように、接合表面を加熱しながら、付着した。
Table 2 In addition, when a metal brazing material is used, a flux-coated welding rod of a metal brazing material (material: Cu-Zn alloy) is used to join the mold including the working surface using the three methods shown in Figure 1. attached to the surface. Figure 1(a) shows a method of heating the welding rod with a burner, melting it, and attaching it to the inner wall.
b) is a method in which the welding rod is cut to an appropriate size and placed along the inner wall. In FIG. 1(c), the metal brazing material and flux were attached while heating the bonding surface so as to uniformly adhere the metal brazing material and flux to the bonding surface in the same manner as in FIG. 1(a).

第1表に示す通り、試料NO61とNo、10を除いて
は、作業面を含む金型の5KD61と装入した銅または
銅合金との金属接合された状態は良好であった。第2図
および第3図は試料N o 、 3および試料No、5
の接合部のミクロ組織と接合部に特性X線を走査させて
各元素の線分析を行ったものである。
As shown in Table 1, except for samples No. 61, No. 10, the state of metallurgical bonding between the 5KD61 mold including the working surface and the charged copper or copper alloy was good. Figures 2 and 3 show sample No. 3 and sample No. 5.
Line analysis of each element was performed by scanning the microstructure of the joint and the joint with characteristic X-rays.

鋼が5KD61側に拡散して十分接合していることが明
らかである。
It is clear that the steel diffuses to the 5KD61 side and is sufficiently bonded.

試料No、1とNo、10は作業面を含む金型の5KD
61および銅または銅合金の接合面が酸化されておりこ
のため接合が不十分である。試料No、lでは大気中加
熱のときに酸化が激しく、また試料No、10ではろう
材の溶接棒をバーナー加熱によって溶滴とする際に5K
D61の接合面が加熱され酸化したため接合不良となっ
たものである。
Samples No. 1 and No. 10 are 5KD molds including the working surface.
The bonding surfaces of 61 and copper or copper alloy are oxidized, resulting in insufficient bonding. In samples No. 1, oxidation was severe when heated in the atmosphere, and in sample No. 10, 5K was generated when the welding rod of brazing metal was turned into droplets by heating with a burner.
The bonding surface of D61 was heated and oxidized, resulting in poor bonding.

実施例2 内面寸法が幅120wm、長さ160I、高さ45+n
mで底部を有し、肉厚および底厚さがそれぞれ約5mの
作業面を含む金型を鋼の5KD61および鋳鉄のFe1
2で箱形に鋳造した。これに第3表に示す条件で複合金
型を製作した。なお第4図に、装入物および中子の装入
方法を示す。
Example 2 Inner dimensions are width 120wm, length 160I, height 45+n
The mold was made of steel 5KD61 and cast iron Fe1, with a bottom of
2 was cast into a box shape. A composite mold was manufactured under the conditions shown in Table 3. In addition, FIG. 4 shows the method of charging the charge and the core.

第3表 第3表に示した通り、試料N o 、 11と13を除
き作業面を含む金型と装入した銅または銅合金1との接
合状態は良好であった。
Table 3 As shown in Table 3, except for samples No. 11 and 13, the bonding state between the mold including the working surface and the charged copper or copper alloy 1 was good.

試料No、11は、鋳造時に作業面を含む金型が酸化さ
れ、接合表面が酸化膜で覆われており、このため接合せ
ず、酸化膜をサンドブラストまたは酸洗により除去した
。No、12.14.15の接合状態は改善され良好で
あった。
In sample No. 11, the mold including the working surface was oxidized during casting, and the joining surface was covered with an oxide film. Therefore, the oxide film was removed by sandblasting or pickling without joining. The bonding conditions of No. 12, 14, and 15 were improved and good.

No、13は作業面を含む金型と装入した銅が一部剥離
していた。これは、銅の熱膨張係数が作業面を含む金型
の5KD61より大きいため、加熱後の冷却過程で銅が
より大きく収縮したためであり、第4図のように中央部
にアルミナ製の中子を設置したN o 、 1・2.1
4.15は良好な接合状態を示した。
In No. 13, the mold including the working surface and the charged copper were partially peeled off. This is because the coefficient of thermal expansion of copper is larger than the 5KD61 of the mold including the working surface, so the copper shrinks more during the cooling process after heating, and as shown in Figure 4, an alumina core is placed in the center. N o , 1・2.1
4.15 showed a good bonding state.

実施例3 次に本発明方法により作製した金型の適用例について述
べる。
Example 3 Next, an application example of the mold produced by the method of the present invention will be described.

第4表に本発明による金型をガラス入りのプラスチック
成形用型に適用した場合の成形ザイクル時間の短縮例を
示す。
Table 4 shows examples of reduction in molding cycle time when the mold according to the present invention is applied to a glass-containing plastic mold.

第4表 金型は、内面寸法が直径300m、高さ400m+(肉
厚100薗)で1本発明の型は表面層はSKD12(I
C−5Cr−IMo−0,4V)の硬さHRC55、厚
さ8nnとし、型裏面側に第1表の銅合金2を複合させ
たもので。
The fourth table mold has inner dimensions of 300 m in diameter and 400 m in height + (wall thickness of 100 m).The mold of the present invention has a surface layer of SKD12 (I
C-5Cr-IMo-0.4V) with a hardness of HRC55 and a thickness of 8 nn, and the back side of the mold was composited with copper alloy 2 shown in Table 1.

これを従来の5KD12の場合と比較した。なお、参考
として第1表銅合金2で1体の型を作製してテストした
結果を併記した。
This was compared with the conventional 5KD12 case. For reference, the results of a test made by manufacturing one mold using Copper Alloy 2 in Table 1 are also shown.

本発明合金の場合、成形サイクル時間が半減する結果を
得た。なお、銅合金2の1体型の場合には、第4表中に
併記したように摩耗がすすみ易く短寿命に終わった。
In the case of the alloy of the present invention, the molding cycle time was halved. In addition, in the case of the one-piece type of copper alloy 2, as shown in Table 4, abrasion progressed easily and the lifespan was shortened.

第5表に本発明による金型をプレッシャーダイカスト型
に適用した場合の溶損、ヒートクラックの状況を示す。
Table 5 shows the state of melting loss and heat cracking when the mold according to the present invention is applied to a pressure die casting mold.

金型は作業面が5KD61100 X 150 X 8
0nn+ (肉厚60m)で700℃のA】合金を加圧
注入し、成形後作業面を水冷する方式で、ゲート部溶損
およびヒートクラック発生までの5hot数を求めた。
The working surface of the mold is 5KD61100 x 150 x 8
0nn+ (wall thickness: 60 m) at 700° C.] Alloy was injected under pressure and the working surface was cooled with water after molding, and the number of 5 hots until gate melting and heat cracking occurred was determined.

本発明金型としては、作業面に5KD61 (HRC4
5)を使用し、5KD61の肉厚を8m以下として、裏
面側に純銅を複合させたものである。
The mold of the present invention has a working surface of 5KD61 (HRC4
5), the thickness of 5KD61 is 8 m or less, and pure copper is composited on the back side.

第5表 本発明型の場合、耐溶損および耐ヒートクラツク寿命が
大幅に改善される結果が得られた。
Table 5 In the case of the present invention type, results were obtained in which the corrosion resistance and heat crack resistance life were significantly improved.

実施例4 金型の作業面が重量%で、G 0.28%、Si 0.
60%、Mn 0.21%、Ni 0.85%、Cr 
14.51%、WO08%、Mo1.2%、76.3%
、Co4.56%、残部実質的Feからなる鋼を金型の
作業面の寸法が直径150m、高さが10100l1肉
厚10m)であるカップ状に機械加工した後、前記カッ
プ状の内側に銅を溶融して、直接金属接合した複合金型
を作製した。この複合金型を用いガラス金型として使用
して表面部の腐食状況およびヒートクラックの発生まで
の5hot数を求め、第6表に示す。なお、比較材とし
て従来鋼5US420Jから作製した同一外径寸法から
なる一体金型を使用した。
Example 4 The working surface of the mold was 0.28% G and 0.28% Si by weight.
60%, Mn 0.21%, Ni 0.85%, Cr
14.51%, WO08%, Mo1.2%, 76.3%
, Co 4.56%, and the balance substantially Fe is machined into a cup shape with the dimensions of the working surface of the mold (diameter 150 m, height 10100 l, wall thickness 10 m), and then copper is placed inside the cup shape. A composite mold was created by melting the materials and directly metal-bonding them. Using this composite mold as a glass mold, the corrosion status of the surface portion and the number of 5 hots until the occurrence of heat cracks were determined and are shown in Table 6. As a comparison material, an integral mold made from conventional steel 5US420J and having the same outer diameter was used.

第6表 本発明型の場合、従来鋼に比較して金型作業面の温度上
昇を防止する効果と組成による耐食性および高温強度の
向上効果により金型の寿命が大幅に改善された。
Table 6 In the case of the inventive type, compared to conventional steel, the life of the mold was significantly improved due to the effect of preventing the temperature rise of the mold working surface and the effect of improving corrosion resistance and high temperature strength due to the composition.

実施例5 金型の作業面が重量%で、C0.27%、Si 0.6
3%、Mn0.19%、Ni 0.82%、 Cr 1
4.75%、W 0.7%。
Example 5 The working surface of the mold was 0.27% C, 0.6% Si by weight.
3%, Mn 0.19%, Ni 0.82%, Cr 1
4.75%, W 0.7%.

Mo1.3%、 V 6.1%、Co4.32%、残部
実質的Feからなる鋼を金型の作業面の寸法が100 
X 150 X 80m(肉厚6m)の箱形に機械加工
した後、前記箱形金型の内側に銅合金1を溶融して直接
金属接合した複合金型を作製した。この複合金型を用い
2プラスチツクを成形して表面部の腐食状況を調べた結
果を第7表に示す。なお、比較鋼として従来鋼5US4
20J2から作製した同一外形寸法からなる一体金型を
使用した。
A steel consisting of Mo 1.3%, V 6.1%, Co 4.32%, and the balance substantially Fe was made with a mold working surface dimension of 100%.
After machining into a box shape of x 150 x 80 m (thickness: 6 m), a composite mold was produced by melting copper alloy 1 inside the box-shaped mold and directly metal-bonding it. Table 7 shows the results of molding two plastics using this composite mold and examining the state of corrosion on their surfaces. In addition, as a comparison steel, conventional steel 5US4
An integral mold made from 20J2 and having the same external dimensions was used.

第7表 ×200ショット後の比較 本発明の金型の場合、200シヨツト後の金型表面は腐
食とは認められないが2部分的にくもり肌であるのに対
して、従来鋼の場合は全面がくもり肌の他部分的に斑点
状の腐食が認められた。
Table 7 × Comparison after 200 shots In the case of the mold of the present invention, the mold surface after 200 shots is not recognized as corroded, but has a cloudy surface in two parts, whereas in the case of conventional steel, The entire surface was cloudy, and spotty corrosion was observed on other parts of the skin.

実施例6 金型の作業面が重量%チー C1,03%、 Si 0
.33%、Mn 0.57%、 Ni 0.65%、 
C,r 7.23%、Mo 1.32%、 V 1.8
3%、残部実質的Feからなる鋼を金型の作業面の寸法
が外径60IIW11、内径40ngo、高さが40W
n(底部厚さ8 rrrs )であるカップ状に機械加
工した後、フラックスをコーティングしたCu−Zn合
金の金属ろうの溶接棒を用いて第1図(a)の方法で金
型の接合面に付着させ、銅合金2を装入して接合した複
合金型を作製した。この複合金型を用い砂中子焼成用と
して使用して150シヨツト後の摩耗量を比較して、そ
の結果を第8表に示す。なお、比較鋼として従来鋼FC
30から作製した同一形状からなる一体型を使用した。
Example 6 The working surface of the mold has a weight percentage of 1,03% Si, 0
.. 33%, Mn 0.57%, Ni 0.65%,
C, r 7.23%, Mo 1.32%, V 1.8
The dimensions of the working surface of the mold are 60IIW11 in outer diameter, 40ngo in inner diameter, and 40W in height.
After machined into a cup shape with a thickness of n (bottom thickness 8 rrrs), weld the joint surface of the mold using the method shown in Fig. 1(a) using a flux-coated Cu-Zn alloy solder metal welding rod. A composite mold was prepared in which the copper alloy 2 was attached and bonded by charging the copper alloy 2. This composite mold was used for sand core firing, and the amount of wear after 150 shots was compared, and the results are shown in Table 8. In addition, as a comparison steel, conventional steel FC
An integrated type having the same shape and made from No. 30 was used.

第8表 第8表のように本発明金型の耐摩耗が著しく優れている
ことがわかる。
Table 8 As shown in Table 8, it can be seen that the mold of the present invention has extremely excellent wear resistance.

実施例7 金型の作業面が重量%で、C082%、SLo、38%
、Mn 0.30%、Ni 3.52%、 Mo 2.
86%、残部実質的Feからなる鋼を実施例3において
実施したものと同じ方法で作製した複合金型を用いて、
同じ成形条件によってAl合金を成形した。その結果を
第9表に実施例3で得た結果を一部重複して示す。
Example 7 The working surface of the mold was % by weight, C082%, SLo, 38%
, Mn 0.30%, Ni 3.52%, Mo 2.
Using a composite mold made of steel consisting of 86% and the remainder substantially Fe in the same manner as in Example 3,
An Al alloy was molded under the same molding conditions. The results are shown in Table 9, partially overlapping the results obtained in Example 3.

第9表 本発明金型の場合、5KD61の一体型に対して5KD
61を作業面の鋼に用い、複合金型として使用すると金
型寿命が大幅に改善される他、上記組成からなる複合金
型の場合さらに顕著な効果が得られた。
Table 9 In the case of the mold of the present invention, 5KD for the integrated type of 5KD61
When 61 was used as a work surface steel and used as a composite mold, the life of the mold was significantly improved, and even more remarkable effects were obtained in the case of a composite mold having the above composition.

実施例8 金型の作業面が重量%で、G 0.14%、Si0.2
5%、Mn0.79%、Ni 3.01%、Mo0.4
1%、At 1.27%、 Cu 2.30%、残部実
質的Feからなる鋼を金型の作業面の寸法が150 X
 160 X 70+nm (肉厚6 +nm )の箱
形に機械加工した後、前記箱型金型の内側に銅合金2を
溶融して直接金属接合した複合金型を作製した。この複
合金型を用いプラスチックを成形して表面部の摩耗状況
を比較して、その結果を第10表に示す。なお比較鋼と
して従来m Cr−M 。
Example 8 The working surface of the mold was 0.14% G, 0.2% Si by weight.
5%, Mn0.79%, Ni 3.01%, Mo0.4
1%, At 1.27%, Cu 2.30%, and the balance substantially Fe, the dimensions of the working surface of the mold are 150
After machining into a box shape of 160 x 70+nm (thickness 6+nm), a composite mold was produced by melting copper alloy 2 inside the box-shaped mold and directly metal-bonding it. Plastics were molded using this composite mold and the wear conditions of the surface portions were compared, and the results are shown in Table 10. In addition, conventional m Cr-M is used as a comparison steel.

鋼から作製した同一形状からなる一体型を使用した。An integral type made of steel and having the same shape was used.

第10表 本発明金型は、複合金型の冷却効果に加えて金型表面の
初期硬さが高いために極めて大きな改善が認められた。
Table 10 In the mold of the present invention, an extremely large improvement was observed due to the high initial hardness of the mold surface in addition to the cooling effect of the composite mold.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明の製造方法により作製された
高熱伝導性複合金型は、従来材に比べ熱伝導性に優れ、
低圧Al鋳造やFe系材料の鋳造金型材、Al系やCu
系合金のプレッシャーダイカスト、重力鋳造型、砂中子
の焼成型、プラスチック成形型として成形能率を格段に
向上させるものであり、かつ金型の反り、ヒートクラッ
クによる割れや溶損、摩耗などの問題を解決するもので
あり、工業上顕著な効果を有する。
As described above, the high thermal conductivity composite mold produced by the manufacturing method of the present invention has superior thermal conductivity compared to conventional materials,
Low-pressure Al casting, Fe-based material casting mold materials, Al-based and Cu
It dramatically improves molding efficiency for pressure die casting of alloys, gravity casting molds, sand core firing molds, and plastic molds, and also prevents problems such as mold warping, cracking due to heat cracks, melting damage, and wear. This method solves the problem and has a significant industrial effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1作業面を含む金型の裏面にろう材を付着する
方法、第2図および第3図は、接合部のミクロ金属組織
写真と元素の拡散状況、第4図は銅または銅合金の装入
状況および中子の設置状況第1図 3 ハ゛−アー 第 2 図 熟3図 5Ko6+  !  捕 第4図 1作稟面を含む缶型 2 番人する釧 ヌ、Ja合・企 3中チ
Figure 1 shows the method of attaching brazing filler metal to the back side of the mold, including the first working surface. Figures 2 and 3 show photographs of the micrometallic structure of the joint and the state of diffusion of elements. Alloy charging situation and core installation situation Fig. 1 3 Hardware No. 2 Fig. 3 Fig. 5 Ko6+! Can type 2 including the 4th figure 1 and the 1st part of the construction.

Claims (1)

【特許請求の範囲】 1 金型の作業面が鋼または鋳鉄からなり、前記作業面
の裏面が銅または0.1cal/cm・℃・sec以上
の熱伝導率を有する銅合金と直接金属接合された高熱伝
導性複合金型の製造方法において、作業面を含む金型を
鋳造により作製し、接合を行う面の酸化物を機械的処理
または化学的処理により除去したのち、銅または銅合金
を装入してから無酸化雰囲気中で加熱し銅または銅合金
を溶融させ作業面の裏面の鋼または鋳鉄と直接金属接合
させることを特徴とする高熱伝導性複合金型の製造方法
。 2 金型の作業面が鋼からなり、前記作業面の裏面が銅
または0.1ca1/cm・℃・sec以上の熱伝導率
を有する銅合金と直接金属接合された高熱伝導性複合金
型の製造方法において、作業面を含む金型を鍛造品から
切削加工によって作製し、接合を行う面の酸化物を機械
的処理または化学的処理により除去したのち、銅または
銅合金を装入してから無酸化雰囲気中で加熱し銅または
銅合金を溶融させ作業面の裏面の鋼と直接金属接合させ
ることを特徴とする高熱伝導性複合金型の製造方法。 3 接合面の酸化物を除去後、フラックスを接合表面に
塗布するかまたはフラックスを敷いた後、銅または銅合
金を装入する特許請求の範囲第1項および第2項のいず
れかに記載の高熱伝導性複合金型の製造方法。 4 金型の作業面が鋼または鋳鉄からなり、前記作業面
の裏面が銅または0.1cal/cm・℃・sec以上
の熱伝導率を有する銅合金と金属ろう材を介して接合さ
れた高熱伝導性複合金型の製造方法において、作業面を
含む金型を鋳造により作製し、接合を行う面の酸化物を
機械的処理または化学的処理により除去したのち、接合
面とあとから装入する銅または銅合金の間に金属ろう材
とフラックスを介在させ、銅または銅合金を装入してか
ら無酸化雰囲気中で加熱し、金属ろう材を溶融させ作業
面の裏面の鋼または鋳鉄と内部の銅または銅合金をろう
材を介して接合させることを特徴とする高熱伝導性複合
金型の製造方法。 5 金型の作業面が鋼からなり、前記作業面の裏面が銅
または0.1cal/cm・℃・sec以上の熱伝導率
を有する銅合金と金属ろう材を介して接合された高熱伝
導性複合金型の製造方法において、作業面を含む金型を
鍛造品から切削加工によって作製し、接合を行う面の酸
化物を機械的処理または化学的処理により除去したのち
、接合面とあとから装入する銅または銅合金の間に金属
ろう材とフラックスを介在させ、銅または銅合金を装入
してから無酸化雰囲気中で加熱し、金属ろう材を溶融さ
せ作業面の裏面の鋼と内部の銅または銅合金をろう材を
介して接合させることを特徴とする高熱伝導性複合金型
の製造方法。 6 接合面の酸化物の機械的処理による除去をサンドブ
ラスト処理で行う特許請求の範囲第1項ないし第5項の
いずれかに記載の高熱伝導性複合金型の製造方法。 7 接合面の酸化物の化学的処理による除去を酸洗で行
う特許請求の範囲第1項ないし第5項のいずれかに記載
の高熱伝導性複合金型の製造方法。 8 銅または銅合金が溶融状態から凝固する際に中心部
に凹状部を形成させて凝固させる特許請求の範囲第1項
ないし第3項のいずれかに記載の高熱伝導性複合金型の
製造方法。 9 凹状部を形成する手段として装入する銅または銅合
金の中心部にセラミックスまたは黒鉛の中子を設置した
後、加熱溶融して凝固させる特許請求の範囲第8項記載
の高熱伝導性複合金型の製造方法。 10 鋼または鋳鉄からなる金型の裏面に銅または銅合
金を溶融して直接金属接合する工程と、前記鋼または鋳
鉄の焼入工程とを同じ工程で行なうことを特徴とする特
許請求の範囲第1項ないし第3項または第6項ないし第
9項のいずれかに記載の高熱伝導性複合金型の製造方法
。 11 鋼または鋳鉄からなる金型の裏面に金属ろう材を
溶融させて内部の銅または銅合金をろう材を介して接合
する工程と、前記鋼または鋳鉄の焼入工程とを同じ工程
で行なうことを特徴とする特許請求の範囲第4項ないし
第7項のいずれかに記載の高熱伝導性複合金型の製造方
法。 12 金型の作業面の鋼が重量比でC0.1〜1.1%
、Si≦2.00%、Mn≦2.00%、Ni≦4.0
0%、Cr≦18.00%、WおよびMoの単独または
複合で(1/2W+Mo)≦12.00%を含有し、さ
らにV≦3.00%、Co≦6.5%、Al≦1.50
%、Cu≦3.00%の一種以上を含有し、残部実質F
eからなることを特徴とする特許請求の範囲第1項ない
し第11項のいずれかに記載の高熱伝導性複合金型の製
造方法。
[Claims] 1. The working surface of the mold is made of steel or cast iron, and the back surface of the working surface is directly metal-bonded with copper or a copper alloy having a thermal conductivity of 0.1 cal/cm・℃・sec or more. In the method for manufacturing a composite mold with high thermal conductivity, a mold including a working surface is produced by casting, oxides on the surface to be joined are removed by mechanical treatment or chemical treatment, and then copper or copper alloy is mounted. A method for producing a composite mold with high thermal conductivity, which comprises heating the mold in a non-oxidizing atmosphere to melt the copper or copper alloy and directly metallize it with the steel or cast iron on the back side of the working surface. 2. A highly thermally conductive composite mold in which the working surface of the mold is made of steel, and the back surface of the working surface is directly metal-bonded with copper or a copper alloy having a thermal conductivity of 0.1 cal/cm・℃・sec or more. In the manufacturing method, a mold including the working surface is made by cutting from a forged product, oxides on the surface to be joined are removed by mechanical or chemical treatment, and then copper or copper alloy is charged. A method for manufacturing a composite mold with high thermal conductivity, which is characterized by heating in a non-oxidizing atmosphere to melt copper or copper alloy and directly metal joining it to steel on the back side of the working surface. 3. The method according to any one of claims 1 and 2, wherein after removing oxides on the joint surface, flux is applied to the joint surface or after the flux is spread, copper or copper alloy is charged. A method for manufacturing a composite mold with high thermal conductivity. 4 The working surface of the mold is made of steel or cast iron, and the back surface of the working surface is a high-temperature mold that is bonded to copper or a copper alloy having a thermal conductivity of 0.1 cal/cm・℃・sec or more via a metal brazing material. In a method for manufacturing a conductive composite mold, a mold including a working surface is produced by casting, oxides on the surface to be joined are removed by mechanical treatment or chemical treatment, and then the mold is charged later with the joint surface. A metal brazing material and flux are interposed between the copper or copper alloy, and the copper or copper alloy is charged and then heated in a non-oxidizing atmosphere to melt the metal brazing material and connect it to the steel or cast iron on the back side of the work surface. A method for manufacturing a highly thermally conductive composite mold, characterized by joining copper or copper alloys through a brazing material. 5 A high thermal conductivity mold in which the working surface of the mold is made of steel, and the back surface of the working surface is joined to copper or a copper alloy having a thermal conductivity of 0.1 cal/cm・℃・sec or more via a metal brazing material. In the manufacturing method of composite molds, a mold including a working surface is produced by cutting from a forged product, and after removing oxides on the surfaces to be joined by mechanical or chemical treatment, the joining surfaces and later mounting are removed. A metal brazing material and a flux are interposed between the copper or copper alloy, and the copper or copper alloy is charged and then heated in a non-oxidizing atmosphere to melt the metal brazing material and bond it to the steel on the back side of the work surface. A method for manufacturing a highly thermally conductive composite mold, characterized by joining copper or copper alloys through a brazing material. 6. The method for manufacturing a highly thermally conductive composite mold according to any one of claims 1 to 5, wherein the mechanical removal of the oxide on the joint surface is performed by sandblasting. 7. The method for manufacturing a highly thermally conductive composite mold according to any one of claims 1 to 5, wherein the removal of oxides on the joint surface by chemical treatment is carried out by pickling. 8. A method for manufacturing a highly thermally conductive composite mold according to any one of claims 1 to 3, in which a concave portion is formed in the center when copper or copper alloy solidifies from a molten state. . 9. The highly thermally conductive composite metal according to claim 8, in which a ceramic or graphite core is placed in the center of the charged copper or copper alloy as a means for forming the concave portion, and then heated and melted to solidify. Mold manufacturing method. 10. Claim 1, characterized in that the step of melting copper or copper alloy to the back side of a mold made of steel or cast iron and directly metal-bonding it, and the step of quenching the steel or cast iron are performed in the same step. A method for manufacturing a highly thermally conductive composite mold according to any one of Items 1 to 3 or 6 to 9. 11. The process of melting a metal brazing material on the back side of a mold made of steel or cast iron and joining the copper or copper alloy inside through the brazing material and the quenching process of the steel or cast iron are performed in the same process. A method for manufacturing a highly thermally conductive composite mold according to any one of claims 4 to 7, characterized in that: 12 The steel on the working surface of the mold has a C0.1-1.1% weight ratio.
, Si≦2.00%, Mn≦2.00%, Ni≦4.0
0%, Cr≦18.00%, W and Mo alone or in combination (1/2W+Mo)≦12.00%, further V≦3.00%, Co≦6.5%, Al≦1 .50
%, contains one or more types of Cu≦3.00%, the remainder is real F
12. The method for manufacturing a highly thermally conductive composite mold according to any one of claims 1 to 11, characterized in that the mold comprises: e.
JP8861088A 1988-01-07 1988-04-11 Manufacturing method of high thermal conductive composite mold Expired - Lifetime JP2642661B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP63-1740 1988-01-07
JP174088 1988-01-07

Publications (2)

Publication Number Publication Date
JPH01309752A true JPH01309752A (en) 1989-12-14
JP2642661B2 JP2642661B2 (en) 1997-08-20

Family

ID=11509961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8861088A Expired - Lifetime JP2642661B2 (en) 1988-01-07 1988-04-11 Manufacturing method of high thermal conductive composite mold

Country Status (1)

Country Link
JP (1) JP2642661B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020006404A (en) * 2018-07-09 2020-01-16 トヨタ自動車株式会社 Formation method of cooling structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020006404A (en) * 2018-07-09 2020-01-16 トヨタ自動車株式会社 Formation method of cooling structure

Also Published As

Publication number Publication date
JP2642661B2 (en) 1997-08-20

Similar Documents

Publication Publication Date Title
US4250229A (en) Interlayers with amorphous structure for brazing and diffusion bonding
JP2007512143A (en) Brazing method for strip made of aluminum alloy
JP5138879B2 (en) Material composite
JPH0891951A (en) Aluminum-silicon nitride conjugate and its production
JPS59159243A (en) Metallic mold for casting and its production
CN112338389B (en) Laminated strip-shaped self-brazing solder for aluminum copper brazing and preparation method thereof
WO2003060168A2 (en) Cooling plate for a metallurgical furnace and method for manufacturing such a cooling plate
JPH07218670A (en) Preparation of cooler
US7143928B2 (en) Flux and method for joining dissimiliar metals
JPH01309752A (en) Manufacture of high heat conductive complex die
US6378755B1 (en) Joined structure utilizing a ceramic foam bonding element, and its fabrication
JP6426883B2 (en) Method of manufacturing joined body excellent in corrosion resistance
US2874429A (en) Process for casting-in of sintered metal bodies
JP3078411B2 (en) Method for manufacturing composite aluminum member
JP2002248597A (en) High thermal conductive composite material and metallic mold
JPS5868489A (en) Bodies to be joined and joining method for said bodies
CN109047368A (en) A kind of preparation method of the compound Bar Wire Product of aluminium packet magnesium
JP2006510866A (en) COOLING ELEMENT AND MANUFACTURING METHOD THEREOF
US20140048587A1 (en) Brazing alloy and processes for making and using
JP5566155B2 (en) Al alloy cast product and manufacturing method thereof
JPH01143738A (en) High thermal conductivity complex die
KR960015802B1 (en) Jointing method for different kind metal of cylinder
JPS61223106A (en) Production of high alloy clad product
JP3769912B2 (en) Casting method for aluminum castings
JPH11300459A (en) Sleeve for die casting machine