JPH0130967B2 - - Google Patents

Info

Publication number
JPH0130967B2
JPH0130967B2 JP56170473A JP17047381A JPH0130967B2 JP H0130967 B2 JPH0130967 B2 JP H0130967B2 JP 56170473 A JP56170473 A JP 56170473A JP 17047381 A JP17047381 A JP 17047381A JP H0130967 B2 JPH0130967 B2 JP H0130967B2
Authority
JP
Japan
Prior art keywords
asphalt
excavated soil
asphalt waste
sieve
crushed stone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56170473A
Other languages
Japanese (ja)
Other versions
JPS5873601A (en
Inventor
Terutaka Onoe
Riichi Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP17047381A priority Critical patent/JPS5873601A/en
Publication of JPS5873601A publication Critical patent/JPS5873601A/en
Publication of JPH0130967B2 publication Critical patent/JPH0130967B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Road Repair (AREA)
  • Road Paving Structures (AREA)
  • Road Paving Machines (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、道路工事で発生する掘削土、及び、
道路表面剥離で発生する砕石含有のアスフアルト
廃材を、路床材、路盤材及びアスフアルト含材に
再生処理する方法に関する。 〔従来の技術〕 従来、アスフアルト廃材を含有する掘削土、及
び、砕石を含有するアスフアルト廃材を混じつた
状態で一括分離処理し、アスフアルト廃材を除去
した掘削土と砕石の混合物を再生処理して、路床
材と路盤材にフルイで分離し、かつ、除去したア
スフアルト廃材を再生処理して、アスフアルト合
材を回収していた。 〔発明が解決しようとする課題〕 しかし、分離処理以前に砕石含有のアスフアル
ト廃材が掘削土に混じるために、分離処理におい
て掘削土側に多量のアスフアルト廃材が混入しや
すく、その混入アスフアルトが路盤材に混じつ
て、路盤材の品質が低下しやすい欠点があつた。
また、掘削土側へのアスフアルト廃材混入量増大
によりアスフアルト合材の収率が低下する欠点が
あつた。 さらに、掘削土と砕石の混合物を路床材と路盤
材に再生処理するため、砕石により路盤材の収率
を高くできる反面、砕石に起因して処理量が多く
なり、処理設備を大能力にしなければならないた
めに、処理設備が大型で高価になる欠点があつ
た。 本発明の目的は、路盤材の品質向上、アスフア
ルト合材の収率向上、及び、路床材と路盤材を得
るための設備の小型化とコストダウンを図れるよ
うにし、しかも、路盤材の高い収率を維持できる
ようにする点にある。 〔課題を解決するための手段〕 本発明の特徴手段は、 道路工事で発生する掘削土と、道路表面剥離で
発生する砕石含有のアスフアルト廃材を各別に分
離処理して、前記掘削土を掘削土とアスフアルト
廃材に、かつ、前記アスフアルト廃材をアスフア
ルト廃材と砕石に夫々分離し、 第1プラントにおいて、前記掘削土から分離し
たアスフアルト廃材、及び、前記砕石を除去した
アスフアルト廃材をアスフアルト合材に再生処理
し、 第2プラントにおいて、前記アスフアルト廃材
を除去した掘削土をフルイで処理して、フルイ下
成分を路床材として回収し、かつ、前記フルイか
らの成分に前記砕石を混合して、路盤材を回収す
ることにあり、その作用効果は次の通りである。 〔作用〕 つまり、砕石含有のアスフアルト廃材を混ぜな
いで掘削土を単独で分離処理し、掘削土からアス
フアルト廃材を除いた後で、第2プラントにより
掘削土を再生処理するから、掘削土へのアスフア
ルト廃材混入量を、前述の混合分離方式の従来技
術に比して確実に微少でき、第2プラントで得ら
れる路盤材用の成分を、アスフアルト廃材混入量
の微少な高品質にできる。 また、第1プラントにおいて掘削土から分離し
たアスフアルト廃材と、砕石を除去したアスフア
ルト廃材を合わせて再生処理し、しかも掘削土側
へのアスフアルト廃材混入量を減少させるから、
アスフアルト合材の収率を確実に高くできる。 そして、アスフアルト廃材からの砕石をフルイ
からの路盤材用の成分に混合して、路盤材の収率
を高くするから、第2プラントにおける砕石混合
工程により前の工程に要する設備を、前述の掘削
土・砕石混合処理方式の従来技術に比して十分に
小型で安価なものにできる。 〔発明の効果〕 その結果、路盤材の品質向上、アスフアルト合
材の収率向上、及び、第2プラントの小型化とコ
ストダウンを十分に図れ、しかも、路盤材の高収
率を維持でき、全体として、高品質の路床材、路
盤材、アスフアルト合材を収率良好にかつ小型で
安価な設備で再生回収できる、一段と優れた道路
工事掘削土及びアスフアルト廃材の再生処理方法
を確立できた。 〔実施例〕 次に、図面により実施例を示す。 道路工事で発生するアスフアルト廃材Bを含む
掘削土A、及び、二次本復旧などにおいて道路表
面剥離で発生する砕石Dを含むアスフアルト廃材
B1を、不特定多数の工事現場から搬入して、中
央プラントで以下のように再生処理する。 掘削土Aからアスフアルト廃材Bを分離機1で
除去して、掘削土A1とアスフアルト廃材Bを得
る。他方、アスフアルト廃材B1から砕石Dを分
離機1′で除去して、アスフアルト廃材B1と砕石
Dを得る。 そして、第1プラントP1で次の再生処理を行
う。 両分離機1,1′からのアスフアルト廃材B,
B1をホツパー2aから破砕機2に供給し、粗砕
したアスフアルト廃材をフルイ3にかけて、フル
イ上廃材b1、互いに粒度の異なる二種のフルイ中
間廃材b2,b3、及び、フルイ下廃材b4の四種に分
級する。フルイ上廃材b1を別の破砕機2′で破砕
したのちフルイ3にフイードバツクする。残りの
三種の廃材b2,b3,b4を各別のホツパー4に収容
する。三種の廃材b2,b3,b4を、適当な配合割合
でドラムドライヤー5に投入し、ドライヤー5の
軸線方向に移送しながら高温燃焼ガスで再生所要
温度にまで加熱する。このとき、燃焼排ガスは集
塵機6で固形分を除去して大気に放出される。ド
ライヤー5からの加熱廃材をミキサー7に供給し
て、加熱廃材にストレートアスフアルトb5及び適
量の軟化剤dを加え、適当時間に亘つて混合する
ことにより再生合材cを造り、保温サイロ8内に
再生合材cを貯蔵する。 また、第2プラントP2で次のような再生処理
を行う。 分離機1からの掘削土A1をホツパー9aから
フルイ9に供給して、フルイ上成分e1とフルイ下
成分e2とに分級する。フルイ上成分e1を破砕機1
0で破砕してフルイ下成分e2に混入する。フルイ
下成分e2を計量器11で連続的に計量し、サイロ
12から供給される適量の生石灰fとともにフル
イ下成分e2を混合機13に投入する。混合機13
からの混合物をフルイ14にかけて、フルイ下成
分を改良された路床材aとして取出し、フルイ上
成分g1を破砕機18にかけて破砕したのちフルイ
14にフイードバツクし、また、フルイ中間成分
g2をサイロ12から供給される適量の生石灰f1
ともに混合機15内に投入する。混合機15から
の混合物を最終フルイ16にかけ、フルイ下成分
g2′を混合機13にフイードバツクして、路床材
aの収率を高め、また、フルイ上成分g1′を破砕
機17で粒度調整して再生路盤材bとして取出
す。 前記分離機1′で得た砕石Dをホツパー17a
から破砕機17に供給して、再生路盤材bの収率
を高める。 尚、上記実施例方法(アスフアルト塊分離処理
法)によつて得られた再生路盤材Xと、前述の従
来方法(アスフアルト塊同時処理法)によつて得
られた再生路盤材Yとの性状を調べたところ、次
の結果が得られた。
[Industrial Application Field] The present invention is applicable to excavated soil generated during road construction, and
The present invention relates to a method for recycling asphalt waste material containing crushed stone generated from road surface peeling into roadbed material, roadbed material, and asphalt-containing material. [Conventional technology] Conventionally, excavated soil containing asphalt waste material and asphalt waste material containing crushed stone are collectively separated and treated, and the mixture of excavated soil and crushed stone from which asphalt waste material has been removed is recycled. The asphalt waste material was separated into subgrade material and roadbed material using a sieve, and the removed asphalt waste material was recycled to recover asphalt composite material. [Problem to be solved by the invention] However, since asphalt waste containing crushed stone is mixed with the excavated soil before the separation process, a large amount of asphalt waste tends to get mixed into the excavated soil during the separation process, and the mixed asphalt is used as roadbed material. In addition to this, there was a drawback that the quality of the roadbed material was likely to deteriorate.
Additionally, there was a drawback that the yield of asphalt mixture decreased due to an increase in the amount of asphalt waste mixed into the excavated soil. Furthermore, since a mixture of excavated soil and crushed stone is recycled into roadbed material and roadbed material, the yield of roadbed material can be increased by using crushed stone, but on the other hand, the amount of processing is large due to crushed stone, which requires large capacity processing equipment. This has the disadvantage that the processing equipment is large and expensive. The purpose of the present invention is to improve the quality of roadbed material, improve the yield of asphalt mixture, and reduce the size and cost of equipment for obtaining roadbed material and roadbed material. The point is to be able to maintain yield. [Means for Solving the Problems] The characteristic means of the present invention is to separately process excavated soil generated during road construction and asphalt waste material containing crushed stone generated from road surface peeling, and to convert the excavated soil into excavated soil. and asphalt waste, and the asphalt waste is separated into asphalt waste and crushed stone, and in a first plant, the asphalt waste separated from the excavated soil and the asphalt waste from which the crushed stone has been removed are recycled into asphalt composite material. In the second plant, the excavated soil from which the asphalt waste has been removed is treated with a sieve, the components under the sieve are recovered as a roadbed material, and the crushed stone is mixed with the components from the sieve to produce a roadbed material. The purpose of this method is to recover the following: [Operation] In other words, the excavated soil is treated separately without mixing asphalt waste containing crushed stone, and after the asphalt waste is removed from the excavated soil, the excavated soil is recycled by the second plant. The amount of asphalt waste mixed in can be reliably reduced compared to the prior art of the mixing and separation method described above, and the components for the roadbed material obtained at the second plant can be of high quality with a small amount of asphalt waste mixed in. In addition, the asphalt waste separated from the excavated soil in the first plant and the asphalt waste from which crushed stones have been removed are recycled, and the amount of asphalt waste mixed into the excavated soil is reduced.
It is possible to reliably increase the yield of asphalt mixture. Since the crushed stone from the asphalt waste is mixed with the components for roadbed material from the sieve to increase the yield of roadbed material, the crushed stone mixing process in the second plant replaces the equipment required for the previous process with the aforementioned excavation. Compared to the conventional technology of soil/crushed stone mixed treatment method, it can be made sufficiently smaller and cheaper. [Effects of the invention] As a result, it is possible to improve the quality of the roadbed material, improve the yield of asphalt mixture, and sufficiently downsize and reduce the cost of the second plant.Moreover, it is possible to maintain a high yield of the roadbed material, Overall, we were able to establish an even better recycling method for road construction excavated soil and asphalt waste, which enables the recycling and recovery of high-quality roadbed material, roadbed material, and asphalt mixture with good yields and using small, inexpensive equipment. . [Example] Next, an example will be shown with reference to the drawings. Excavated soil A containing asphalt waste B generated during road construction, and asphalt waste containing crushed stone D generated from road surface peeling during secondary main restoration etc.
B1 is brought in from an unspecified number of construction sites and recycled at the central plant as follows. Asphalt waste material B is removed from excavated soil A by separator 1 to obtain excavated soil A 1 and asphalt waste material B. On the other hand, crushed stone D is removed from the asphalt waste material B 1 by a separator 1' to obtain asphalt waste material B 1 and crushed stone D. Then, the next regeneration process is performed in the first plant P1 . Asphalt waste material B from both separators 1 and 1',
B 1 is supplied from the hopper 2a to the crusher 2, and the coarsely crushed asphalt waste is passed through the sieve 3 to produce upper sieve waste b 1 , two types of intermediate sieve waste b 2 and b 3 with different particle sizes, and lower sieve waste b Classified into four types. After the waste material b1 on the sieve is crushed by another crusher 2', it is fed back to the sieve 3. The remaining three types of waste materials b 2 , b 3 , and b 4 are stored in separate hoppers 4. Three types of waste materials b 2 , b 3 , and b 4 are put into a drum dryer 5 in an appropriate mixing ratio, and while being transferred in the axial direction of the dryer 5, they are heated with high-temperature combustion gas to the required regeneration temperature. At this time, the combustion exhaust gas is discharged into the atmosphere after solid content is removed by the dust collector 6. The heated waste material from the dryer 5 is supplied to the mixer 7, straight asphalt B 5 and an appropriate amount of softener d are added to the heated waste material, mixed for an appropriate period of time to create a recycled composite material c, which is then stored in the thermal silo 8. Store recycled composite material c. In addition, the following regeneration process is performed in the second plant P2 . The excavated soil A1 from the separator 1 is supplied from the hopper 9a to the sieve 9 and is classified into an upper sieve component e1 and a lower sieve component e2 . Component e 1 on the sieve is crushed by crusher 1
Crush at 0 and mix into component e 2 under the sieve. The under-sieve component e 2 is continuously measured by a measuring device 11, and the under-sieve component e 2 is charged into a mixer 13 together with an appropriate amount of quicklime f supplied from a silo 12. Mixer 13
The mixture is passed through a sieve 14, the component below the sieve is taken out as an improved subgrade material a, the component above the sieve g1 is crushed through a crusher 18, and then fed back to the sieve 14, and the intermediate component through the sieve is
g 2 is put into the mixer 15 together with an appropriate amount of quicklime f 1 supplied from the silo 12. The mixture from the mixer 15 is passed through the final sieve 16, and the components under the sieve are
g2 ' is fed back to the mixer 13 to increase the yield of the roadbed material a, and the component g1 ' on the sieve is adjusted in particle size by the crusher 17 and taken out as recycled roadbed material b. The crushed stone D obtained by the separator 1' is transferred to the hopper 17a.
to the crusher 17 to increase the yield of recycled roadbed material b. In addition, the properties of the recycled roadbed material Upon investigation, the following results were obtained.

〔別実施例〕[Another example]

次に別実施例を説明する。 第1プラントP1及び第2プラントP2での具体
的な再生処理手段、処理設備等は上記実施例のも
のに限定されない。殊に、アスフアルト合材の再
生処理に関しては、常温処理方法を適用してもよ
い。 また、掘削土Aからアスフアルト廃材Bを分離
する手段として、掘削時にアスフアルト表層のみ
を先行掘削する手段を採つてもよい。
Next, another embodiment will be described. The specific regeneration processing means, processing equipment, etc. in the first plant P 1 and the second plant P 2 are not limited to those in the above embodiments. In particular, a normal temperature treatment method may be applied to the recycling treatment of asphalt mixture. Further, as a means for separating the asphalt waste material B from the excavated soil A, a method may be adopted in which only the asphalt surface layer is excavated in advance during excavation.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示すフローシートであ
る。 A,A1……掘削土、B,B1……アスフアルト
廃材、D……砕石、P1……第1プラント、P2
…第2プラント、a……路床材、b……路盤材、
c……アスフアルト合材、g1′……成分、14…
…フルイ。
The drawing is a flow sheet showing an embodiment of the invention. A, A 1 ... excavated soil, B, B 1 ... asphalt waste, D ... crushed stone, P 1 ... 1st plant, P 2 ...
...Second plant, a... Roadbed material, b... Roadbed material,
c...Asphalt mixture, g 1 '...component, 14...
…Flui.

Claims (1)

【特許請求の範囲】 1 道路工事で発生する掘削土A、及び、道路表
面剥離で発生する砕石D含有のアスフアルト廃材
B1を、路床材a、路盤材b及びアスフアルト合
材cに再生処理する方法であつて、 前記掘削土Aとアスフアルト廃材B1を各別に
分離処理して、前記掘削土Aを掘削土A1とアス
フアルト廃材Bに、かつ、前記アスフアルト廃材
B1をアスフアルト廃材B1と砕石Dに夫々分離し、 第1プラントP1において、前記掘削土Aから
分離したアスフアルト廃材B、及び、前記砕石D
を除去したアスフアルト廃材B1をアスフアルト
合材cに再生処理し、 第2プラントP2において、前記アスフアルト
廃材Bを除去した掘削土A1をフルイ14で処理
して、フルイ下成分を路床材aとして回収し、か
つ、前記フルイ14からの成分g1′に前記砕石D
を混合して、路盤材bを回収する道路工事掘削土
及びアスフアルト廃材の再生処理方法。
[Scope of Claims] 1. Asphalt waste material containing excavated soil A generated during road construction and crushed stone D generated from road surface peeling
A method for recycling B 1 into subgrade material a, subbase material b, and asphalt mixture c, in which the excavated soil A and asphalt waste B 1 are separately processed, and the excavated soil A is recycled into excavated soil. A 1 and asphalt waste B, and the asphalt waste
B 1 is separated into asphalt waste material B 1 and crushed stone D, and in the first plant P 1 , asphalt waste material B separated from the excavated soil A and the crushed stone D are separated.
The asphalt waste material B 1 from which the asphalt waste material B has been removed is recycled into asphalt mixture c, and in the second plant P 2 , the excavated soil A 1 from which the asphalt waste material B has been removed is processed through a sieve 14, and the components under the sieve are converted into subgrade material. a, and the crushed stone D is added to the component g1 ' from the sieve 14.
A method for recycling road construction excavated soil and asphalt waste material, which mixes the following materials and collects roadbed material b.
JP17047381A 1981-10-23 1981-10-23 Regenerating treatment of drilled soil of road construction and waste asphalt material Granted JPS5873601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17047381A JPS5873601A (en) 1981-10-23 1981-10-23 Regenerating treatment of drilled soil of road construction and waste asphalt material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17047381A JPS5873601A (en) 1981-10-23 1981-10-23 Regenerating treatment of drilled soil of road construction and waste asphalt material

Publications (2)

Publication Number Publication Date
JPS5873601A JPS5873601A (en) 1983-05-02
JPH0130967B2 true JPH0130967B2 (en) 1989-06-22

Family

ID=15905590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17047381A Granted JPS5873601A (en) 1981-10-23 1981-10-23 Regenerating treatment of drilled soil of road construction and waste asphalt material

Country Status (1)

Country Link
JP (1) JPS5873601A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196207U (en) * 1986-05-30 1987-12-14
JP2007107199A (en) * 2005-10-11 2007-04-26 Nippo Corporation:Kk Asphalt mass processing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52137137A (en) * 1976-05-11 1977-11-16 Osaka Gas Co Ltd Method of improving excavating land
JPS5358520A (en) * 1976-11-08 1978-05-26 Gou Tetsukoushiyo Kk Method of reclaiming asphalt and concrete waste generated by turning up paved road
JPS5564850A (en) * 1978-11-08 1980-05-15 Michio Jinno Treatment apparatus for waste paving material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52137137A (en) * 1976-05-11 1977-11-16 Osaka Gas Co Ltd Method of improving excavating land
JPS5358520A (en) * 1976-11-08 1978-05-26 Gou Tetsukoushiyo Kk Method of reclaiming asphalt and concrete waste generated by turning up paved road
JPS5564850A (en) * 1978-11-08 1980-05-15 Michio Jinno Treatment apparatus for waste paving material

Also Published As

Publication number Publication date
JPS5873601A (en) 1983-05-02

Similar Documents

Publication Publication Date Title
US5211750A (en) Synthetic aggregate and landfill method
CN109516703A (en) Aggregate and epipastic mineral material are withdrawn from waste material is removed
EP0548491A1 (en) Method of regenerating aggregate from construction waste
WO2014040852A1 (en) Method for producing aggregate and calcium carbonate from concrete composite materials, and a device for carrying out said method
JPH0130967B2 (en)
WO2008032467A1 (en) Process for treatment of residual ready mixed concrete, recycled cement, and aggregate for concrete
JPH0146659B2 (en)
JPS5840612B2 (en) Excavated soil improvement method
US1536165A (en) Method for producing hydraulic, particularly cementlike, mortarforming agents
JP2004067399A (en) Method of producing regenerated sand from construction sludge
KR101085795B1 (en) Method for manufacture of ascon using waste stone
JP2547510B2 (en) Method for treating waste asphalt mixture and its product
JPS6014953A (en) Washing vibrating screen
JP3678834B2 (en) Usage of hard dehydrated cake fine particles
JP4466983B2 (en) Block product using silica-containing mud sludge and method for producing the same
JPH11335149A (en) Production of regenerated aggregate
JPH0152522B2 (en)
JP3093923B2 (en) Method for recycling waste asphalt mixture and its products
JP3670600B2 (en) Construction sludge recycling system and recycled crushed stone production method
JPH11300391A (en) Material for flowable backfill, consisting of sludge and rock powder and its use
JPH0687636A (en) Recovery and recycling method for dehydrated cake in aggregate plant
JP3512930B2 (en) Formwork for roadbed material production
JP3426936B2 (en) Method and apparatus for producing recycled aggregate
JPS63247431A (en) Method and apparatus for sorting and treating discharged soil
JPH0248039Y2 (en)