JPH01309232A - Tunnel electron tube - Google Patents

Tunnel electron tube

Info

Publication number
JPH01309232A
JPH01309232A JP63140220A JP14022088A JPH01309232A JP H01309232 A JPH01309232 A JP H01309232A JP 63140220 A JP63140220 A JP 63140220A JP 14022088 A JP14022088 A JP 14022088A JP H01309232 A JPH01309232 A JP H01309232A
Authority
JP
Japan
Prior art keywords
cathode
anode
tunnel
electron tube
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63140220A
Other languages
Japanese (ja)
Inventor
Kazuaki Kuroda
和明 黒田
Fuyuhiko Shioda
ふゆひこ 塩田
Takafumi Yamada
啓文 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP63140220A priority Critical patent/JPH01309232A/en
Publication of JPH01309232A publication Critical patent/JPH01309232A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Abstract

PURPOSE:To make it possible to eliminate the physical and technical restrictions owing to using a semiconductor by composing of an electrode couples approaching each other to make it possible to let flow a tunnel current in a space, and one or more electrodes to make it possible to control the tunnel current. CONSTITUTION:An anode 2 very close to cathodes 1 is provided, and by applying a positive voltage to the cathode 2 making cathode 1 as a standard, electrons flow from the cathode 1 to the anode 2 through the space by the tunnel phenomenon. Between the cathodes 1 and the anode 2, grids 3 being the control electrodes are arranged and by making the voltage of the grids 3 negative to the cathodes 1, the tunnel current value can be controlled. Consequently, such an electron tube has the property strong to radiant rays, and can be applied to the electric circuit for an artificial satellite and the like without providing a radiant ray shield. The restriction by using a semiconductor can be eliminated consequently.

Description

【発明の詳細な説明】 〔産業上の利用分音] この発明は、電気回路における能動素子の一つとして、
空間のトンネルz Fを制御することにより動作させる
トンネル電子管に関するものである。
[Detailed description of the invention] [Industrial use of diacritics] This invention provides a method for using diacritics as one of the active elements in an electric circuit.
This invention relates to a tunnel electron tube that is operated by controlling a spatial tunnel zF.

[従来の技術] 従来、電気回路の能動素子としては、旧くは電子管、近
年はトランジスター、FETなどが用いられており、こ
れらの能+OX子なしでは、現在のエレクトロニクス産
業を初めとして各種のハイテク産業は成り立って行かな
いほどに基本的なものであり、その特性の改良や新品種
の開発等によりその応用範囲も飛躍的に広がり、深く浸
透しつつあ る。
[Prior art] Traditionally, active elements in electric circuits have been electron tubes, and in recent years transistors and FETs, etc. Without these functions and OX elements, various high-tech industries including the current electronics industry have It is so basic that it cannot continue to exist, and its range of applications has expanded dramatically through improvements in its characteristics and the development of new varieties, and it is becoming more and more pervasive.

しかし、これらの能動素子がシリコンなどをベースとす
る半導体を用いていることから、その種々の物理的特性
に制約されて応用範囲には限界があるが、これが解決で
きるものであるとは、これまで明確には認識されていな
かった0例^ば、シリコン中のキャリヤー密度は、周囲
温度が低下すると対数的に低下して素子の増幅率を低下
させる。
However, since these active elements use semiconductors based on silicon or other materials, their range of application is limited by their various physical properties. For example, which was not clearly recognized until now, the carrier density in silicon decreases logarithmically as the ambient temperature decreases, reducing the amplification factor of the device.

これは、超低温下において特に顕著に現れるし、一般に
は超低温下ではこれらの能動素子は使用不能である。#
B低温下で動作するある種のFETでも常温での特性と
超低温での特性が著しく異なることから、回路の設!i
1がきわめて難しく、たとえできたとしても安定に動作
させることは困難であるなと、研究の領域を出るもので
はない、また。
This is particularly noticeable at extremely low temperatures, and these active devices are generally unusable at extremely low temperatures. #
BEven for certain types of FETs that operate at low temperatures, the characteristics at room temperature and those at ultra-low temperatures are significantly different, so it is important to consider circuit design! i
1 is extremely difficult, and even if it were possible, it would be difficult to make it work stably, so it is not outside the realm of research.

100℃を越える温度になると熱υ走の不安があリ、 
150℃を越える温度で動作できる素子は、信頼性、2
a槙密度の点で完全に過去のものとなった電子管を除け
ば皆無である。この他、従来の半導体をベースとする能
動素子は、高い放射能下にあるとそれら放射線が素子の
中でシリコン等の原子と相互作用して満足に動作しない
ばかりかその特性が大きく変化して使用不能に陥ってし
まう欠点がある。
If the temperature exceeds 100 degrees Celsius, there is a risk of running a fever.
Devices that can operate at temperatures exceeding 150°C have reliability
Except for electron tubes, which are completely obsolete in terms of density, there are none. In addition, when conventional semiconductor-based active devices are exposed to high levels of radiation, these radiations interact with atoms such as silicon within the device, resulting in not only unsatisfactory operation but also significant changes in their characteristics. There is a drawback that it becomes unusable.

「発明が解決しようとする!!!題コ この発明が解決しようとする課題は、電気回路の能動素
子において、シリコンなとの半導体をベースとする能動
素子が物質中の電子やホールをキャリヤーとして用いて
いることがらくる物理的、技術的制約を、過去の電子管
で用いられた111IML子ではない方法で発生させる
ことにより解消することである。
``What the invention tries to solve!!! Title: The problem that this invention tries to solve is that in active elements of electric circuits, active elements based on semiconductors such as silicon use electrons and holes in substances as carriers. The objective is to eliminate the physical and technical constraints imposed by the use of the 111 IML by generating it using a method other than the 111 IML used in past electron tubes.

[課題を解決するための手段] これらの課題を解決するために、空間のトンネル電流を
流すことができるまで接近した1を極対と空間のトンネ
ル電流を制御することのできる一つまたは複数の電極か
らなるトンネル電子管を発明した。
[Means for Solving the Problems] In order to solve these problems, one or more pole pairs that are close enough to each other to allow the tunneling current to flow in the space and one or more poles that can control the tunneling current in the space are used. Invented a tunnel electron tube consisting of electrodes.

[実施例] 次に、この発明の一つの形態として、第1図に示した一
つの制御電極を持つ素子について説明する。カソード1
にきわめて接近したアノード2を配置し、カソード1を
基準にしてアノード2に正の電圧を印加するとトンネル
現象によりカソード1からアノード2にむけて電子が空
間を流れる。
[Example] Next, as one form of the present invention, an element having one control electrode shown in FIG. 1 will be described. cathode 1
When the anode 2 is placed very close to the anode 2 and a positive voltage is applied to the anode 2 with respect to the cathode 1, electrons flow through space from the cathode 1 to the anode 2 due to a tunneling phenomenon.

カソードlとアノード2との間に制御電極であるグリッ
ド3を配置してそのグリッド3の電圧をカソードlに対
して負にすると、そのトンネル電流値が制御される。
When a grid 3, which is a control electrode, is arranged between the cathode 1 and the anode 2 and the voltage of the grid 3 is made negative with respect to the cathode 1, the tunnel current value is controlled.

空間のトンネル電流を流すことのできるカソードlから
アノード2までの空間の大きさは大気の分子の平均自由
行程よりも十分に小さいために、このトンネル電子管は
積極的に真空にする必要がない。
Since the size of the space from the cathode 1 to the anode 2 through which a spatial tunneling current can flow is sufficiently smaller than the mean free path of molecules in the atmosphere, there is no need to actively create a vacuum in this tunneling electron tube.

従来の能動素子に置き換えるために必要なほどに大きい
空間のトンネル電流i流は、マイクロファブリケイジョ
ン等を利用して第1図に示すように空間的に繰り返すパ
ターンをもつ電極を製作することにより得ることができ
る。必要な空間のトンネル電流の得られる形状・配置で
あれば、第1図以外にも種々のものが考えられ、空間の
トンネル電流を制御するル制御X極についても種々の工
夫が可能である。
The tunneling current i current in a space large enough to replace conventional active elements can be achieved by manufacturing electrodes with spatially repeating patterns using microfabrication etc. as shown in Figure 1. Obtainable. Various shapes and arrangements other than those shown in FIG. 1 can be considered as long as the shape and arrangement can obtain the necessary tunnel current in the space, and various ideas can be made for the control X pole that controls the tunnel current in the space.

このトンネル電子管では、電子の走行距離がきわめて短
いことを積極的に利用して、マイクロ波以上の高い周波
数帯でも使用できるように、電極間の静電容量を小さく
したり、スクリーン電極を配置する方法などが考えられ
る。
This tunnel electron tube takes advantage of the extremely short travel distance of electrons, and reduces the capacitance between the electrodes and arranges screen electrodes so that it can be used in higher frequency bands than microwaves. There are many possible methods.

このトンネル電子管は、第2図のようにバイアスを与え
て動作させることができる0人カ信号源7が、グリッド
3に逆バイアス用電圧R5と直列に、カソード1とグリ
ッド3との間に接続されており、空間のトンネル電流を
発生させるための電圧源4が、負荷抵抗6と直列に、カ
ソードlとアノード2との間に接続されている。人力信
号により、グリッド3の電圧が空間のトンネル電流を抑
える向きにかかると負荷抵抗6を流れる電流が減少し、
逆に空間のトンネル電流を増やす向きにかかると負荷抵
抗6を流れる電流が増加するため、負荷抵抗6の両端に
入力信号に比例する逆相の電圧が発生し、増幅作用を行
わせることができる。
In this tunnel electron tube, as shown in FIG. 2, a zero-power signal source 7 that can be operated by applying a bias is connected to the grid 3 in series with a reverse bias voltage R5, and between the cathode 1 and the grid 3. A voltage source 4 for generating a spatial tunneling current is connected in series with a load resistor 6 between the cathode 1 and the anode 2. When the voltage of the grid 3 is applied in a direction to suppress the tunnel current in the space by a human signal, the current flowing through the load resistor 6 decreases,
Conversely, if the tunnel current in the space is increased, the current flowing through the load resistor 6 will increase, so a voltage with an opposite phase proportional to the input signal will be generated across the load resistor 6, and an amplification effect can be performed. .

このトンネル電子管は、通常のトランジスターやFET
と同様、高い集積密度で集積回路を構成するための素子
として用いることができることはいうまでもない。
This tunnel electron tube is an ordinary transistor or FET.
It goes without saying that it can also be used as an element for constructing an integrated circuit with high integration density.

[発明の効果] このトンネル電子管は、 トランジスターなどの従来の
能動素子がガンマ線や高エネルギーの放射線に対して弱
い原因である、シンチレータ−として作用する半導体を
持たないために、これらの放射線に強い特性を持ち、人
工衛星なとの電気回路に放射線シールドなしで応用でき
る。また、従来素子の半導体の温度特性で制限されてい
る動作温度範囲を飛躍的に広げることが可能であり、特
に極低温での動作を原理的に制限するものがないために
、これまで良い能動素子の得られなかったその領域での
電気回路に新たな道が間かれる。さらに、電子の走行距
離が極めて小さいために極めて高い周波数特性を得るこ
とが可能であり、トランジスターを2m積したIcなど
と同様な集積密度を得ることも可能である。さらに、従
来のとの様な#I!動素子にもできなかった逆極性の動
作をそのままの回路で行わせることができる利点を生か
した新しい応用が期待される。
[Effects of the invention] This tunnel electron tube has characteristics that are resistant to gamma rays and high-energy radiation because it does not have a semiconductor that acts as a scintillator, which is the reason why conventional active elements such as transistors are weak against gamma rays and high-energy radiation. It can be applied to electrical circuits such as satellites without radiation shielding. In addition, it is possible to dramatically expand the operating temperature range, which is limited by the temperature characteristics of semiconductors in conventional devices. This opens up a new path for electrical circuits in areas where elements have not been available. Furthermore, since the traveling distance of electrons is extremely small, it is possible to obtain extremely high frequency characteristics, and it is also possible to obtain an integration density similar to that of an IC with 2 m of transistors stacked together. Furthermore, #I like the conventional one! New applications are expected that take advantage of the advantage of being able to perform reverse polarity operation, which is not possible even with dynamic elements, with the same circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はマイクロファブリケイジョンを利用して作られ
る一つの制御!極をもつトンネル電子管の一例を示して
いる。 第2図は本トンネル電子管を動作させるための回路例で
ある。 1・・・カソード 2・・・アノード 3・・・グリッド 4・・・電圧源 5・・・逆バイアス用電圧源 6・・・負荷抵抗 7・・・入力信号源 第1図 第2図
Figure 1 shows one control made using microfabrication! An example of a tunneling electron tube with poles is shown. FIG. 2 is an example of a circuit for operating the present tunnel electron tube. 1... Cathode 2... Anode 3... Grid 4... Voltage source 5... Reverse bias voltage source 6... Load resistor 7... Input signal source Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1 空間のトンネル電流を流すことのできるまで接近し
た電極対と空間のトンネル電流を制御することのできる
一つまたは複数の電極からなるトンネル電子管。
1. A tunneling electron tube consisting of a pair of electrodes that are close enough to allow a spatial tunneling current to flow, and one or more electrodes that can control the spatial tunneling current.
JP63140220A 1988-06-07 1988-06-07 Tunnel electron tube Pending JPH01309232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63140220A JPH01309232A (en) 1988-06-07 1988-06-07 Tunnel electron tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63140220A JPH01309232A (en) 1988-06-07 1988-06-07 Tunnel electron tube

Publications (1)

Publication Number Publication Date
JPH01309232A true JPH01309232A (en) 1989-12-13

Family

ID=15263703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63140220A Pending JPH01309232A (en) 1988-06-07 1988-06-07 Tunnel electron tube

Country Status (1)

Country Link
JP (1) JPH01309232A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05303938A (en) * 1991-08-05 1993-11-16 Motorola Inc Switch circuit employing field emission device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5415655A (en) * 1978-07-03 1979-02-05 Futaba Denshi Kogyo Kk Electron luminous display unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5415655A (en) * 1978-07-03 1979-02-05 Futaba Denshi Kogyo Kk Electron luminous display unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05303938A (en) * 1991-08-05 1993-11-16 Motorola Inc Switch circuit employing field emission device

Similar Documents

Publication Publication Date Title
Sah Characteristics of the metal-oxide-semiconductor transistors
US2790037A (en) Semiconductor signal translating devices
US2561411A (en) Semiconductor signal translating device
US3056073A (en) Solid-state electron devices
Lutwyche et al. Estimate of the ultimate performance of the single‐electron transistor
US6218668B1 (en) Coplanar interdigitated grid detector with single electrode readout
US4677380A (en) Magnetic field sensor comprising two component layer transistor of opposite polarities
US3581226A (en) Differential amplifier circuit using field effect transistors
US2987659A (en) Unipolar "field effect" transistor
JPH01309232A (en) Tunnel electron tube
Chase et al. Amplifiers for use with pn junction radiation detectors
US3280333A (en) Radiation sensitive self-powered solid-state circuits
US3204161A (en) Thin film signal translating device utilizing emitter comprising: cds film, insulating layer, and means for applying potential thereacross
US3094671A (en) Field effect parametric amplifier
US3675143A (en) All-fet linear voltage amplifier
US4320312A (en) Smaller memory cells and logic circuits
US3743955A (en) Radiation hardening read preamplifier
US3663888A (en) All-fet linear voltage difference amplifier
US3243602A (en) Silicon controlled gate turn off switch circuit with load connected to interior junction
US3274400A (en) Temperature compensated silicon controlled rectifier
US3204115A (en) Four-terminal solid state superconductive device with control current flowing transverse to controlled output current
Hai et al. Reconfigurable logic gates using single-electron spin transistors
Prokopenko et al. Circuit Design of CJFET OPA Based on the Differential Stage with a Slope Multiplier
US3900771A (en) Transistor with high current density
US3710269A (en) Semiconductor devices