JPH01308970A - Photocurrent sensor - Google Patents

Photocurrent sensor

Info

Publication number
JPH01308970A
JPH01308970A JP63140041A JP14004188A JPH01308970A JP H01308970 A JPH01308970 A JP H01308970A JP 63140041 A JP63140041 A JP 63140041A JP 14004188 A JP14004188 A JP 14004188A JP H01308970 A JPH01308970 A JP H01308970A
Authority
JP
Japan
Prior art keywords
sensor
magnetic
magnetic core
gap
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63140041A
Other languages
Japanese (ja)
Inventor
Hidekazu Nishimura
英一 西村
Yoshihisa Katsuyama
勝山 吉久
Takashi Ezure
江連 孝
Shigeru Nakagawa
滋 中川
Akira Oba
大場 朗
Kazuharu Miyamoto
宮本 一春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP63140041A priority Critical patent/JPH01308970A/en
Publication of JPH01308970A publication Critical patent/JPH01308970A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable accurate arrangement of a magnetooptic field sensor at the center of a gap between magnetic cores by connecting two sensor bodies with a positioning pin to position the magnetic cores at a high accuracy. CONSTITUTION:One magnetic core 1 is fixed on a fixing metal 2 and a gap 5 is provided to fix other two magnetic cores 3 and 4on the other fixing metal 6. A magnetooptic field sensor 7 is arranged securely in the gap 5 and the outer circumference of the respective fixing metals 2 and 6 is molded by a resin leaving respective joint surfaces 8 and 9 to form sensor bodies 11 and 12. Then, the joint surfaces 8 and 9 of the sensor bodies 11 and 12 are overlapped to be connected with a positioning pin 13. This enables the positioning of one end face 1a of the magnetic core 1 and an end face 3a of the magnetic core 3; the other end face 1b of the magnetic core 1 and an end face 4a of the magnetic core 4 in sensor bodies 11 and 12.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は主として、ケーブル等を流れる導体電流を計測
するのに使用される光電流センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention primarily relates to a photocurrent sensor used to measure conductor current flowing through a cable or the like.

(従来技術) 従来、光学式の電流計測方法としては、ファラデー効果
を応用した光磁界センサを、ケーブル等の電流路の周囲
に配置し、その電流路を流れる導体電流に応じて発生す
る磁界の量から電流値を検出する方法があった。
(Prior art) Conventionally, as an optical current measurement method, an optical magnetic field sensor that applies the Faraday effect is placed around a current path such as a cable, and the magnetic field sensor that is generated in response to the conductor current flowing through the current path is measured. There was a method to detect the current value from the amount.

この電流計測に使用される光磁界センサは例えば第11
図に示すような構成になっている。これは、発光素子A
からの光波が光ファイバBによって光コネクタCに導か
れ、平行ビームとなって口ラドレンズDを通して偏光子
Eに入射し、偏光子Eからの出力光は直線偏光波となっ
てファラデー素子Fに入射する。ファラデー素子Fには
ケーブル等の電流路0を流れる被測定電流Iにより発生
した磁界Hが光波伝搬方向に加わり、偏光面は磁界強度
に比例して回転する(この現象をファラデー効果という
)。
The optical magnetic field sensor used for this current measurement is, for example, the 11th
The configuration is as shown in the figure. This is light emitting element A
The light wave from is guided to the optical connector C by the optical fiber B, becomes a parallel beam and enters the polarizer E through the front lens D, and the output light from the polarizer E becomes a linearly polarized light wave and enters the Faraday element F. do. A magnetic field H generated by a current to be measured I flowing through a current path 0 such as a cable is applied to the Faraday element F in the light wave propagation direction, and the plane of polarization rotates in proportion to the magnetic field strength (this phenomenon is called the Faraday effect).

第11図の旋光子Gは、検光子Jと偏光子Eとの間に相
対的に45度の偏光面角度を与えるものであり、検光子
Jからの出力光の強度はファラデー効果による偏光面の
回転により、被測定電流Iによって発生した磁界Hによ
り変化する。この出力光はロッドレンズKに入射し、更
に光コネクタLを通して光ファイバMに入射し、同ファ
イバMによって受光素子Nへ導かれ、同素子Nにより光
/電気変換される。この変換量を検出すれば磁界強度、
即ち、被測定電流路Pを流れる被測定電流Iを測定する
ことができる。
The optical rotator G in Fig. 11 provides a relative plane of polarization angle of 45 degrees between the analyzer J and the polarizer E, and the intensity of the output light from the analyzer J is determined by the polarization plane due to the Faraday effect. As the current I rotates, the magnetic field H generated by the current I to be measured changes. This output light is incident on a rod lens K, further incident on an optical fiber M through an optical connector L, guided by the fiber M to a light receiving element N, and optically/electrically converted by the element N. Detecting this conversion amount determines the magnetic field strength.
That is, the current to be measured I flowing through the current path to be measured P can be measured.

尚、上記ファラデー素子Fにはビスマスゲルマニウムオ
キサイド単結晶や希土類ガーネット単結晶等の光学結晶
が用いられている。
Incidentally, for the Faraday element F, an optical crystal such as a bismuth germanium oxide single crystal or a rare earth garnet single crystal is used.

又低電流を高精度に計測する場合は第12図及び第13
図に示すように、けい素鋼等の磁性コアPのギヤツブQ
中に、第11図の光磁界センサRを組込んで電流を計測
する。この場合、被測定電流路に対してギヤツブQ中に
発生する磁界HgはHg”I/ ((12+ 11 /
ル))終 ;磁性体(コア)の透磁率 II  、ギャップ長 12;鉄心中の平均磁路長 と表わされるので、光磁界センサRによりギヤツブQ中
の磁界Hgを検出することにより、電流路0を流れる被
測定電流Iを計測することが可能となる。
In addition, when measuring low current with high precision, see Figures 12 and 13.
As shown in the figure, a gear Q of a magnetic core P made of silicon steel, etc.
The optical magnetic field sensor R shown in FIG. 11 is incorporated inside to measure the current. In this case, the magnetic field Hg generated in the gear Q with respect to the current path to be measured is Hg''I/((12+11/
(Le)) End; Magnetic permeability II of the magnetic body (core); Gap length 12; Average magnetic path length in the iron core. It becomes possible to measure the current to be measured I flowing through 0.

なお、磁性コアPのギヤツブQ中の磁界Hgは、電流路
0の周辺に単に発生する磁界Hに比べて数倍〜10数倍
大きいので、低電流を高精度に計測することができる。
Note that the magnetic field Hg in the gear Q of the magnetic core P is several to ten times larger than the magnetic field H simply generated around the current path 0, so that low current can be measured with high precision.

更に定電流路O以外の線路電流により発生する磁界の影
響を排除することができる。
Furthermore, the influence of magnetic fields generated by line currents other than the constant current path O can be eliminated.

(発明が解決しようとする課11) しかしながら前記した従来の光学式の電流計測方法は次
のような問題があった。
(Issue 11 to be Solved by the Invention) However, the conventional optical current measurement method described above has the following problems.

■、第14図(ギャップ9部分の側面図)、第15図(
ギャップ9部分の正面図)のように、ギャップQの中心
付近は漏れ磁界が少なく、周辺になる程大きくなるため
、中心と周辺とで発生磁界強度が異なる(ギャップ長に
もよるが周辺磁界は中心磁界のlO〜20ダウンする)
、このため光磁界センサRの感度のバラツキ(出力誤差
)を無くするためには、第11図の光磁界センサRにお
けるファラデー素子Fが、精度良くギャップQの中心に
位置するように、光磁界センサRをギヤツブQ内に配置
しなければならなず1面倒であった■、光電流センサは
既設の電流路0の外周に配置できるようにするため、通
常は磁性コアPを第13図のようにPa、Pb、Pcの
三つに分割されている。このためギヤツブQ中の最適位
置に精度良く光磁界センサRを配置し、しかも磁性コア
Pa、Pb、Pc+7)端面S+ 、S2 、S3.3
4が位置ズレしないように結合する必要があり面倒であ
った。
■, Figure 14 (side view of gap 9), Figure 15 (
As shown in the front view of the gap 9 section), the leakage magnetic field is small near the center of the gap Q, and increases toward the periphery, so the generated magnetic field strength differs between the center and the periphery (although it depends on the gap length, the surrounding magnetic field is center magnetic field lO~20 down)
, Therefore, in order to eliminate variations in sensitivity (output error) of the magneto-optical field sensor R, it is necessary to adjust the magneto-optical field so that the Faraday element F in the magneto-optical field sensor R shown in FIG. The sensor R had to be placed inside the gear Q, which was troublesome. However, in order to be able to place the photocurrent sensor on the outer periphery of the existing current path 0, the magnetic core P is usually placed as shown in Figure 13. It is divided into three parts: Pa, Pb, and Pc. For this reason, the optical magnetic field sensor R is placed at an optimal position in the gear Q with high precision, and the magnetic core Pa, Pb, Pc+7) end faces S+, S2, S3.3
It was troublesome because it was necessary to connect the parts 4 so that they would not be misaligned.

(発明の目的) 本発明は前記の各種問題点を解決し、光磁界センサRを
ギャップQの所定位置に正確に取付けることができ、ま
た、磁性コアの端面s、、s2、S3 、Ss間の位置
ズレも防止できる光電流センサを実現することにある。
(Objective of the Invention) The present invention solves the various problems mentioned above, allows the optical magnetic field sensor R to be accurately mounted at a predetermined position in the gap Q, and also enables The object of the present invention is to realize a photocurrent sensor that can also prevent positional deviation.

(問題点を解決するための手段) 前記問題点を解決するための本発明を第1図〜第9図の
実施例に基づいて説明する。
(Means for Solving the Problems) The present invention for solving the above problems will be explained based on the embodiments shown in FIGS. 1 to 9.

本発明のうち請求項第1の光電流センサは、第1図に示
される一部の磁性コア1を第4図の固定金具2に固定し
、第1図に示される他の二つの磁性コア3.4をギヤー
2プ5を設けて第3図の他の固定金具6に固定すると共
に同ギャップ5内に光磁界センサ7を配置固定し、夫々
の固定金具2.6の外周を第5図のように、夫々の接合
面8.9を残して樹脂10でモールドしてセンサ本体1
1、12とし、この二つのセンサ本体11.12の接合
面8,9を重合して位置合せビン13により結合するこ
とにより1両センサ本体11.12の磁性コアlの一方
の端面1aと磁性コア3の端面3a、磁性コアlの他方
の端面1bと磁性コア4の端面4aとが位置合せされる
ようにしたものである。
A photocurrent sensor according to claim 1 of the present invention has a part of the magnetic core 1 shown in FIG. 1 fixed to the fixing fitting 2 shown in FIG. 4, and the other two magnetic cores shown in FIG. 3.4 is provided with a gear 2 peg 5 and fixed to another fixing metal fitting 6 shown in FIG. As shown in the figure, the sensor body 1 is molded with resin 10 leaving the joint surfaces 8 and 9.
1 and 12, and by overlapping the bonding surfaces 8 and 9 of these two sensor bodies 11.12 and joining them with the alignment pin 13, one end surface 1a of the magnetic core l of the two sensor bodies 11.12 and the magnetic The end surface 3a of the core 3, the other end surface 1b of the magnetic core 1, and the end surface 4a of the magnetic core 4 are aligned.

本発明のうち請求項第2の光電流センサは請求項第1の
光電流センサにおいて、光磁界センサ7におけるファラ
デー素子14(第8図)が前記ギャップ5の中心に位置
するように配置されてなるものである。
A photocurrent sensor according to a second aspect of the present invention is the photocurrent sensor according to the first aspect, wherein the Faraday element 14 (FIG. 8) in the optical magnetic field sensor 7 is arranged so as to be located at the center of the gap 5. It is what it is.

未発明のうち請求項第3の光電流センサは請求項第1又
は第2の光電流センサにおいて、結合されるセンサ本体
11.12の接合面8,9間にパッキング15を配置し
て、同接合面8,9間を防水、防塵構造としたものであ
る。
Among the uninvented claims, the photocurrent sensor of claim 3 is the photocurrent sensor of claim 1 or 2, in which a packing 15 is disposed between the bonding surfaces 8 and 9 of the sensor bodies 11 and 12 to be combined, and the photocurrent sensor is the same. The space between the joint surfaces 8 and 9 has a waterproof and dustproof structure.

(実施例) 第1図は本発明の分′M型光電流センサの原理図であり
、これは三つの磁性コア1,3.4のうち二つの磁性コ
ア3と4の間にギャップ5を設け、このギャップ5内に
光磁界センサ7を配置しである。
(Example) Fig. 1 is a diagram showing the principle of the minute M type photocurrent sensor of the present invention, which has a gap 5 between two magnetic cores 3 and 4 among three magnetic cores 1 and 3.4. A magneto-optical field sensor 7 is disposed within this gap 5.

第2図は本発明の光電流センサの一実施例である。これ
は二つのセンサ本体11.12を、ケーブル等の電流路
0の外側に配置して、固定ネジ17により固定してなる
ものである。
FIG. 2 shows an embodiment of the photocurrent sensor of the present invention. This consists of two sensor bodies 11 and 12 arranged outside a current path 0 such as a cable and fixed with fixing screws 17.

、二つのセンサ本体11.12のうち一方のセンサ本体
11は、第7図c、dの固定金具2の二枚の側壁板18
a、18b間に同図aに示される半円状の磁性コアlを
同図すのように嵌入し、同磁性コアlの両端部19a、
19bを固定金具2の基板20に形成されている通孔2
1に差し込んで、同図すのように磁性コア1の両端面1
a、1bを基板20の底面20aと同一面にしである。
, one of the two sensor bodies 11 and 12 is attached to the two side wall plates 18 of the fixing fitting 2 shown in FIGS. 7c and 7d.
A semicircular magnetic core l shown in figure a is inserted between a and 18b as shown in the figure, and both ends 19a of the magnetic core l are
19b is the through hole 2 formed in the substrate 20 of the fixture 2.
1 and both end surfaces 1 of the magnetic core 1 as shown in the same figure.
a and 1b are flush with the bottom surface 20a of the substrate 20.

そして、この第7図すの状態で固定金具2及び磁性コア
lの外周を第5図のようにウレタン、シリコーン等の樹
脂10でモールドしである。この場合、接合面8(基板
20の底面20a及び磁性コアlの端面1a、lb)は
樹脂lOでモールドせずに外部に露出させである。
Then, in the state shown in FIG. 7, the outer periphery of the fixture 2 and the magnetic core I is molded with a resin 10 such as urethane or silicone as shown in FIG. In this case, the bonding surfaces 8 (the bottom surface 20a of the substrate 20 and the end surfaces 1a, lb of the magnetic core 1) are not molded with resin 1O and are exposed to the outside.

第2図における他方のセンサ本体12は、第6図c、d
の固定金具6の二枚の側壁板21a、21b間に第6図
aに示されるl/4円形の磁性コア3.4を同図すのよ
うに適宜間隔離して(ギャップ5を設けて)te入し、
各磁性コア3.4の両端部22a、22bを固定金具6
の基板23に形成されている通孔24に差し込んで、同
図すのように磁性コア3.4の端面3a、4aを基板2
3の底面23aと同一面にしである。
The other sensor main body 12 in FIG. 2 is shown in FIGS.
The 1/4 circular magnetic core 3.4 shown in FIG. 6a is separated between the two side wall plates 21a and 21b of the fixing fitting 6 by an appropriate distance (a gap 5 is provided) as shown in the same figure. Enter te,
Fixing metal fittings 6
The magnetic core 3.4 is inserted into the through hole 24 formed in the substrate 23, and the end surfaces 3a, 4a of the magnetic core 3.4 are inserted into the substrate 23 as shown in the figure.
It is on the same surface as the bottom surface 23a of No. 3.

また、第6V!Jb、cノ側壁板21a、21bの切欠
き部25(磁性コア3.4の間のギャップとなる箇所)
に第3図、第4図のように光磁界センサ7を装着しであ
る。
Also, the 6th V! Notches 25 of Jb and C side wall plates 21a and 21b (locations that serve as gaps between magnetic cores 3.4)
As shown in FIGS. 3 and 4, an optical magnetic field sensor 7 is attached to the sensor.

そして、第3図、第4図の状態で固定金具6及び磁性コ
ア3.4の外周を第5図、第8図、第9図のようにウレ
タン、シリコーン等の樹脂10でモールドしである。こ
の場合、接合面9(基板23の底面23a及び磁性コア
3,4の端面3a。
Then, in the state shown in FIGS. 3 and 4, the outer periphery of the fixing fitting 6 and the magnetic core 3.4 is molded with a resin 10 such as urethane or silicone as shown in FIGS. 5, 8, and 9. . In this case, the bonding surface 9 (the bottom surface 23a of the substrate 23 and the end surfaces 3a of the magnetic cores 3 and 4).

4a)は樹脂10でモールドせずに外部に露出させであ
る。
4a) is not molded with resin 10 and is exposed to the outside.

また、第4図のようにセンサ本体12の固定金具6の基
板23の底面23aには、磁性コア3.4の端面3a、
4aを囲むようにリング状の収納溝25が形成され、そ
の収納溝25内に第5図。
Further, as shown in FIG. 4, on the bottom surface 23a of the substrate 23 of the fixing fitting 6 of the sensor main body 12, the end surface 3a of the magnetic core 3.4,
A ring-shaped storage groove 25 is formed to surround 4a, and inside the storage groove 25, as shown in FIG.

第9図のように0リング等のパー、キング15を嵌入し
て、両センサ本体11.12の接合面8と9を接合した
ときに、再接合面8.9間へ塵芥や水などが侵入しない
ようにしである。
As shown in Fig. 9, when a parer or king 15 such as an O-ring is inserted and the joint surfaces 8 and 9 of both sensor bodies 11.12 are joined, dust, water, etc. may enter between the re-joining surfaces 8.9. This is to prevent intrusion.

又センサ本体12の固定金具6の基板23には第4図、
第5図のように位置合せピン13が突設され、他方のセ
ンサ本体11の固定金具2の基板20には第3図、第5
図のように差し込み孔28が開設されている。この差し
込み孔28に前記の位置合せピン13を差し込むと、セ
ンサ本体11に内蔵されている磁性コア1の端面1a、
1bと、センサ本体12に内蔵されている磁性2コア3
.4の端面3a、4aが高精度に位置合せされるように
しである。
In addition, the substrate 23 of the fixing metal fitting 6 of the sensor body 12 has the markings shown in FIG.
A positioning pin 13 is provided protrudingly as shown in FIG.
An insertion hole 28 is provided as shown in the figure. When the alignment pin 13 is inserted into the insertion hole 28, the end face 1a of the magnetic core 1 built in the sensor body 11,
1b, and two magnetic cores 3 built into the sensor body 12.
.. The end surfaces 3a and 4a of the cylindrical member 4 are aligned with high precision.

ちなみに、位置合せビン13を使用せずに、単に磁性コ
アl、3.4と光磁界センサ7とを樹脂10でモールド
しただけでは、磁界コア3.4間のギャップ5の中心に
光磁界センサ7を正確に配置することは困難であり、同
センサ7の感度低下やバラツキを招くことになる。この
ようになると磁性コア1と3の間、磁性コアlと4の間
の磁路に悪影響が出て、ギャップ5中に発生する磁界量
の低下につながる。
By the way, if the magnetic cores 1, 3.4 and the optical magnetic field sensor 7 are simply molded with the resin 10 without using the alignment bin 13, the optical magnetic field sensor will be placed in the center of the gap 5 between the magnetic cores 3.4. It is difficult to accurately arrange the sensor 7, which leads to a decrease in sensitivity and variations in the sensor 7. If this happens, the magnetic paths between the magnetic cores 1 and 3 and between the magnetic cores 1 and 4 will be adversely affected, leading to a decrease in the amount of magnetic field generated in the gap 5.

また、センサ本体11と12の接合面7.8を単に重合
して固定しただけでは、接合面7.8間に塵芥や水が侵
入して、磁性コア1.3,4が錆たり腐食したりする。
Furthermore, if the bonding surfaces 7.8 of the sensor bodies 11 and 12 are simply overlapped and fixed, dust and water may enter between the bonding surfaces 7.8 and the magnetic cores 1.3, 4 may rust or corrode. or

この場合も、磁性コアlと3の間、磁性コア1と4の間
の磁路に悪影響が出て、ギャップ5中に発生する磁界量
の低下につながる。
In this case as well, the magnetic paths between the magnetic cores 1 and 3 and between the magnetic cores 1 and 4 are adversely affected, leading to a decrease in the amount of magnetic field generated in the gap 5.

第3図〜第5図の光磁界センサ7は、第8図のようにセ
ンサケース30に内蔵されおり、同センサ7内にはファ
ラデー素子14が内蔵されており、しかも、このファラ
デー素子14は磁界コア3と4の間のギャップ5内にお
いて、内磁界コア3と4の中心と一致するように正確に
固定されている。
The optical magnetic field sensor 7 shown in FIGS. 3 to 5 is built in a sensor case 30 as shown in FIG. 8, and a Faraday element 14 is built in the sensor 7. It is precisely fixed within the gap 5 between the magnetic field cores 3 and 4 so as to coincide with the centers of the inner magnetic field cores 3 and 4.

なお、第8図、第9図において、31は光コネクタ、3
2は光ファイバ、33は光フアイバケーブル、34はキ
ャップ、第3図〜第5図の35はセンサ取付はプレート
である。
In addition, in FIGS. 8 and 9, 31 is an optical connector, 3
2 is an optical fiber, 33 is an optical fiber cable, 34 is a cap, and 35 in FIGS. 3 to 5 is a sensor mounting plate.

第1O図は上記実施例を用いてケーブルの導体電流を測
定した結果である。同図において横軸は導体電流、縦軸
はセンサ出力を示す、これより。
FIG. 1O shows the results of measuring the conductor current of the cable using the above embodiment. In the figure, the horizontal axis shows the conductor current, and the vertical axis shows the sensor output.

導体電流O〜500Aの広いダイナミックレンジにおい
て、非常に良好な直線性が得られていることが明らかで
ある。
It is clear that very good linearity is obtained over a wide dynamic range of conductor currents from 0 to 500 A.

(発明の効果) 本発明の光電流センサは次のような各種効果がある。(Effect of the invention) The photocurrent sensor of the present invention has the following various effects.

■。二つのセンサ本体11.12を位置決めピン13で
連結するので、磁性コアl、3.4を高精度に位置合せ
することができ、光磁界センサ7を磁気コア3,4間の
ギャップ5の中心に正確に配置することができる。この
ため光磁界センサ7の感度低下やバラツキなどが発生し
にくくなり、ギャップ5中に発生する磁界量が低下しな
い。
■. Since the two sensor bodies 11.12 are connected by the positioning pin 13, the magnetic cores 1 and 3.4 can be aligned with high precision, and the optical magnetic field sensor 7 can be positioned at the center of the gap 5 between the magnetic cores 3 and 4. can be placed accurately. Therefore, a decrease in sensitivity and variations in the sensitivity of the optical magnetic field sensor 7 are less likely to occur, and the amount of magnetic field generated in the gap 5 does not decrease.

■、磁性コアl、3.4を固定金具2.6に固定しであ
るので、ギャップ5中に光磁界センサ7が正確に配置さ
れ、高精度の電流検出が可能となる。
(2) Since the magnetic core 1, 3.4 is fixed to the fixture 2.6, the optical magnetic field sensor 7 is accurately placed in the gap 5, allowing highly accurate current detection.

■、二つのセンサ本体11.12を分離できるようにし
であるので、既設のケーブル等の電流路0を切り離すこ
となく、同電流路0の外側に簡易に取付けて(導体)電
流を精度良く検出することができる。
■Since the two sensor bodies 11 and 12 can be separated, they can be easily installed outside the current path 0 of existing cables, etc. to accurately detect the current (conductor). can do.

■、磁性コア3.4の夫々の端面3a、4aの外周にパ
ツキン15を設けであるので、接合面8.9間が防塵、
防水構造になり、磁性コア1.3.4の錆や腐食を防止
でさ、バラツキのない電流測定が可能となる。
(2) A gasket 15 is provided on the outer periphery of each end surface 3a, 4a of the magnetic core 3.4, so that the area between the joint surfaces 8.9 is dust-proof.
The waterproof structure prevents rust and corrosion of the magnetic core 1.3.4, making it possible to measure current without variation.

■、接合面8.9を除いた部分を樹脂lOでモールドし
であるので、防水性はもちろん、耐候性も向上する。
(2) Since the parts other than the joint surface 8.9 are molded with resin lO, not only waterproof properties but also weather resistance are improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光電流センサの一例を示す原理図、第
2図は同センサの一例を示す外観図、第3図及び第4図
は同センサのモールドする前の説明図、第5図はモール
ドしたセンサ本体の説明図、第6図及び第7図のa−d
は磁気コアを固定金具に取付ける過程の説明図、第8図
は一方のセンサ本体の平面説明図、第9図は同センサ本
体の側面図、第10図は本発明の光電流センサにより測
定された導体電流の説明図、第11図は光磁界センサの
一例を示す説明図、第12図は従来の光電流センサの原
理説明図、第13図は従来の他の光電流センサの原理説
明図、第14図は第13図のギャップにおける磁界の側
面説明図、第15図は同磁界の正面説明図である。 1.3.4は磁性コア la、lb、3a、4aは磁性コアの端面2.6は固定
金具 5はギャップ 7は光磁界センサ 8.9は接合面 ioは樹脂 11.12はセンサ本体 13は位置合せビン 14はファラデー素子 15はパッキング
FIG. 1 is a principle diagram showing an example of the photocurrent sensor of the present invention, FIG. 2 is an external view showing an example of the same sensor, FIGS. 3 and 4 are explanatory diagrams of the same sensor before molding, and FIG. The figures are explanatory diagrams of the molded sensor body, a-d in Figures 6 and 7.
8 is an explanatory diagram of the process of attaching the magnetic core to the fixture, FIG. 8 is an explanatory plan view of one sensor body, FIG. 9 is a side view of the sensor body, and FIG. 11 is an explanatory diagram showing an example of a photomagnetic field sensor, FIG. 12 is an explanatory diagram of the principle of a conventional photocurrent sensor, and FIG. 13 is an explanatory diagram of the principle of another conventional photocurrent sensor. , FIG. 14 is a side explanatory view of the magnetic field in the gap of FIG. 13, and FIG. 15 is a front explanatory view of the same magnetic field. 1.3.4 is the magnetic core la, lb, 3a, 4a is the end face of the magnetic core 2.6 is the fixing fitting 5 is the gap 7 is the optical magnetic field sensor 8.9 is the joint surface io is the resin 11.12 is the sensor body 13 The alignment bin 14 is the Faraday element 15, and the packing

Claims (3)

【特許請求の範囲】[Claims] (1)一部の磁性コア1を固定金具2に固定し、他の二
つの磁性コア3、4をギャップ5を設けて固定金具6に
固定すると共に同ギャップ5内に光磁界センサ7を配置
固定し、夫々の固定金具2、6の外周を夫々の接合面8
、9を残して樹脂10でモールドしてセンサ本体11、
12とし、この二つのセンサ本体11、12の接合面8
、9同士を重合して位置合せピン13により結合するこ
とにより、両センサ本体11、12の磁性コア1の一方
の端面1aと磁性コア3の端面3a、磁性コア1の他方
の端面1bと磁性コア4の端面4aとが位置合わせされ
るようにしたことを特徴とする光電流センサ。
(1) A part of the magnetic core 1 is fixed to the fixture 2, and the other two magnetic cores 3 and 4 are fixed to the fixture 6 with a gap 5 provided, and the optical magnetic field sensor 7 is arranged within the gap 5. fix the outer peripheries of the respective fixing fittings 2 and 6 to the respective joint surfaces 8.
, leaving 9 and molding with resin 10 to form a sensor body 11,
12, and the joint surface 8 of these two sensor bodies 11 and 12
, 9 are overlapped and connected by the alignment pin 13, one end surface 1a of the magnetic core 1 of both sensor bodies 11, 12, the end surface 3a of the magnetic core 3, and the other end surface 1b of the magnetic core 1 are magnetically connected. A photocurrent sensor characterized in that an end surface 4a of a core 4 is aligned.
(2)請求項第1において、光磁界センサ7におけるフ
ァラデー素子14が前記ギャップ5の中心に位置するよ
うに配置されたことを特徴とする光電流センサ。
(2) The photocurrent sensor according to claim 1, wherein the Faraday element 14 in the photomagnetic field sensor 7 is arranged so as to be located at the center of the gap 5.
(3)請求項第1又は第2において、結合されるセンサ
本体11、12の接合面8、9間にパッキング15を配
置して、接合面8、9間を防水、防塵構造としたことを
特徴とする光電流センサ。
(3) In claim 1 or 2, the packing 15 is arranged between the joint surfaces 8 and 9 of the sensor bodies 11 and 12 to be combined, so that the joint surfaces 8 and 9 have a waterproof and dustproof structure. Features of photocurrent sensor.
JP63140041A 1988-06-07 1988-06-07 Photocurrent sensor Pending JPH01308970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63140041A JPH01308970A (en) 1988-06-07 1988-06-07 Photocurrent sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63140041A JPH01308970A (en) 1988-06-07 1988-06-07 Photocurrent sensor

Publications (1)

Publication Number Publication Date
JPH01308970A true JPH01308970A (en) 1989-12-13

Family

ID=15259596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63140041A Pending JPH01308970A (en) 1988-06-07 1988-06-07 Photocurrent sensor

Country Status (1)

Country Link
JP (1) JPH01308970A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5732167A (en) * 1995-04-04 1998-03-24 Matsushita Electric Industrial Co., Ltd. Optical fiber sensor for measuring a magnetic field or electric current and method for making the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5732167A (en) * 1995-04-04 1998-03-24 Matsushita Electric Industrial Co., Ltd. Optical fiber sensor for measuring a magnetic field or electric current and method for making the same

Similar Documents

Publication Publication Date Title
US4450406A (en) Triaxial optical fiber system for measuring magnetic fields
US9465053B2 (en) Optical fibre birefringence compensation mirror and current sensor
US4532810A (en) Device for the pick-up of measured values
CA2160472A1 (en) Optical method of measuring an alternating electrical current, including temperature compensation, and a device for carrying out the method
KR19980019168A (en) Photocurrent Transformer
CN105629033B (en) A kind of device and method that conductor current is measured using magneto-optic memory technique
JPH0475470B2 (en)
US5544533A (en) Area flow meter with hall devices having magnetism-responsive surfaces
US6043648A (en) Method for temperature calibration of an optical magnetic field measurement array and measurement array calibrated by the method
EP0774669B1 (en) Optical fiber magnetic-field sensor
JPH01308970A (en) Photocurrent sensor
CN103038647B (en) Current detection device
US5825182A (en) Nondestructive testing system using a SQUID
JPH0325375A (en) Eddy current measuring instrument
JP2012229954A (en) Optical fiber current sensor
JPS61200477A (en) Current measuring apparatus
JPS5938663A (en) Current measuring apparatus using optical fiber
JPH02271258A (en) Position detector
JPH0228574A (en) Optical magnetic field sensor
JPH0522857B2 (en)
JPS62232586A (en) Optical magnetic field sensor
JPS63196865A (en) Optical current measuring apparatus
JPH06174810A (en) Magneto-optical field measuring equipment
JPH07198811A (en) Measuring method for magnetic field and current by magneto-optical field sensor
JPH03242559A (en) Method for measuring current by photo-magnetic field sensor