JPH01308924A - Vibration measuring device - Google Patents

Vibration measuring device

Info

Publication number
JPH01308924A
JPH01308924A JP63140698A JP14069888A JPH01308924A JP H01308924 A JPH01308924 A JP H01308924A JP 63140698 A JP63140698 A JP 63140698A JP 14069888 A JP14069888 A JP 14069888A JP H01308924 A JPH01308924 A JP H01308924A
Authority
JP
Japan
Prior art keywords
main body
vibration
electrodes
permanent magnet
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63140698A
Other languages
Japanese (ja)
Inventor
Yoshinori Sudo
嘉規 須藤
Tetsuo Hizuka
哲男 肥塚
Noriyuki Hiraoka
平岡 規之
Hiroyuki Tsukahara
博之 塚原
Giichi Kakigi
柿木 義一
Masahito Nakajima
雅人 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63140698A priority Critical patent/JPH01308924A/en
Publication of JPH01308924A publication Critical patent/JPH01308924A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To measure vibration in any direction by the use of one device by providing an electrode, a main body, a permanent magnet and an arithmetic unit. CONSTITUTION:For example, when vibration in an A-direction is suddenly applied to a base stand 14, a main body is moved in the A-direction instantaneously and the inner wall thereof becomes the position 10' shown by a broken line and, thereafter, the main body 10 is vibrated continuously within this moving width. A permanent magnet 13 is finely moved to the position 13' shown by a broken line by the reaction of the demagnetizing effect on the main body 10 to be vibrated in this fine moving width. Since the shift of a minute time is generated between the movement of the main body 10 and that of the magnet 13, the respective balances between regions 1, 1' as well as between regions 2, 2' are collapsed to generate the sudden change of a magnetic field and weak currents flow between electrodes 10a, 10b as well as between electrodes 10c, 10d. These weak currents are respectively detected and operated by an arithmetic unit 12 to make it possible to obtain vibration data in the A-direction wherein an X-direction and a Y-direction are synthesized.

Description

【発明の詳細な説明】 〔概 要〕 超伝導技術を利用した振動測定器に関し、測定器の削減
による生産性向上を目的とし、超伝導体よりなる中空の
球状体の外側表面には、該球状体の中心を通り互いに直
交する三軸との交叉位置に電極を備え、内側内部には該
球状体より臨界温度の低い低温物質を充満すると共に該
球状体の内径より小さな球状の永久磁石を収容した本体
と、上記各電極からの電気信号を検知し演算処理する演
算装置とで構成し、上記本体を振動可能な基台に装着し
て構成する。
[Detailed Description of the Invention] [Summary] Regarding a vibration measuring device using superconducting technology, for the purpose of improving productivity by reducing the number of measuring devices, the outer surface of a hollow spherical body made of superconductor is Electrodes are provided at intersections with three axes that pass through the center of the spherical body and intersect with each other at right angles to each other. It is composed of a main body housed therein, and a calculation device that detects and processes electrical signals from each of the electrodes, and the main body is mounted on a base that can vibrate.

〔産業上の利用分野〕[Industrial application field]

本発明は超伝導技術を利用した精密な振動測定器に係り
、特に測定器の削減によって生産性の向上を図った振動
測定器に関する。
The present invention relates to a precision vibration measuring device using superconducting technology, and particularly to a vibration measuring device that improves productivity by reducing the number of measuring devices.

〔従来の技術〕[Conventional technology]

従来の振動計や地震計等のごとく各種の振動を測定する
振動測定器は、精密な振動波形を得るために例えば一方
向の振動系を持つ振動測定器を複数台準備し、それぞれ
をX、、Y、Zの三次元方向に配置して各測定器から得
られる振動情報を演算することによって立体的な振動情
報を人手するようにしている。
Conventional vibration measuring instruments such as vibrometers and seismometers that measure various vibrations are prepared by preparing multiple vibration measuring instruments each having a unidirectional vibration system, each with an X, , Y, and Z, and calculate the vibration information obtained from each measuring device to manually obtain three-dimensional vibration information.

例えば地震計の場合では、地面に固定した台に一方向の
振動系としての振子を取りつけて該振子の上記台に対す
る相対的変位量を入手するようにしている。
For example, in the case of a seismograph, a pendulum serving as a unidirectional vibration system is attached to a stand fixed to the ground, and the relative displacement of the pendulum with respect to the stand is obtained.

この場合、通常は水平動用と上下動用の二系統の地震計
を準備することによって正確な地震情報を得るようにし
ている。
In this case, two systems of seismometers, one for horizontal motion and one for vertical motion, are usually prepared to obtain accurate earthquake information.

かくのごと〈従来は複数方向からの振動情報を一台の測
定器で入手することができなかった。
Thus, in the past, it was not possible to obtain vibration information from multiple directions with a single measuring device.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の構成になる振動測定器では、複数方向からの振動
情報を得るのに少なくとも二台以上複数台の振動測定器
を必要とすると云う問題があった。
Conventional vibration measuring instruments have a problem in that at least two or more vibration measuring instruments are required to obtain vibration information from multiple directions.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点は、超伝導体よりなる中空の球状体の外側表
面には、該球状体の中心を通り互いに直交する三輪との
交叉位置に電極を備え、内側内部には該球状体より臨界
温度の低い低温物質を充満すると共に該球状体の内径よ
り小さな球状の永久磁石を収容した本体と、 上記各電極からの電気信号を検知し演算処理する演算装
置とで構成し、 上記本体を振動可能な基台に装着してなる振動測定器に
よって解決される。
The above problem is that the outer surface of a hollow spherical body made of a superconductor is provided with an electrode at the intersection with the three rings that pass through the center of the spherical body and intersect with each other at right angles, and the inside of the spherical body has a critical temperature higher than that of the spherical body. The main body is filled with a low-temperature substance with a low temperature and contains a spherical permanent magnet smaller than the inner diameter of the spherical body, and a calculation device that detects and processes electrical signals from each of the electrodes, and the main body can be vibrated. This problem can be solved by using a vibration measuring device mounted on a base.

〔作 用〕[For production]

超伝導状態に保持した中空の球状体の内部に球状の永久
磁石を投入すると、該永久磁石は周囲からの反磁性効果
(マイスナー効果)によって内部の中央部近傍で該永久
磁石の重さとバランスする位置に浮遊した状態で固定さ
れる。
When a spherical permanent magnet is placed inside a hollow spherical body maintained in a superconducting state, the weight of the permanent magnet is balanced near the center of the interior by the diamagnetic effect (Meissner effect) from the surroundings. Fixed in a suspended position.

この状態にある球状体に外部から振動情報が伝わると、
球状体の振動による反磁性効果の反動で永久磁石が微動
して本体内部に急激な磁場変化が発生する。
When vibration information is transmitted from the outside to the spherical body in this state,
The permanent magnet moves slightly due to the reaction of the diamagnetic effect caused by the vibration of the spherical body, causing a rapid change in the magnetic field inside the body.

そこで、この磁場の変化を電流の変化に置き換えて三次
元の方向で読み取った後演算することによって球状体の
立体的な振動情報を人手することができる。
Therefore, by replacing this change in the magnetic field with a change in current, reading it in three-dimensional directions, and then performing calculations, it is possible to manually obtain three-dimensional vibration information of the spherical body.

本発明になる振動測定器では、液体窒素を封入して超伝
導状態を保持した中空の球状体内部に球状の永久磁石を
浮遊した状態で固定し、該球状体に外部から加えられる
振動によって生ずる該球状体内部での磁場の変化を演算
処理して立体的な振動情報を得るようしにしている。
In the vibration measuring device of the present invention, a spherical permanent magnet is fixed in a floating state inside a hollow spherical body filled with liquid nitrogen to maintain a superconducting state, and the vibration is generated by vibrations applied to the spherical body from the outside. Changes in the magnetic field inside the spherical body are processed to obtain three-dimensional vibration information.

従って複数の振動計を使用することなしに正確な立体的
な振動情報を容易に入手することができる。
Therefore, accurate three-dimensional vibration information can be easily obtained without using a plurality of vibration meters.

〔実施例〕〔Example〕

第1図は本発明になる振動測定器の例を説明する図であ
り、(A)は構成原理図をまた(B)は適用例を示した
図である。
FIG. 1 is a diagram illustrating an example of a vibration measuring instrument according to the present invention, in which (A) is a diagram showing the principle of construction, and (B) is a diagram showing an example of application.

なお図では、理解し易くするためにX方向とX方向の二
次元の場合について説明する。
Note that in the figure, for ease of understanding, a two-dimensional case in the X direction and the X direction will be described.

第1図(A)で、Ba−La−Cu−0系等の超伝導材
料で形成されている中空の球状体をなす本体10には、
該本体10よりしn昇温度の低い極低温材11として例
えば液体窒素が封入されており、この状態で該本体10
は超伝導状態を保持している。
In FIG. 1(A), the main body 10, which is a hollow spherical body made of a superconducting material such as Ba-La-Cu-0, includes:
For example, liquid nitrogen is sealed as a cryogenic material 11 with a lower temperature rise than the main body 10, and in this state, the main body 10
maintains a superconducting state.

また該本体10の外側表面上には、図面縦方向(X方向
)の直径上に電極10a、 lObがまた図面横方向(
X方向)の直径上に電極10c、 10dがそれぞれ設
けらており、これら各電極は別に設置している演算装置
12と接続されている。
Further, on the outer surface of the main body 10, electrodes 10a and lOb are arranged on the diameter in the vertical direction (X direction) in the drawing, and also in the horizontal direction (X direction) in the drawing.
Electrodes 10c and 10d are provided on the diameter in the X direction), and each of these electrodes is connected to a separately installed arithmetic unit 12.

更に上記本体IOの内部には該本体10の内径より小さ
い球状の永久磁石13が封入されているが、該永久磁石
13は外殻となる本体10が超伝導状態にあるため外殻
との間に生ずる反磁性効果(マイスナー効果)によって
該本体10のほぼ中央部近傍で該永久磁石13の重さと
バランスする位置に浮遊した状態で固定されている。
Furthermore, a spherical permanent magnet 13 smaller than the inner diameter of the main body 10 is enclosed inside the main body IO, but since the main body 10 serving as the outer shell is in a superconducting state, there is a gap between the permanent magnet 13 and the outer shell. Due to the diamagnetic effect (Meissner effect) that occurs, the permanent magnet 13 is fixed in a floating state near the center of the main body 10 at a position that balances the weight of the permanent magnet 13.

なお、14は基台、15は上記本体10を該基台14に
固定する脚部である。
Note that 14 is a base, and 15 is a leg portion for fixing the main body 10 to the base 14.

かかる構成になる振動測定器では、振動のない定常状態
では領域■と■“、■と■゛の磁場がそれぞれバランス
した状態であるため電極10aと106問および電極1
0cと10a間に電位差がなく電流は流れることはない
In a vibration measuring instrument having such a configuration, in a steady state without vibration, the magnetic fields of areas ■ and ■'', and ■ and ■'' are in a balanced state, so electrodes 10a and 106 and electrodes 1
There is no potential difference between 0c and 10a, and no current flows.

ここで例えば基台14に図示A方向の振動が急激に加え
られると、本体10は瞬間的に図示a方向に移動してそ
の内壁は破線で示す10’の位置となるがその後この間
で継続して振動する。
For example, if vibration is suddenly applied to the base 14 in the direction A in the figure, the main body 10 will instantaneously move in the direction a in the figure and its inner wall will be at the position 10' shown by the broken line, but the vibration will continue during this period. It vibrates.

また永久磁石13は本体10に対する反磁性効果の反動
によって破線で示す13°の位置に微動した後にこの間
で振動する。
Further, the permanent magnet 13 slightly moves to a position of 13° shown by a broken line due to the reaction of the diamagnetic effect on the main body 10, and then vibrates between this position.

しかし本体10の動きと永久磁石13の動きの間には微
少時間のずれが生ずるため領域■と■°問および■と■
°間それぞれのバランスが崩れて急激な磁場の変化が生
じ電極10aと10b問および電極10cと10a間そ
れぞれに微弱な電流が流れる。
However, since there is a slight time lag between the movement of the main body 10 and the movement of the permanent magnet 13, the areas ■ and ■° and the areas ■ and ■
The balance between the electrodes 10a and 10b is disrupted, causing a sudden change in the magnetic field, and weak currents flow between the electrodes 10a and 10b and between the electrodes 10c and 10a.

この微弱電流それぞれを演算装置12で検知演算してX
方向とY方向の合成されたA方向の振動情報を得ること
ができる。
Each of these weak currents is detected and calculated by the calculation device 12, and
It is possible to obtain vibration information in the A direction, which is a combination of the A direction and the Y direction.

図(B)で、本体10は図(A)と同様に超伝導体材料
Ba−La−Cu−0系等で形成されている中空の球状
体であり、その内部には極低温材としての液体窒素、1
1が充填されている。従ってこの状態で該本体10が超
伝導状態を呈していることは図(八)で説明した通りで
ある。
In Figure (B), the main body 10 is a hollow spherical body made of a superconductor material such as Ba-La-Cu-0 as in Figure (A), and inside it is a cryogenic material. liquid nitrogen, 1
1 is filled. Therefore, in this state, the main body 10 exhibits a superconducting state, as explained in FIG. 8.

また10a =10eは該本体10に設けた電極であり
、中心を通り互いに直交する直径が該本体と交叉する位
置6箇所にそれぞれ設けられている。
Further, 10a = 10e are electrodes provided on the main body 10, and are provided at six positions where diameters passing through the center and intersecting each other at right angles intersect the main body.

更に12は図(八)における演算装置であり、図の場合
には上記の各電極と接続されている。
Furthermore, 12 is an arithmetic unit in FIG. 8, which is connected to each of the above-mentioned electrodes.

13は球状の永久磁石であり15は上記本体10を基台
に固定するための脚部である。
13 is a spherical permanent magnet, and 15 is a leg portion for fixing the main body 10 to a base.

なお16は本体10の超伝導状態を保持するための断熱
材である。
Note that 16 is a heat insulating material for maintaining the superconducting state of the main body 10.

ここで該本体10に振動が付加された場合には、図(A
)で説明した如く本体10の内部に急激な磁場の変化が
生じて電極10aと10b、 10cと10d、 10
eと10a間のそれぞれに微小電流が発生することから
、該電流を演算装置12で検知演算して本体10に加え
られた振動情報を立体的に入手することができる。
Here, if vibration is applied to the main body 10,
), a sudden change in the magnetic field occurs inside the main body 10, causing the electrodes 10a and 10b, 10c and 10d, 10
Since a minute current is generated between e and 10a, the arithmetic unit 12 detects and calculates the current to obtain three-dimensional information on vibrations applied to the main body 10.

〔発明の効果〕〔Effect of the invention〕

上述の如く本発明により、如何なる方向からの振動でも
一台で測定することができる振動測定器を提供すること
ができる。
As described above, according to the present invention, it is possible to provide a vibration measuring device that can measure vibrations from any direction with a single device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になる振動測定器の例を説明する図1 、く 13は永久磁石、   14は基台、 15は脚部、     16は断熱材、をそれぞれ表わ
す。 CB)
FIG. 1 is a diagram illustrating an example of a vibration measuring instrument according to the present invention. Reference numeral 13 represents a permanent magnet, 14 represents a base, 15 represents a leg portion, and 16 represents a heat insulating material. CB)

Claims (1)

【特許請求の範囲】[Claims]  超伝導体よりなる中空の球状体の外側表面には、該球
状体の中心を通り互いに直交する三軸との交叉位置に電
極(10a、10b、〜10f)を備え、内側内部には
該球状体より臨界温度の低い低温物質(11)を充満す
ると共に該球状体の内径より小さな球状の永久磁石(1
3)を収容した本体(10)と、上記各電極(10a、
10b、〜10f)からの電気信号を検知し演算処理す
る演算装置(12)とで構成し、上記本体(10)を振
動可能な基台(14)に装着してなることを特徴とする
振動測定器。
The outer surface of a hollow spherical body made of a superconductor is provided with electrodes (10a, 10b, ~10f) at the intersections with three axes passing through the center of the spherical body and orthogonal to each other, and the inner surface of the spherical body A spherical permanent magnet (11) filled with a low-temperature substance (11) whose critical temperature is lower than that of the body and smaller than the inner diameter of the spherical body.
3), and each of the above electrodes (10a,
10b, ~10f) and a computing device (12) that detects and processes electrical signals, and the main body (10) is mounted on a vibrating base (14). Measuring instrument.
JP63140698A 1988-06-08 1988-06-08 Vibration measuring device Pending JPH01308924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63140698A JPH01308924A (en) 1988-06-08 1988-06-08 Vibration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63140698A JPH01308924A (en) 1988-06-08 1988-06-08 Vibration measuring device

Publications (1)

Publication Number Publication Date
JPH01308924A true JPH01308924A (en) 1989-12-13

Family

ID=15274660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63140698A Pending JPH01308924A (en) 1988-06-08 1988-06-08 Vibration measuring device

Country Status (1)

Country Link
JP (1) JPH01308924A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016048169A (en) * 2014-08-27 2016-04-07 公益財団法人国際超電導産業技術研究センター Vibration sensor and vibration sensing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016048169A (en) * 2014-08-27 2016-04-07 公益財団法人国際超電導産業技術研究センター Vibration sensor and vibration sensing system

Similar Documents

Publication Publication Date Title
US6098461A (en) Acceleration sensor using piezoelectric element
US4583404A (en) Electrostatic accelerometer
JP4212125B2 (en) Guaranteed mass support system
US8347711B2 (en) Atom-interferometric, stepped gravity gradient measuring system
JP4892189B2 (en) Diamagnetic levitation system
Noir et al. Experimental evidence of non-linear resonance effects between retrograde precession and the tilt-over mode within a spheroid
CN105738653B (en) High-precision optical is displaced magnetic suspension accelerometer
Piso Applications of magnetic fluids for inertial sensors
EP3627158B1 (en) Vertical superconductive magnetic spring oscillator with adjustable inherent frequency
Yang et al. Research on a small tunnel magnetoresistive accelerometer based on 3D printing
CA2465994C (en) Apparatus for the measurement of gravitational gradients
JPH01308924A (en) Vibration measuring device
US3710629A (en) Three-axis accelerometer
Fremd Symmetric triaxial rotational piezoelectric seismometers
US3451274A (en) Electrostatically supported inertial device
CN204255365U (en) The split type difference silicon micro-resonance type accelerometer of a kind of twin shaft
CN113091722A (en) Three-axis micromechanical gyroscope and angular velocity measuring method
Brill et al. Fast and sensitive magnetic susceptometer for the study of rapid biochemical reactions
RU182540U1 (en) MICROELECTROMECHANICAL GYROSCOPE
US3250133A (en) Differential accelerometer
RU2438151C1 (en) Gravitational variometre
Zhang et al. A horizontal linear vibrator for measuring the cross-coupling coefficient of superconducting gravity gradiometers
US11835333B2 (en) Rotational oscillation sensor with a multiple dipole line trap system
GB2071320A (en) Measuring instrument
SU781556A1 (en) Two-coordinate angular displacement converter