JPH01308813A - Production of aluminum nitride powder and unit therefor - Google Patents

Production of aluminum nitride powder and unit therefor

Info

Publication number
JPH01308813A
JPH01308813A JP13891488A JP13891488A JPH01308813A JP H01308813 A JPH01308813 A JP H01308813A JP 13891488 A JP13891488 A JP 13891488A JP 13891488 A JP13891488 A JP 13891488A JP H01308813 A JPH01308813 A JP H01308813A
Authority
JP
Japan
Prior art keywords
powder
gas
reaction
section
reaction tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13891488A
Other languages
Japanese (ja)
Inventor
Noriyasu Hotta
堀田 憲康
Harushige Yoshimoto
吉本 栄成
Kiyoshi Tada
清志 多田
Teruo Kitamura
照夫 北村
Shigetoshi Jogan
茂利 成願
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP13891488A priority Critical patent/JPH01308813A/en
Publication of JPH01308813A publication Critical patent/JPH01308813A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0722Preparation by direct nitridation of aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain high-purity AlN, by preheating N2 gas when Al powder is made to react in a N2 gas stream to enable the temperature in the reaction section to be reduced to suppress generation of decomposition gas from the construction material of the reaction tube. CONSTITUTION:N2 gas from its feed section A is preheated (to 200-400 deg.C) by a preheating means 11 and fed to a powder container 2 in an Al powder feed section C. Al powder in said container 3 is then made to float on a upward current of the N2 gas fed and supplied into a reaction tube 5. The Al powder thus fed, being heated through a heater 6 during passing through the reaction section in the reaction tube 5, is converted into AlN. The AlN powder thus produced is transferred, on a N2 gas stream, to a collection vessel 8, where it is separated from the N2 gas and deposited at the bottom. According this N2 gas preheating system, the nitrification will sufficiently proceed even at ca. 1,300-1,500 deg.C.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、熱伝導性、耐熱性、電気絶縁性に優れたセ
ラミックス材料として、半導体基板、金属溶融器、その
他金属精練工業等の分野に使用される窒化アルミニウム
粉末(以下AlN粉末という)の連続的製造方法及び装
置に関する。
[Detailed Description of the Invention] Industrial Application Field The present invention is used as a ceramic material with excellent thermal conductivity, heat resistance, and electrical insulation in fields such as semiconductor substrates, metal melters, and other metal smelting industries. The present invention relates to a method and apparatus for continuously producing aluminum nitride powder (hereinafter referred to as AlN powder).

従来の技術 窒化アルミニウム(11!N)の製造方法としては、A
l粉末からの直接窒化法やアルミナ粉末からの炭素還元
法などがあるが、工業的には直接窒化法が一般に用いら
れている。
The conventional method for producing aluminum nitride (11!N) is A.
Although there are methods such as direct nitriding from l powder and carbon reduction method from alumina powder, direct nitriding is generally used industrially.

直接窒化法は、Al粉末と窒素(N2)ガスとを直接接
触反応せしめるものであるがAl粉末の表面が窒化され
ると初期段階でその表面に硬い安定な窒化アルミニウム
被膜ができ、−種のシェル構造を形成して内部への窒化
反応が抑制されてしまうため、形成されたAlNΩN金
膜ってから更に窒化反応せしめる必要を生じる。このた
めAlN粉末の製造のためには、窒化反応と粉砕を繰返
す必要を生じ、粉砕工程での汚染による純度低下の問題
があった。また、特公昭36−21164号公報に見ら
れるようにAl粉末とAlN粉末とを所定割合に混合し
、この混合物を窒化反応することによって高純度のAl
N粉末を得る方法が知られており、一般にも採用されて
いるが、この場合は収率が悪いという本質的な問題点を
有している。
The direct nitriding method involves a direct contact reaction between Al powder and nitrogen (N2) gas. When the surface of the Al powder is nitrided, a hard and stable aluminum nitride film is formed on the surface in the initial stage, and - Since a shell structure is formed and the nitriding reaction inside is suppressed, it becomes necessary to further nitridize the formed AlNΩN gold film. Therefore, in order to produce AlN powder, it is necessary to repeat the nitriding reaction and pulverization, and there is a problem of a decrease in purity due to contamination during the pulverization process. In addition, as seen in Japanese Patent Publication No. 36-21164, high purity Al can be produced by mixing Al powder and AlN powder in a predetermined ratio and subjecting this mixture to a nitriding reaction.
Although a method for obtaining N powder is known and generally employed, this method has the essential problem of poor yield.

上記のような従来の製造法に対し、最近、特開昭61−
205606号公報に記載のように、窒化反応を1次と
2次に分けて2工程で行うものとし、−次反応において
Al粉末をN2ガス気流中で短時間直接窒化反応し、そ
の表面に硬L1AlN被膜を形成した中間粒子をつくり
、続いて二次反応において該中間粒子をN2ガス気流中
に一次反応時より長持間保持し、AlN披膜波膜断を生
じさせて粒子内部まで窒化反応を進行せしめるものとし
て、高純度の微細なAlN粉末を効率よく製造しようと
いう試みが提案されている。
In contrast to the conventional manufacturing method mentioned above, recently, Japanese Patent Application Laid-open No. 61-
As described in Japanese Patent No. 205606, the nitriding reaction is carried out in two steps, the first and second steps. In the second step, Al powder is directly nitrided in a N2 gas stream for a short period of time, and the surface is hardened. L1 Intermediate particles with an AlN film formed thereon are created, and then in a secondary reaction, the intermediate particles are held in a N2 gas stream for a longer period of time than during the primary reaction, causing AlN arytenoid film breakage and nitriding reaction to occur inside the particles. As a step forward, attempts have been proposed to efficiently produce fine AlN powder with high purity.

しかしながら、この先行提案の方法は、反応工程を2段
階に分けて、少量ずつバッチ式に遂行するものであるた
め、連続操業性に欠け、もとより生産性に劣る欠点があ
る。
However, in this previously proposed method, the reaction process is divided into two stages and carried out batchwise in small quantities, so it lacks continuous operability and has the disadvantage of poor productivity.

そこで、本出願人は先に連続的なAlN粉末の製造方法
及び装置として、特願昭62−27935号により、N
2ガス供給部から供給されるN2ガス流に乗せて、Al
粉末倶給部のAl粉末を浮遊状態に反応管中の高温加熱
状態の反応部に送り込み、該反応部でN2ガスと反応せ
しめるものを提案した。
Therefore, the present applicant previously proposed a method and apparatus for continuously producing AlN powder in Japanese Patent Application No. 62-27935.
2.Al
We have proposed a method in which Al powder in a powder supply section is fed in a suspended state to a reaction section heated at a high temperature in a reaction tube, and reacted with N2 gas in the reaction section.

発明が解決しようとする課題 しかしながら、この方法及び装置においては、Al粉末
を乗せたN2ガス流が反応管中の反応部に達するまでは
、N2ガスはその供給部から供給されたときの温度(一
般的には常温)を維持しており、反応部で初めて加熱さ
れるものであるため、窒化に必要なエネルギーの大半を
反応部で付与しなければならず、このため反応部の温度
を1500〜1600℃程度の高温に保持しなければな
らなかった。このため、反応管の構成材料から分解ガス
を生じたり、あるいは構成材料の選択自由性に制限を受
けるというような欠点があった。
Problems to be Solved by the Invention However, in this method and apparatus, until the N2 gas flow carrying the Al powder reaches the reaction section in the reaction tube, the N2 gas has a temperature ( Since the reaction part is heated for the first time, the majority of the energy required for nitriding must be provided in the reaction part, and for this reason the temperature of the reaction part is kept at 1500 The temperature had to be maintained at a high temperature of ~1600°C. For this reason, there have been drawbacks such as generation of decomposition gas from the constituent materials of the reaction tube, and limitations in the freedom of selection of constituent materials.

この発明はさらにこのような欠点を解決した窒化アルミ
ニウムの製造方法及び装置の提供を目的とするものであ
る。
A further object of the present invention is to provide a method and apparatus for producing aluminum nitride that solves these drawbacks.

課題を解決するための手段 上記目的を達成するために、この発明は、反応部に達す
る以前にN2ガスを予備加熱しようというものである。
Means for Solving the Problems In order to achieve the above object, the present invention attempts to preheat the N2 gas before it reaches the reaction section.

即ちこの発明は、窒化アルミニウムの製造方法に関し、
周りに加熱手段を有する反応管中の高温加熱状態の反応
部にAl粉末をN2ガス流に乗せて浮遊状態に送り込み
、該反応部でN2ガスと反応せしめる窒化アルミニウム
粉末の製造方法において、前記反応管の反応部に達する
以前にN2ガスを予備加熱することを特徴とするもので
あり、あるいはまた上記N2ガスの予備加熱をAl粉末
をガス流に乗せる以前に行うことを特徴とするものであ
る。さらにこの発明は、窒化アルミニウムの製造装置に
関し、N2ガス供給部と、該供給部から供給されたN2
ガス流によりAfl粉末を浮遊させる12粉末供給部と
、周りに設けられた加熱手段によって内部に反応部が形
成されると共にAl粉末洪供給部らN2ガス流に乗った
Al粉末が送り込まれる反応管とを備えた窒化アルミニ
ウムの製造装置において、前記N2ガス供給部と反応管
の反応部との間にN2ガスを予備加熱する予備加熱手段
が設けられていることを特徴とするものである。
That is, the present invention relates to a method for producing aluminum nitride,
In the method for producing aluminum nitride powder, the Al powder is sent into a floating state in a N2 gas flow into a reaction section in a high temperature heated state in a reaction tube having a heating means around it, and is caused to react with the N2 gas in the reaction section. This method is characterized by preheating the N2 gas before it reaches the reaction section of the tube, or alternatively, by performing the preheating of the N2 gas before adding the Al powder to the gas stream. . Furthermore, the present invention relates to an apparatus for producing aluminum nitride, including an N2 gas supply section and N2 gas supplied from the supply section.
12 Powder supply section which suspends Afl powder by a gas flow, a reaction section is formed inside by a heating means provided around it, and a reaction tube into which Al powder riding on a N2 gas flow is sent from the Al powder supply section. The apparatus for producing aluminum nitride is characterized in that a preheating means for preheating N2 gas is provided between the N2 gas supply section and the reaction section of the reaction tube.

第1図において、(A)はN2ガス供給部、(B)はl
粉末供給部、(C)は捕集部を示す。
In Figure 1, (A) is the N2 gas supply section, (B) is the l
A powder supply section and (C) a collection section are shown.

N2ガス供給部(A)は、N2ガスボンベ(1)とこの
ガスボンベからAl粉末洪給部(B)へとN2ガスを供
給するためのN2ガス供給管(2)とを備える。
The N2 gas supply section (A) includes an N2 gas cylinder (1) and an N2 gas supply pipe (2) for supplying N2 gas from the gas cylinder to the Al powder supply section (B).

Al粉末供給部(B)は原料Al粉末を収容する粉末容
器(3)と、これに開口するガス供給管(2)によるN
2ガス吹込口(2a)と、容器内底部に設けられたアジ
テータ−(4)と、図示しないAl粉末投入口とを具備
し、容器(3)内のAp粉末をN2ガス吹き込み口(2
a)から導入されるN2ガス気流にのって浮上させ、反
応管(5)へ向けて送り出すものとなされている。アジ
テータ−(4)は容器(3)内でのへρ粉末の凝集を防
止しAl粉末をN2ガスの上昇気流に乗せるための補助
的役割を果すが、必ずしもこれを必要とするものではな
く、N2ガス流のみに依存して上記Al粉末の撹乱、浮
上を行わせるものとなすことも可能である。
The Al powder supply section (B) includes a powder container (3) containing the raw material Al powder and a gas supply pipe (2) that opens to the N powder container (3).
2 gas inlet (2a), an agitator (4) provided at the bottom of the container, and an Al powder inlet (not shown).
It is made to float on the N2 gas flow introduced from a) and sent toward the reaction tube (5). The agitator (4) plays an auxiliary role in preventing the agglomeration of the ρ powder in the container (3) and carrying the Al powder into the rising airflow of N2 gas, but this is not necessarily necessary. It is also possible that the Al powder is disturbed and floated depending only on the N2 gas flow.

反応管(5)は、耐熱性材料として例えばアルミナ管か
らなるもので、その一部層りに加熱装置(6)が配置さ
れており、加熱装置によって高温加熱状態となる反応管
内の所定部分が反応部(7)となされている。反応管(
5)はその一端が直接または連結管を介して間接にAl
粉末供給部(B)の粉末容器(3)に連通接続されてお
り、その内部をAN粉末供給部からN2ガス流に乗せ送
られてくる12粉末が流通するものとなされている。そ
して、加熱装置(6)からの加熱を受けて反応部(7)
でへρ粉末とN2ガスとの反応を生じAl粉末の窒化が
達成されるものとなされている。なお、加熱装置(6)
としては、最も一般的には電気抵抗加熱炉が用いられる
が、その他の加熱手段を用いるものとしても良い。
The reaction tube (5) is made of a heat-resistant material such as an alumina tube, and a heating device (6) is disposed in a part of the layer, so that a predetermined portion of the reaction tube that is heated to a high temperature by the heating device is heated. This is the reaction section (7). Reaction tube (
5) has one end directly or indirectly connected to Al through a connecting pipe.
It is connected in communication with the powder container (3) of the powder supply section (B), and the 12 powders conveyed from the AN powder supply section along with the N2 gas flow flow through the inside thereof. Then, the reaction section (7) receives heat from the heating device (6).
It is believed that a reaction occurs between the ρ powder and the N2 gas, and nitridation of the Al powder is achieved. In addition, the heating device (6)
Although an electric resistance heating furnace is most commonly used, other heating means may also be used.

捕集部(C)は、捕集容器(8)と、その上部に設けら
れたフィルター(9a)付きのAl粉末の取出し口(9
)とを備え、捕集容器(8)の天板部が連結管(10)
を介して反応管(5)の上端に連通接続されている。
The collection unit (C) includes a collection container (8) and an Al powder outlet (9) with a filter (9a) provided on the top of the collection container (8).
), and the top plate of the collection container (8) is connected to the connecting pipe (10).
The upper end of the reaction tube (5) is connected to the upper end of the reaction tube (5).

この発明では、上記に加えて、N2ガスを予備加熱する
ものとなされる。第1図に示す実施例では、N2ガス供
給部(A)から供給管(2)を介してAl粉末供給部(
B)に導入される常温のN2ガスを導入直前に予備加熱
する予備加熱手段(11)が設けられている。N2ガス
を予備加熱する理由は、窒化に必要なエネルギーの一部
を予め付与しておくことで、反応部(7)の必要温度を
相対的に下げる為である。しかし予備加熱温度が高すぎ
ると反応部に達する前にAlの固体での窒化が始まり、
窒化層が厚くなって後述する反応部での連鎖的窒化反応
を生じにくくなり、微細なAlN粉末が得られなくなる
。このため、予備加熱温度は最大500℃程度以下に抑
えることが望ましい。予備加熱手段(11)としては、
ヒーターや要すれば熱交換器等を用いれば良い。
In this invention, in addition to the above, the N2 gas is preheated. In the embodiment shown in FIG. 1, the N2 gas supply section (A) is connected to the Al powder supply section (
A preheating means (11) is provided for preheating the room temperature N2 gas introduced into B) immediately before introduction. The reason for preheating the N2 gas is to provide a portion of the energy necessary for nitriding in advance, thereby relatively lowering the required temperature of the reaction section (7). However, if the preheating temperature is too high, nitridation of Al in the solid state will begin before it reaches the reaction zone.
The nitrided layer becomes thicker, making it difficult to cause a chain nitriding reaction in the reaction zone, which will be described later, and making it impossible to obtain fine AlN powder. For this reason, it is desirable to suppress the preheating temperature to a maximum of about 500°C or less. As the preheating means (11),
A heater or, if necessary, a heat exchanger may be used.

第1図に示す装置において、AlN粉末の製造に際して
は、N2ガス供給部(A)からのN2ガスを予備加熱手
段(11)により予備加熱した後、粉末容器(3)に供
給する。供給したN2ガスの上昇気流に乗せて粉末容器
(3)内のAl粉末を浮遊させ反応管(5)へと送る。
In the apparatus shown in FIG. 1, when producing AlN powder, N2 gas from the N2 gas supply section (A) is preheated by a preheating means (11) and then supplied to the powder container (3). The Al powder in the powder container (3) is suspended on the upward current of the supplied N2 gas and sent to the reaction tube (5).

送られてきたAl粉末は反応管(5)内の反応部(7)
を流通する過程で、加熱装置(6)からの加熱をうけて
Al粉末とN2ガスとの反応を生じ、Al粉末の窒化が
達成される。ここに、窒化反応の初期段階ではAl粉末
はその表面部のみが窒化されて硬いAlN被膜を形成し
、内部への窒化が阻害される現象をもたらすが、続いて
そのま\反応管(5)中を移送される過程で更に昇温さ
れることにより、連鎖的窒化反応を生じて、完全なる窒
化がもたらされると共に、AlN粉末の微細化が達成さ
れる。即ち、加熱温度及び反応時間の増大とともに、反
応初期段階でA!2粉末表面に形成されたApN被膜と
内部の未反応のAlとの熱膨張差と、更には恐らく蒸気
圧差にも基因してAlN被膜に亀裂が発生し、その部分
でまた新しい反応が生じ、その反応熱が蓄積された場合
は反応部付近の急激な温度上昇でAlN被膜の崩壊とと
もに溶融Apの飛び出しを伴いつ\、反応が加速度的連
鎖進行を生じ、高純度なAlN粉末に生成される。かつ
表面のAlN被膜の亀裂による粉末内部からの未反応溶
融Alの飛び出し、あるいは流出は、それによって粉末
の空洞化をもたらし、粉砕の容易なAl中空粒子を形成
する一方AlN被膜の崩壊及び流出Alの二次的窒化は
実質的に粉砕に相当する効果をもたらす。このようjt
 N 2ガスとApとの窒化反応は、N2ガスが予備加
熱されていることにより、反応部(7)の温度が130
0〜1500℃程度であっても十分に進行する。
The sent Al powder is transferred to the reaction section (7) inside the reaction tube (5).
In the process of flowing through the Al powder, a reaction occurs between the Al powder and the N2 gas due to the heating from the heating device (6), and nitridation of the Al powder is achieved. At the initial stage of the nitriding reaction, only the surface of the Al powder is nitrided to form a hard AlN film, which inhibits the nitriding of the inside. As the AlN powder is further heated during the transfer process, a chain nitriding reaction occurs, resulting in complete nitriding and refinement of the AlN powder. That is, as the heating temperature and reaction time increase, A! 2. Cracks occur in the AlN film due to the difference in thermal expansion between the ApN film formed on the powder surface and the unreacted Al inside, and also probably due to the difference in vapor pressure, and a new reaction occurs at that part. When the reaction heat is accumulated, the rapid temperature rise near the reaction area causes the collapse of the AlN film and the ejection of molten Ap, causing an accelerated chain reaction and producing high-purity AlN powder. . In addition, the splashing out or outflow of unreacted molten Al from inside the powder due to cracks in the AlN coating on the surface causes the powder to become hollow, forming hollow Al particles that are easy to crush, while the collapse of the AlN coating and the outflow of Al. The secondary nitriding of produces an effect substantially equivalent to comminution. Like this
In the nitriding reaction between N2 gas and Ap, the temperature of the reaction part (7) is 130°C because the N2 gas is preheated.
The process progresses satisfactorily even at temperatures of about 0 to 1500°C.

上記により反応部(C)を経たAlN粉末はそのままN
2ガス流れに乗って連結管(lO)から捕集容器(8)
へと移送され、該捕集容器(7)内でN2ガスと分離さ
れ、その底部に堆積する。分離されたN2ガスは、排出
口(9)から系外へと排出される。
The AlN powder that has passed through the reaction section (C) as described above is directly N
2 From the connecting pipe (lO) to the collection container (8) on the gas flow
The gas is separated from the N2 gas in the collection container (7), and deposited at the bottom of the collection container (7). The separated N2 gas is discharged from the system through the discharge port (9).

第1図の装置においては、N2ガスの予備加熱をN2ガ
ス供給部(A)とAl粉末供給部(B)との間で行うも
のとしたが、予備加熱はN2ガスが反応管(5)内の反
応部(7)に達へするまでに行えば足りる。従って、第
2図に示すように、加熱装置(6)に近接して反応管(
5)の周りに予備加熱手段(11)を設け、N2ガスの
予備加熱と窒化反応とをほぼ連続的に行うものとしても
良い。しかし、Al粉末をN2ガス流に乗せる以前に予
備加熱を行っておく方が、反応管(5)の全体長さを短
縮できる点で望ましい。なお第2図において第1図と同
一構成のものには同一符号を付しである。
In the apparatus shown in Fig. 1, the preheating of N2 gas is performed between the N2 gas supply section (A) and the Al powder supply section (B). It is sufficient to do this until the inner reaction part (7) is reached. Therefore, as shown in FIG. 2, the reaction tube (
A preheating means (11) may be provided around 5) to perform the preheating of the N2 gas and the nitriding reaction almost continuously. However, it is preferable to preheat the Al powder before placing it in the N2 gas flow, since the overall length of the reaction tube (5) can be shortened. In FIG. 2, the same components as in FIG. 1 are given the same reference numerals.

発明の効果 この発明によれば、反応管の反応部に達する以前に予備
加熱装置によりN2ガスを予備加熱するものであるから
、窒化反応に必要なエネルギーの大半を反応管の反応部
のみで付与する必要がな(なるから、予備加熱しない場
合に較べて反応管の反応部の温度を下げることができる
Effects of the Invention According to this invention, since the N2 gas is preheated by the preheating device before reaching the reaction section of the reaction tube, most of the energy required for the nitriding reaction is applied only in the reaction section of the reaction tube. (Therefore, the temperature of the reaction section of the reaction tube can be lowered compared to the case without preheating.

従って、反応管の構成材料からの分解ガスの発生を減少
しえ、より高純度の窒化Apの製造が可能となるとか、
あるいは構成材料の選択自由性を拡大しうる等の効果が
ある。また、N2ガスの予備加熱を、i粉末をそのガス
流に乗せる以前に行う場合には、反応管の長さを短縮で
きるという効果がある 実施例 第1図に示した製造装置により、アトマイズ法によって
製造された純度99.99%、平均粒径7.4μmの高
純度アルミニウム粉末を原料粉末として用い、これをA
l粉末供給部(B)の粉末容器(3)に投入した後、該
容器内にN2ガス共給部(A)から純度99.999%
のN2ガスを1Ω/a+Inの割合で供給すると共に、
アジテータ−(4)を駆動し、N2ガス流に乗せてAl
粉末を反応管(5)に向けて上昇移送せしめるものとし
た。ここに、反応管(5)として内径36履、長さ10
00++mのアルミナ管を使用し、反応部(7)内での
N2ガスの流速を約1.6aa/seeになるものとし
た。
Therefore, it is possible to reduce the generation of decomposition gas from the constituent materials of the reaction tube, and it is possible to produce higher purity Ap nitride.
Another advantageous effect is that the flexibility in selecting constituent materials can be expanded. In addition, if the N2 gas is preheated before the i-powder is placed in the gas stream, the atomization method can be performed using the manufacturing apparatus shown in Example FIG. 1, which has the effect of shortening the length of the reaction tube. High-purity aluminum powder with a purity of 99.99% and an average particle size of 7.4 μm manufactured by A was used as the raw material powder.
After charging the powder into the powder container (3) of the powder supply section (B), the N2 gas with a purity of 99.999% is supplied from the N2 gas co-supply section (A) into the container.
While supplying N2 gas at a ratio of 1Ω/a+In,
Drive the agitator (4) and put Al into the N2 gas flow.
The powder was to be transferred upward toward the reaction tube (5). Here, the reaction tube (5) has an inner diameter of 36 mm and a length of 10 mm.
A 00++ m alumina tube was used, and the flow rate of N2 gas in the reaction section (7) was set to be about 1.6 aa/see.

上記の条件のもとで、粉末容器(3)の直前に設けたヒ
ーターからなる予備加熱装置(11)によりAl粉末供
給部(B)に導入されるN2ガスを200℃、400℃
の各温度に加熱した場合、及び予備加熱装置(11)を
設けることなく室温のN2ガスを導入した場合のそれぞ
れについて、窒化反応を行わせ、100%窒化可能とな
る反応部(7)の温度を調べたところ、下記第1表のと
おりであった。
Under the above conditions, the N2 gas introduced into the Al powder supply section (B) by the preheating device (11) consisting of a heater installed just before the powder container (3) was heated to 200°C and 400°C.
The temperature of the reaction section (7) at which the nitriding reaction is performed and 100% nitridation is possible when heated to each temperature and when N2 gas at room temperature is introduced without providing a preheating device (11). The results were as shown in Table 1 below.

第1表Table 1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明によるAfiN粉末の製造装置の一実
施例を示す概略構成図、第2図は他の実施例を示す概略
構成図である。 (A)・・・N2ガス供給部、(B)・・・Al粉末倶
給部、(C)・・・捕集部、(1)・・・ガスボンベ、
(2)・・・N2ガス倶給管、(3)・・・粉末容器、
(5)・・・反応管、(6)・・・加熱装置、(7)・
・・反応部、(8)・・・捕集容器、(11)・・・予
備加熱手段。 以上 ]1−−↑1拓力D4トチJえ
FIG. 1 is a schematic configuration diagram showing one embodiment of an AfiN powder manufacturing apparatus according to the present invention, and FIG. 2 is a schematic configuration diagram showing another embodiment. (A)...N2 gas supply section, (B)...Al powder supply section, (C)...collection section, (1)...gas cylinder,
(2)...N2 gas supply pipe, (3)...powder container,
(5)...Reaction tube, (6)...Heating device, (7)...
... Reaction section, (8) ... Collection container, (11) ... Preheating means. Above] 1--↑1 Takuryoku D4 Tochi J

Claims (3)

【特許請求の範囲】[Claims] (1)周りに加熱手段を有する反応管中の高温加熱状態
の反応部にAl粉末をN_2ガス流に乗せて浮遊状態に
送り込み、該反応部でN_2ガスと反応せしめる窒化ア
ルミニウム粉末の製造方法において、前記反応管の反応
部に達する以前にN_2ガスを予備加熱することを特徴
とする窒化アルミニウム粉末の製造方法。
(1) In a method for producing aluminum nitride powder, the Al powder is sent into a floating state in a flow of N_2 gas into a reaction section in a high-temperature heated state in a reaction tube having a heating means around it, and is reacted with N_2 gas in the reaction section. . A method for producing aluminum nitride powder, characterized in that N_2 gas is preheated before reaching the reaction section of the reaction tube.
(2)N_2ガスの予備加熱を、Al粉末をガス流に乗
せる以前に行う請求項1記載の窒化アルミニウム粉末の
製造方法。
(2) The method for producing aluminum nitride powder according to claim 1, wherein the N_2 gas is preheated before the Al powder is placed in the gas flow.
(3)N_2ガス供給部と、該供給部から供給されたN
_2ガス流によりAl粉末を浮遊させるAl粉末供給部
と、周りに設けられた加熱手段によって内部に反応部が
形成されると共にAl粉末供給部からN_2ガス流に乗
ったAl粉末が送り込まれる反応管とを備えた窒化アル
ミニウムの製造装置において、前記N_2ガス供給部と
反応管の反応部との間にN_2ガスを予備加熱する予備
加熱手段が設けられていることを特徴とする窒化アルミ
ニウムの製造装置。
(3) N_2 gas supply section and N supplied from the supply section
A reaction tube in which a reaction section is formed inside by an Al powder supply section that suspends Al powder with a _2 gas flow and heating means provided around it, and into which Al powder riding on an N_2 gas flow is fed from the Al powder supply section. An apparatus for producing aluminum nitride, characterized in that a preheating means for preheating the N_2 gas is provided between the N_2 gas supply section and the reaction section of the reaction tube. .
JP13891488A 1988-06-06 1988-06-06 Production of aluminum nitride powder and unit therefor Pending JPH01308813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13891488A JPH01308813A (en) 1988-06-06 1988-06-06 Production of aluminum nitride powder and unit therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13891488A JPH01308813A (en) 1988-06-06 1988-06-06 Production of aluminum nitride powder and unit therefor

Publications (1)

Publication Number Publication Date
JPH01308813A true JPH01308813A (en) 1989-12-13

Family

ID=15233095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13891488A Pending JPH01308813A (en) 1988-06-06 1988-06-06 Production of aluminum nitride powder and unit therefor

Country Status (1)

Country Link
JP (1) JPH01308813A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5126121A (en) * 1991-05-03 1992-06-30 The Dow Chemical Company Process for preparing aluminum nitride powder via controlled combustion nitridation
US5219804A (en) * 1992-01-10 1993-06-15 The Dow Chemical Company Process for preparing ultrafine aluminum nitride powder
JP2005022960A (en) * 2003-06-09 2005-01-27 National Institute Of Advanced Industrial & Technology Method for producing nonoxide-based particle
JP2008007357A (en) * 2006-06-28 2008-01-17 Tcfm:Kk Manufacturing method of aluminium nitride

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5126121A (en) * 1991-05-03 1992-06-30 The Dow Chemical Company Process for preparing aluminum nitride powder via controlled combustion nitridation
US5219804A (en) * 1992-01-10 1993-06-15 The Dow Chemical Company Process for preparing ultrafine aluminum nitride powder
JP2005022960A (en) * 2003-06-09 2005-01-27 National Institute Of Advanced Industrial & Technology Method for producing nonoxide-based particle
JP2008007357A (en) * 2006-06-28 2008-01-17 Tcfm:Kk Manufacturing method of aluminium nitride

Similar Documents

Publication Publication Date Title
CN108238801B (en) Preparation method of aluminum nitride
CN101696013B (en) Method and device for producing polysilicon by using plasma assisting fluidized bed process
CN109467063B (en) Fluidized bed reactor for producing silicon nitride and device system and method thereof
US4818511A (en) Process and apparatus for producing non-oxide compounds
CN114130341A (en) Device and method for continuously synthesizing aluminum nitride powder by using conveying bed under normal pressure
JPH01308813A (en) Production of aluminum nitride powder and unit therefor
JP2005225690A (en) METHOD AND APPARATUS FOR MANUFACTURING SiO
JPS63195102A (en) Continuous production of aluminum nitride powder and device therefor
CN208104507U (en) A kind of ultrasonic wave smelting reducing device
JPH01308812A (en) Continuous production of aluminum nitride powder and unit therefor
US4276275A (en) Process for preparing ultrafine carbide powder
JPH02283605A (en) Continuous production of aluminum nitride powder and device therefor
JPS63277503A (en) Continuous production of high-purity aluminum nitride powder and apparatus therefor
JPS63147812A (en) Production of silicon carbide powder
CN107366019A (en) A kind of Quick production method and device of high density sapphire crystal high purity aluminium oxide crystal block
JPH09156909A (en) Continuous production of silicon nitride powder
JPH03228807A (en) Production of silicon nitride powder
JPH0226812A (en) Production of aluminum nitride powder having high purity
JPS5941772B2 (en) Ultrafine powder synthesis furnace
JPS61205606A (en) Production of high-purity aluminum nitride powder
JPH0226811A (en) Production of aluminium nitride powder having high purity
JP2003081620A (en) Method and apparatus for producing carbon fiber by vapor phase process
CN1179143A (en) Preparation of tetrafluoroethylene
JPH02283604A (en) Continuous production of aluminum nitride powder and apparatus therefor
JPH03187998A (en) Production of aluminum nitride whisker