JPH01308494A - Removal of hydrogen sulfide from industrial gas - Google Patents

Removal of hydrogen sulfide from industrial gas

Info

Publication number
JPH01308494A
JPH01308494A JP1043419A JP4341989A JPH01308494A JP H01308494 A JPH01308494 A JP H01308494A JP 1043419 A JP1043419 A JP 1043419A JP 4341989 A JP4341989 A JP 4341989A JP H01308494 A JPH01308494 A JP H01308494A
Authority
JP
Japan
Prior art keywords
sulfur
gas
solvent
nmc
fed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1043419A
Other languages
Japanese (ja)
Inventor
Manfred Schingnitz
マンフレート・シングニッツ
Peter Minak
ペーター・ミナーク
Anton Althapp
アントン・アルトハップ
Monika Barchmann
モーニカ・バルフマン
Julia Conradi
ユーリア・コンラディ
Christoph Sokoll
クリストフ・ゾコル
Rainer Bolcek
ライナー・ボルツェク
Heinz Martin
ハインツ・マルティン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BRENNSTOFFINST FREIBERG
Brennstoffinstitut Freiberg
Original Assignee
BRENNSTOFFINST FREIBERG
Brennstoffinstitut Freiberg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BRENNSTOFFINST FREIBERG, Brennstoffinstitut Freiberg filed Critical BRENNSTOFFINST FREIBERG
Publication of JPH01308494A publication Critical patent/JPH01308494A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • C01B17/05Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by wet processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/52Hydrogen sulfide

Abstract

PURPOSE: To remove H2S by feeding an H2S-containing gas into an absorbing device together with SO2 and a specific solvent, reacting the H2S with SO2 in the solvent, and thereby producing sulfur in the form of coarse crystal be easily separable by gravitation from the solvent.
CONSTITUTION: An H2S-containing raw gas is fed into a venturi scrabber 1, and at the same time, SO2 2 equivalent to the stoichiometric amount and N-methyl-ε- caprolactam(NMC) 4 as a solvent are fed. A suspension is obtained which contains sulfur in the form of coarse crystal produced through reaction of H2S with SO2 in the solvent. This suspension is separated from gas phase using a cyclone separator 5, and the desulfurized gas is used as a heating gas. By a pump 6, the sulfur-containing NMC is drawn out of a liquid sump in the separator, fed to a gravitational separating/ sulfur melting device 9 via a heat exchanging device 8, and heated by a steam heater, and meantime the liquid sulfur is collected in the liquid sump in a vessel 9 to be removed. The NMC is put by pressure into the heat exchanging device 8, and a majority of the sensible heat is given to an NMC/sulfur suspension and reaches the venturi scrabber via a cooler 10. The reaction water is removed in the form of steam, and after cooling 11, discarded waste water.
COPYRIGHT: (C)1989,JPO

Description

【発明の詳細な説明】 〔産業上の利用分野) 本発明は天然ガス、石炭ガス化ガス、合成ガス又は通常
的な脱硫プロセスからの廃ガス等のような工業的なガス
から硫化水素を除去する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is useful for removing hydrogen sulfide from industrial gases such as natural gas, coal gasification gas, synthesis gas or waste gas from conventional desulfurization processes. Regarding how to.

(従来の技術) 硫化水素はそのの環境に対する毒性作用、腐食作用及び
多くの工業的触媒に対する毒作用のために、工業的な種
々のガスから除去しなければならない。この目的には多
数の方法又は方法の組合わせが工業において公知である
BACKGROUND OF THE INVENTION Hydrogen sulfide must be removed from various industrial gases because of its toxic effects on the environment, its corrosive effects and its poisonous effects on many industrial catalysts. A large number of methods or combinations of methods are known in the industry for this purpose.

多数の実用例において硫化水素はガスから物理的又は化
学的に作用する溶剤によって吸収的に除去し、そして熱
エネルギーを用いて再びその溶剤から分離されている〔
テキサス州ヒユーストンのGulf Publ、 Co
、から出版されたF、C,Riesen−feld%A
、L、にohlの”ガス浄化”第2版(1974)参照
〕。この場合にH2S  を含有する廃ガスが生じ、こ
れはその原料ガスの品質と用いた脱硫方法の種類とに従
って更に他のガス成分をも含んでおり、これらはH2S
  の通常的なりラウス法装置中での反応を技術的にも
エネルギー的にも困難にしたり、或はその硫化水素の含
有量があまりにも少ないか又は廃ガス中の高級炭化水素
類の含有割合が高過ぎるときには反応を阻止してしまう
In many practical applications, hydrogen sulfide is removed from the gas absorptively by a physically or chemically acting solvent and separated from the solvent again using thermal energy.
Gulf Publ, Co. of Hyuston, Texas
, published by F.C. Riesen-feld%A
, L., OHL, "Gas Purification" 2nd edition (1974)]. In this case, an H2S-containing waste gas is produced which, depending on the quality of the raw gas and the type of desulphurization method used, also contains other gas components, which include H2S
The reaction in the conventional Rouss process equipment is technically and energetically difficult, or the hydrogen sulfide content is too low, or the content of higher hydrocarbons in the waste gas is too low. When the temperature is too high, the reaction is blocked.

更に、酸化性の化合物を含んでいる水性溶液によって硫
化水素を元素状硫黄に酸化し、その際この酸化性の化合
物が還元されるような硫化水素除去のための幾つかの方
法が公知である。この類の方法の例としては、例えばス
ルフインドプロセス(H,Mackjnger;5ul
fint Process″: Hydrocarb。
Furthermore, several methods are known for the removal of hydrogen sulfide, in which hydrogen sulfide is oxidized to elemental sulfur by an aqueous solution containing oxidizing compounds, with the oxidizing compounds being reduced. . Examples of this type of method include, for example, the sulfindo process (H, Mackjinger;
fint Process”: Hydrocarb.

Proc、 (1982) 3.98−101頁) 、
 LO−CAT 法(L。
Proc, (1982) 3.98-101),
LO-CAT method (L.

C,Hardison: ”1つの装置で 112Sか
らS  へ”:Hydrocxarb、 Proc、 
(1985) 4.70−71頁〕及びストレットフォ
ード法(Nicklin、 T、;″天然ガスの浄化へ
のストレットフォード法の応用”: IGU/A13−
73:第12回世界ガス会議N1zza (1973)
 )があげられる。
C. Hardison: “112S to S in one device”: Hydrocxarb, Proc.
(1985) pp. 4.70-71] and the Stretford process (Nicklin, T.; "Application of the Stretford process to the purification of natural gas": IGU/A13-
73: 12th World Gas Conference N1zza (1973)
) can be given.

上述の方法はそれらいわゆるレドックス化合物を装置的
に費用のかかる空気による再生によって再び酸化しなけ
ればならないこと、その硫黄が水性溶媒のために極めて
微細な形で析出し、そして大容積の沈殿槽又は濾過装置
を必要とすること、その複雑な化学的吸収溶液がその化
学組成及び作用性の非常に厳密な制御を必要とすること
及び避けることのできない種々の副反応によって有害な
塩類廃水が生じ、これが費用のかかる水処理を必要とす
ること等の欠点を有する。
The above-mentioned processes have the disadvantage that these so-called redox compounds have to be oxidized again by an equipment-expensive pneumatic regeneration, that the sulfur precipitates out in extremely fine form due to the aqueous solvent, and that large-volume settling vessels or The need for filtration equipment, the complex chemical absorption solution requiring very strict control of its chemical composition and activity, and the various unavoidable side reactions that lead to harmful saline wastewater; This has disadvantages such as requiring expensive water treatment.

また種々の有機溶剤中で二酸化硫黄との反応によって硫
化水素を除去する方法も公知であり、それらの有機溶剤
は触媒(H,Fischer; ”硫黄回収装置からの
硫黄化合物廃棄物の還元”: Erdoel u。
Also known are methods for removing hydrogen sulfide by reaction with sulfur dioxide in various organic solvents, which are catalyzed by H, Fischer; "Reduction of sulfur compound waste from sulfur recovery units": Erdoel. u.

にohle 27 (1974) 6.292−296
頁、 Lynn、 S、等;”石炭話導ガスからのH2
S  の除去二石炭誘導ガス流中の不純物のコントロー
ルについての第5回請負業者年会会報9頁 (1986
) 、西ドイツ特許出願公開第21SO872  号公
報、西ドイツ特許出願公告第1914425  号公報
、西ドイツ特許出願公開第2313148号公報〕又は
メタノール中の硫酸をポリマー硫黄の形成のために含ん
でいる(ボーランド特許第98843  号公報)か、
或はまたメタノールと水との混合物からなっている(ボ
ーランド特許第98432  号公報)。
Niohle 27 (1974) 6.292-296
Page, Lynn, S., et al.; “H2 from Coal Gas
Proceedings of the 5th Contractors' Annual Meeting on the Control of Impurities in Coal-Derived Gas Streams, p. 9 (1986)
), DE 21 SO 872, DE 1914425, DE 2313148] or containing sulfuric acid in methanol for the formation of polymeric sulfur (Boland Patent No. 98843). Publication No.) or
Alternatively, it may consist of a mixture of methanol and water (Boland Patent No. 98432).

触媒の使用を必要とすることはその化学組成と作用性と
のより強力な制御を必要とし、一方容易に揮発するメタ
ノールな液態反応媒体として使用することはそのメタノ
ール蒸気の吸収的な回収のために大きな出費を条件付け
る。
Requiring the use of a catalyst requires greater control over its chemical composition and activity, while the use of readily volatile methanol as a liquid reaction medium allows for the absorptive recovery of its methanol vapor. conditional on large expenditures.

また例えばスルホキシド類(西ドイツ特許出願公開第2
106285  号公報)、ホスフィンオキシト(西ド
イツ特許出願公開第2106284  号公報)、尿素
の誘導体(西ドイツ特許出願公開第2108262号公
報)、ポリグリコール類(西ドイツ特許出願公開第21
65646  号公報)又はオルソ燐酸のトリアミド(
西ドイツ特許出願公開第2106543  号公報)の
ような有機溶剤を使用する方法が提案されているが、こ
れらは大規模技術としては実施されたことはなく、と言
うのはそれらの溶剤が高価であって大規模技術的には充
分に利用できないか、又は工業的に取り扱うのが困難だ
からである。
Also, for example, sulfoxides (West German Patent Application No. 2)
106285), phosphine oxyto (West German Patent Application No. 2106284), derivatives of urea (West German Patent Application No. 2108262), polyglycols (West German Patent Application No. 2108262),
65646) or orthophosphoric acid triamide (
Although methods using organic solvents have been proposed, such as in West German Patent Application No. 2106543), these have never been implemented as large-scale techniques because these solvents are expensive and This is because they are either not fully usable on a large scale or are difficult to handle industrially.

(発明が解決しようとする課題〕 本発明の目的は種々の工業的なガスから硫化水素を除去
するに当り、1段階プロセスにより、追加的な触媒を使
用することなく良好に沈殿し得る結晶性硫黄を作り出し
、そしてそのガスを数ppmからOまでの範囲に脱硫す
るような方法である。
(Problems to be Solved by the Invention) The object of the present invention is to remove hydrogen sulfide from various industrial gases by a one-step process to obtain a crystalline product which can be easily precipitated without the use of an additional catalyst. Such a method produces sulfur and desulfurizes the gas to a range of ppm to O.

本発明の課題は、種々の工業的なガスから1段階プロセ
スで硫化水素を除去し、そして同時に元素状硫黄を作り
出すことである。
The object of the present invention is to remove hydrogen sulfide from various industrial gases in a one-step process and simultaneously produce elemental sulfur.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に従えば上記の課題は次のようにlノて解決され
る。
According to the present invention, the above problems are solved as follows.

その脱硫されるべき粗ガスを通常的な例えばベンチュリ
型、噴流型、又は泡浴型の吸収装置のような迅速反応用
の物質交換装置の中で溶剤としてのN−メチル−ε−カ
プロラクタム(以下MMCと略記する)と接触させる。
The crude gas to be desulphurized is transferred to N-methyl-ε-caprolactam (hereinafter referred to as (abbreviated as MMC).

この粗ガスに、これが上記り物質交換装置の中へ送り込
まれる直前に下記の反応式 %式%(1) に従う化学量論量のSO2  を添加する。しかしなか
らまたこの必要な量のSO2  を追加的な別の吸収装
置の中でNMC中へ導入し、それによって予めSO2を
含有させたMMCが上記H2S  吸収装置中に達する
ようにすることも可能である。NMCはSO2及びH2
S  のガスのための極めて優れた溶剤である。同時に
本発明者はまたMMCが上記反応(1)に対して触媒作
用を示すことをも見出した。
To this crude gas is added a stoichiometric amount of SO2 according to the following reaction equation % (1) immediately before it is fed into the mass exchange device described above. However, it is also possible to introduce this required amount of SO2 into the NMC in an additional, separate absorption device, so that the MMC preloaded with SO2 reaches the H2S absorption device. It is. NMC is SO2 and H2
It is an excellent solvent for S gas. At the same time, the inventors also discovered that MMC exhibits a catalytic effect on the above reaction (1).

化合物の環状構造及びその中に含まれているラクタム基
に基づ<NMCの触媒作用によって他の有機性及び無機
性の溶剤の場合のような誘導期間は全く現われず、従っ
て追加的な触媒は不必要である。その結果として化学量
論量の配量に際してその物質交換のために極めて僅かな
接触時間しか必要とせず、モしてl(、S  及び/又
はS02  の漏れ出しは現わわない。
Due to the cyclic structure of the compound and the lactam groups contained therein, due to the catalytic action of NMC, no induction period appears as in the case of other organic and inorganic solvents, and therefore no additional catalyst is required. It's unnecessary. As a result, only very short contact times are required for the substance exchange when stoichiometrically dosed, and no leakage of l(, S 2 and/or S02 occurs).

(作用] この反応系はH2S  及びS02  について数pp
mの最終含有量を保証するに適している。その反応にお
いて粗大粒結晶状の硫黄が生じ、これはその溶剤から沈
降だけによって工業的条件のもとて2分間以内の滞留時
間において完全に分離することができる。
(Effect) This reaction system has several ppm of H2S and S02.
suitable for ensuring the final content of m. In the reaction, coarse-grained crystalline sulfur is formed, which can be completely separated from the solvent by precipitation only under industrial conditions in a residence time of up to 2 minutes.

この硫黄の良好な沈殿性に基づいて、その吸収系の中に
ベンチュリスフラッパや噴流洗浄装置を用いることによ
って強い乱流を作り出すことができ、それによって若し
そうでなければその生じた硫黄による吸収装置の目詰ま
りをもたらすような硫黄の過早の析出が阻止される。
Due to the good settling properties of sulfur, strong turbulence can be created by using venturi flappers or jet scrubbers in the absorption system, which would otherwise result in absorption by the resulting sulfur. Premature precipitation of sulfur, which would lead to clogging of the equipment, is prevented.

NMCからの硫黄の分離は好ましくは130℃の温度水
準において行ない、というのは液状硫黄がこの温度にお
いては僅かな粘度しか持たず、MMCと硫黄との間に重
力分離に充分な比重差が現われ、そして前記式(1)に
従い生じた反応水は簡単な圧力制御によってその系から
除去することができるからである。MMCの15重量%
以上の水分含有量は避けなければならず、というのはも
しそうでなければ生じた硫黄がコロイド状でMMCの中
に存在することになり、これはMMCから除去するのが
困難だからである。
Separation of sulfur from NMC is preferably carried out at a temperature level of 130° C., since liquid sulfur has only a slight viscosity at this temperature and a sufficient difference in specific gravity appears between MMC and sulfur for gravitational separation. , and the reaction water produced according to the above formula (1) can be removed from the system by simple pressure control. 15% by weight of MMC
Water contents above must be avoided, since otherwise the resulting sulfur will be present in the MMC in colloidal form, which is difficult to remove from the MMC.

〔実施例〕〔Example〕

以下に本発明を実施例によって更に詳細に説明する。 The present invention will be explained in more detail below with reference to Examples.

充分に不活性な石油同伴ガスの物理的吸着法による脱酸
及びコンディショニングに際して下記のパラメータを有
する廃ガスが生ずる: ガス量   10,000  a+3/hrガス圧力 
 0.2峰a (絶対) 温度    30  ℃ 組成(モル比) H2S     0.05 N2G、03 CO□    0.68 CH40,15 C,860,03 C3HIS      O,03 C,H、。     0.02 C,0,01 H2Sの低い含有量及び高級炭化水素の比較的高い濃度
に基づいてこの廃ガスは通常のクラウス法装置の中で処
理することができない。焼却も、許容できない程のSO
2  の放出のために同様に排除される。
During the deoxidation and conditioning of largely inert petroleum-entrained gases by physical adsorption methods, waste gases are produced with the following parameters: Gas volume 10,000 a+3/hr Gas pressure
0.2 peak a (absolute) Temperature 30°C Composition (mole ratio) H2S 0.05 N2G,03 CO□ 0.68 CH40,15 C,860,03 C3HIS O,03 C,H,. Because of the low content of 0.02 C, 0.01 H2S and the relatively high concentration of higher hydrocarbons, this waste gas cannot be processed in a conventional Claus process plant. Incineration is also unacceptable SO
2 is similarly excluded due to the release of .

上述のガスからH2S  を除去する方法のフローシー
トを第1図に示す。
A flow sheet of the method for removing H2S from the gases described above is shown in FIG.

粗ガスは粗ガス導管を通ってベンチュリスフラッパ1の
中へ送り込まれる。導管2を経てSO2貯槽(3)から
SO2が粗ガスの中に配量制御装置を介して715.3
 kg/hr  の量で添加される。導管4を介してそ
のベンチュリスフラッパ中に吸収媒体並びに反応媒体と
して15 II+3/hrのNMCが送り込まれる。ベ
ンチュリスフラッパの出口においてNMC中の粗大結晶
硫黄の懸濁液が液相中に存在している。この懸濁液はサ
イクロンセパレータ(5)によってガス相と分離される
。脱硫されたガスは次いで他のプロセスのための加熱ガ
スとして用いられる。
The crude gas is fed into the venturi flapper 1 through the crude gas conduit. SO2 from the SO2 storage tank (3) via conduit 2 enters the crude gas via a metering control device 715.3
kg/hr. 15 II+3/hr of NMC is fed into the venturi flapper via line 4 as absorption medium as well as reaction medium. At the outlet of the Venturis flapper a suspension of coarse crystalline sulfur in NMC is present in the liquid phase. This suspension is separated from the gas phase by a cyclone separator (5). The desulfurized gas is then used as heating gas for other processes.

硫黄を含むNMCはサイクロンセパレータの液溜からポ
ンプ(6)により且つ液面コントローラを用いて抜き出
される。液体バイパス(7)がサイクロンセパレータの
液溜中での硫黄の過早の沈殿を防止する。
The sulfur-containing NMC is extracted from the cyclone separator sump by a pump (6) and using a level controller. A liquid bypass (7) prevents premature precipitation of sulfur in the cyclone separator sump.

MMCは熱伝達装置(8)を経て重力分Il!/硫黄溶
融の組合せ装置(9)の中に送り込まれる。
The MMC passes through the heat transfer device (8) and receives the gravity component Il! / into a sulfur melting combination device (9).

ここで水蒸気加熱装置により 130℃の温度が設定さ
れている。容器(9)の液溜の中で液状硫黄が1873
 kg/hr  の量で捕集される。中央の部分からM
MCが熱伝達装置(8)中に圧入され、ここでその感熱
の大きな部分をNMC/硫黄懸濁液に与え、そして冷却
器(10)を経て再びベンチュリスフラッパに達する。
Here, a temperature of 130°C is set using a steam heating device. Liquid sulfur in the liquid reservoir of container (9) is 1873
kg/hr. M from the center part
The MC is forced into the heat transfer device (8), where it imparts a large part of its heat sensitivity to the NMC/sulfur suspension and passes through the cooler (10) again to the Venturis flapper.

圧力を制御することによって反応水はこの系から水蒸気
として除去され、そして冷却器(11)の中で凝縮した
後に廃水となる。
By controlling the pressure, the reaction water is removed from the system as steam and becomes waste water after condensing in the cooler (11).

生じた液状の硫黄は液態硫黄又は薄片状硫黄の形で製品
として販売できる。
The resulting liquid sulfur can be sold as a product in the form of liquid sulfur or flaky sulfur.

【図面の簡単な説明】[Brief explanation of the drawing]

添付の第1図は本発明の方法を実施する装置の具体例の
フローシートを示す。 1・・・ベンチュリスフラッパ 2.4・・・導管   3・・・SO□貯槽5・・・サ
イクロンセパレータ 6・・・ポンプ    7・・・液体バイパス8・・・
熱伝達装置 9・・・重力分離/硫黄溶融装置 10.11・・・冷却器
The accompanying FIG. 1 shows a flow sheet of an embodiment of an apparatus for carrying out the method of the invention. 1... Venturis flapper 2.4... Conduit 3... SO□ storage tank 5... Cyclone separator 6... Pump 7... Liquid bypass 8...
Heat transfer device 9...Gravity separation/sulfur melting device 10.11...Cooler

Claims (4)

【特許請求の範囲】[Claims] (1)工業的ガスや天然ガスから硫化水素を除去する方
法において、その硫化水素含有ガスを化学量論的量の二
酸化硫黄及び溶剤としてのN−メチル−ε−カプロラク
タムと一緒に吸収装置へ送り込み、その際上記溶剤中で
H_2SとSO_2との反応により上記N−メチル−ε
−カプロラクタムから重力分離により容易に分離できる
粗大結晶状の硫黄が生ずることを特徴とする、上記方法
(1) A method for removing hydrogen sulfide from industrial gas or natural gas, in which the hydrogen sulfide-containing gas is sent to an absorption device together with a stoichiometric amount of sulfur dioxide and N-methyl-ε-caprolactam as a solvent. , in which the above N-methyl-ε
- A process as described above, characterized in that from caprolactam a coarsely crystalline sulfur is formed which can be easily separated by gravity separation.
(2)N−メチル−ε−カプロラクタム溶剤からの硫黄
の分離を120−130℃の温度範囲において行ない、
それによって液状硫黄の形成に導く、請求項1記載の方
法。
(2) separation of sulfur from N-methyl-ε-caprolactam solvent in a temperature range of 120-130°C;
2. The method of claim 1, thereby leading to the formation of liquid sulfur.
(3)硫黄分離過程からの反応水を約130℃の温度に
おいて膨張減圧により水蒸気の形でその系から除去する
、請求項1及び2記載の方法。
3. The process of claims 1 and 2, wherein the reaction water from the sulfur separation process is removed from the system in the form of steam by expansion vacuum at a temperature of about 130°C.
(4)N−メチル−ε−カプロラクタムに、これが吸収
装置中へ送り込まれるに先立って別な吸収装置の中で必
要な量のSO_2を含有させる、請求項1記載の方法。
4. Process according to claim 1, characterized in that the N-methyl-ε-caprolactam is loaded with the required amount of SO_2 in a separate absorption device before it is fed into the absorption device.
JP1043419A 1988-02-24 1989-02-27 Removal of hydrogen sulfide from industrial gas Pending JPH01308494A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DD10K/313158-3 1988-02-24
DD31315888A DD276003A3 (en) 1988-02-24 1988-02-24 METHOD FOR REMOVING SULFUR HYDROGEN FROM TECHNICAL AND NATURAL GASES

Publications (1)

Publication Number Publication Date
JPH01308494A true JPH01308494A (en) 1989-12-13

Family

ID=5597236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1043419A Pending JPH01308494A (en) 1988-02-24 1989-02-27 Removal of hydrogen sulfide from industrial gas

Country Status (6)

Country Link
JP (1) JPH01308494A (en)
AT (1) ATA16789A (en)
AU (1) AU2970689A (en)
CS (1) CS423588A1 (en)
DD (1) DD276003A3 (en)
DE (1) DE3841787A1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4088735A (en) * 1974-07-10 1978-05-09 Metallgesellschaft Aktiengesellschaft Process for purifying gases from the gasification of fossil fuels

Also Published As

Publication number Publication date
DD276003A3 (en) 1990-02-14
AU2970689A (en) 1989-08-24
CS423588A1 (en) 1990-06-13
DE3841787C2 (en) 1990-12-20
ATA16789A (en) 1993-04-15
DE3841787A1 (en) 1989-08-31

Similar Documents

Publication Publication Date Title
US6544492B1 (en) Regeneration method for process which removes hydrogen sulfide from gas streams
US3767766A (en) Method of removing gaseous sulfides from gaseous mixtures
RU2241527C2 (en) Gas desulfurization process
CA2652212C (en) Process for treating a gas stream
IL157906A (en) Process for producing ammonium thiosulfate
JP4303111B2 (en) Method for recovering sulfur component in sulfur recovery process
CA1211614A (en) Process for the simultaneous removal of h.sub.2s, so.sub.2 and elemental sulfur from gaseous mixtures
CA2304590C (en) Hydrogen sulfide removal process
JPH11507589A (en) Method and apparatus for treating hydrogen sulfide-containing gas including a step of removing crystallized sulfur by cooling
US6872368B2 (en) Method and device for processing a gas containing hydrogen sulfide and sulfur dioxide comprising a stage of removal of by-products
JPH01308494A (en) Removal of hydrogen sulfide from industrial gas
CA1236962A (en) Settling of sulfur in sulfide removal process
US5215728A (en) Method and apparatus for removal of h2s from a process gas, including thiosulfate and/or cyanide salt decomposition
CN117561109A (en) Method for continuously treating a gas containing hydrogen sulphide and sulphur recovery plant
AU684906B2 (en) A method for removing hydrogen sulfide from gas streams
GB2163141A (en) Method for removing and recovering sulphur in elemental form from gases containing sulphur dioxide or sulphur dioxide and hydrogen sulphide
FI75329B (en) FOERFARANDE FOER AVLAEGSNANDE AV SVAVELINNEHAOLLET I EN UTTUNNAD SVAVELDIOXIDHALTIG GAS.
JP4391140B2 (en) Method for producing ammonium thiosulfate
CA1186133A (en) Production of sulfur from an h.sub.2s-bearing gas stream
JPS59230620A (en) Slurry concentration control method of wet waste gas desulfurization apparatus
US5167940A (en) Process and apparatus for removal of H2 S from a process gas including polyvalent metal removal and decomposition of salts and complexes
EP0061444A1 (en) Method for removing hydrogen sulfide from gas streams.
CA1241182A (en) Oxidative removal of hydrogen sulfide from gas streams
Hardison et al. Method and apparatus for removing H 2 S from a process gas and recovering sulfur
Lacy Jr et al. Production of sulfur from a H 2 S-bearing gas stream