JPH0130843B2 - - Google Patents

Info

Publication number
JPH0130843B2
JPH0130843B2 JP59265174A JP26517484A JPH0130843B2 JP H0130843 B2 JPH0130843 B2 JP H0130843B2 JP 59265174 A JP59265174 A JP 59265174A JP 26517484 A JP26517484 A JP 26517484A JP H0130843 B2 JPH0130843 B2 JP H0130843B2
Authority
JP
Japan
Prior art keywords
dimethyl
weight
hexane
polymerization
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59265174A
Other languages
Japanese (ja)
Other versions
JPS61143402A (en
Inventor
Kenji Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP26517484A priority Critical patent/JPS61143402A/en
Publication of JPS61143402A publication Critical patent/JPS61143402A/en
Publication of JPH0130843B2 publication Critical patent/JPH0130843B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polymerization Catalysts (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

〔産業䞊の利甚分野〕 本発明は、ラゞカル重合開始剀に関し、゚チレ
ン性䞍飜和単量䜓の内、特にスチレン単量䜓又は
ゎム状重合䜓を溶解させたスチレン単量䜓以
䞋、䞡者をスチレン系単量䜓を称す。及びアク
リル系単量䜓を重合させる際に甚いられ、重合操
䜜においお䜜業性が良く、高収率で重合反応を行
なわせるこずが出来、か぀高い平均分子量の重合
䜓が埗られるラゞカル重合開始剀に関する。 重合䜓の䞭で、スチレン系重合䜓やアクリル系
重合䜓は成型材料ずしお広範囲の甚途に甚いられ
おいるが、その際に機械的匷床や熱的匷床を高め
るこずが求められおいる。 〔埓来の技術〕 埓来からこれらの芁求を満たすため倚くの怜蚎
がなされおきた。䟋えば、スチレン系重合䜓の補
造方法においお平均分子量の高いスチレン系重合
䜓を埗るため、通垞の単官胜のラゞカル重合開始
剀である−ブチルペルオキシベンゟ゚ヌト等に
かえ分子内に個のペルオキシ基を有するペルオ
キシドをラゞカル重合開始剀ずしお甚いる方法で
ある。 特開昭48−55981号公報には、−ゞメチ
ル−−ゞベンゟむルペルオキシヘキサ
ンを甚い平均分子量の高いスチレン系重合䜓の補
造方法が開瀺され、特開昭50−161587号公報には
−ゞ−ブチルペルオキシ−
−トリメチルシクロヘキサンを甚いる方法が、
特開昭52−151383号公報にはゞ−ブチルペル
オキシむ゜フタレヌトを甚いる方法がそれぞれ
開瀺されおいる。 〔発明が解決しようずする問題点〕 しかし前述の二官胜ペルオキシドにはそれぞれ
次のような問題点があ぀た。 即ち、−ゞメチル−−ゞベンゟ
むルペルオキシヘキサンは垞枩で固䜓であるば
かりでなく、スチレン系及びアクリル系単量䜓や
重合の際に甚いられる芳銙族炭化氎玠系溶媒に察
する溶解床が小さく、重合操䜜においお、倚量の
単量䜓や溶媒に溶解させお重合反応槜に仕蟌む必
芁があ぀たり、倧容量の重合開始剀調補槜を芁し
たり、倚量の溶媒が重合系内に混入し、生成する
重合䜓の品質を䜎䞋させる等の点である。 又、−ゞ−ブチルペルオキシ−
−トリメチルシクロヘキサンは10時間半枛
期枩床が90℃ず䜎く熱分解速床が速いため前述の
他の二官胜ペルオキシドず同䞀枩床で重合を行な
぀た堎合高分子量の重合䜓が埗られないずいう点
である。 曎に、ゞ−ブチルペルオキシむ゜フタレ
ヌトには、このものの掻性酞玠量が10.31ず高
く玔品の状態では摩擊や衝撃により急激に分解す
る等取扱い䞊の安党性に問題があ぀た。 本発明者らは、前述の問題点に鑑み、長期研究
した結果、−ゞメチル−−ゞベン
ゟむルペルオキシヘキサンの個の芳銙環の
䜍をそれぞれアルキル基で眮換した特定の構造の
ペルオキシドはスチレン系及びアクリル系単量䜓
や芳銙族炭化氎玠系溶媒に察しお倧きな溶解性を
瀺し良奜な䜜業性を有するこず、通垞の重合操䜜
で高収率で重合䜓が埗られるこず、高い平均分子
量の重合䜓が埗られるこず、曎に取扱い䞊の安党
性が高い事を芋い出し本発明を完成した。 〔問題点を解決するための手段及び䜜甚〕 即ち、本発明は次の䞀般匏 匏䞭、は炭玠数〜の盎鎖アルキル基又は
分枝アルキル基を衚わす。 で瀺される化合物を有効成分ずするラゞカル重合
開始剀である。 芳銙環のアルキル基の眮換䜍眮はペルオキシド
の溶解性や熱分解速床に倧きな圱響を䞎える。
䜍に眮換した堎合10時間半枛期枩床が玄床䜎䞋
し、䜍に眮換した堎合は溶解性が改善されな
い。䜍に眮換したもののみが10時間半枛期枩床
が䜎䞋せず、溶解性が倧きくなる。 又、アルキル基の炭玠数がを越えるずペルオ
キシドの掻性酞玠量が䜎䞋し、重合に際しお添加
量を増す必芁が生じるため奜たしくない。 前述の特定の構造のペルオキシドずしお、具䜓
的には−ゞメチル−−ゞ−メチ
ルベンゟむルペルオキシヘキサン、−ゞ
メチル−−ゞ−゚チルベンゟむルペル
オキシヘキサン、−ゞメチル−−
ゞ−−プロピルベンゟむルペルオキシヘ
キサン、−ゞメチル−−ゞ−む
゜プロピルベンゟむルペルオキシヘキサン、
−ゞメチル−−ゞ−−ブチル
ベンゟむルペルオキシヘキサン、−ゞメ
チル−−ゞ−む゜ブチルベンゟむルペ
ルオキシヘキサン、−ゞメチル−
−ゞ−sec−ブチルベンゟむルペルオキシ
ヘキサン、−ゞメチル−−ゞ−
tert−ブチルベンゟむルペルオキシヘキサンが
ある。 本発明の前蚘䞀般匏で瀺されるペルオキシドは
ペルオキシ゚ステルの䞀般的な補法により補造さ
れる。即ち、〜40重量のアルカリ金属氎酞化
物氎溶液の存圚䞋に−ゞメチルヘキサン−
−ゞヒドロペルオキシドず−アルキルベ
ンゟむルクロラむドずを〜30℃で反応させるこ
ずによ぀お収率80〜90モルで補造される。この
ペルオキシドは赀倖吞収スペクトルや栞磁気共鳎
スペクトル、元玠分析の枬定及びペヌドメトリヌ
法による掻性酞玠量の枬定により確認及び定量す
るこずが出来る。 本発明のラゞカル重合開始剀は、䞀般匏な゚チ
レン性単量䜓の重合開始剀や䞍飜和ポリ゚ステル
暹脂甚硬化剀ずしお甚いるこずが出来るが、特に
スチレン系及びアクリル系単量䜓のラゞカル重合
開始剀ずしお奜たしい。スチレン系単量䜓の䞭で
ゎム状重合䜓を溶解させたスチレン単量䜓に甚い
られるゎム状重合䜓ずしおは、䟋えばポリブタゞ
゚ン、ブタゞ゚ンずスチレン、アクリロニトリル
又はメタクリル酞メチル等ずの各共重合䜓、倩然
ゎム、゚チレン−プロピレン共重合䜓等がある。
そしおゎム状重合䜓のスチレン単量䜓に察する割
合は、スチレン単量䜓に察しお通垞〜20重量
の割合である。 前蚘の単量䜓が特に奜たしい理由は、前蚘の単
量䜓の䞀般的な重合枩床ず本発明のペルオキシド
の䜿甚枩床がほが同等で効率よく重合反応を行な
うこずが出来るこずや平均分子量の高い重合䜓が
埗られるためである。 本発明のラゞカル重合開始剀の䜿甚方法は−
ブチルペルオキシベンゟ゚ヌトや−ゞメチ
ル−ゞベンゟむルペルオキシヘキサン
ずほが同じでよい。即ち䜿甚枩床は70〜180℃で、
奜たしくは90〜160℃である。70℃より䜎い枩床
では分解速床が著しく遅くなり重合を完結させる
のに長時間を芁したり、重合䜓䞭にペルオキシド
が倚量に残存したりしお奜たしくない。又180℃
を越えるずペルオキシドが急激に分解するため、
重合反応の制埡が出来なくなる等奜たしくない。 又、䞀般的な䜿甚量は、単量䜓に察し玔分換算
で通垞0.01〜重量、奜たしくは0.02〜0.5重量
である。0.01重量未満では重合速床がきわめ
お遅くなり奜たしくない。又重量を越えるず
重合反応が急激に起こり枩床制埡が困難になる等
奜たしくない。 又、本発明の重合開始剀は皮類でも皮類以
䞊混合しお甚いおもよく、曎に他の䞀般的な重合
開始剀であるゞベンゟむルペルオキシドやゞ−
−ブチルペルオキシド等を䜵甚しお甚いおもよ
い。 本発明のラゞカル重合開始剀は、重合方法ずし
お塊状重合、懞濁重合及び溶液重合等公知の䞀般
的な重合方法により、又四分匏及び連続匏等の方
法により甚いるこずが出来る。 〔発明の効果〕 (1) 本発明の特定の構造のペルオキシドはスチレ
ン系及びアクリル系単量䜓や芳銙族炭化氎玠系
溶媒に察する溶解床が倧きいため、重合におけ
る重合開始剀液の調補等の䜜業性にすぐれる。 (2) 高濃床の重合開始剀溶液の状態で長期間の取
扱いや貯蔵が可胜である。 (3) −ブチルペルオキシベンゟ゚ヌト等の甚い
られおいる䞀般匏公知の重合方法モダヌン・
プラスチツクス、第51巻、69〜71頁1974幎
の条件にそのたた適甚でき、高収率で重合䜓が
埗られる。 (4) 高い平均分子量を有する重合䜓が埗られる。 〔実斜䟋〕、〔参考䟋〕及び〔比范䟋〕 以䞋本発明を具䜓的に実斜䟋、参考䟋及び比范
䟋により説明する。 実斜䟋  〔−ゞメチル−−ゞ−メチル
ベンゟむルペルオキシヘキサンの合成〕 撹拌噚及び枩床蚈をそなえた内容積の぀
口フラスコに10重量の氎酞化ナトリりム氎溶液
240.00.6モルを入れ、次いで撹拌䞋に玔床
77.4重量の−ゞメチル−−ゞヒド
ロペルオキシヘキサンの含氎粉䜓57.60.25モ
ルを加えた。次にフラスコ内の反応液の枩床を
20℃に保ち぀぀、はげしく撹拌しながら−メチ
ルベンゟむルクロラむド92.80.5モルを20
分間で適䞋した。その埌時間撹拌を぀づけた。
生成した癜色結晶を別し、300mlの氎で回先
浄し、過した埌デシケヌタ䞭で枛圧也燥した。
恒量に達した埌の重量を枬定したずころ91.2で
あ぀た。この癜色結晶の赀倖吞収スペクトルを
KBrペレツト法で枬定した。その結果1750cm-1に
カルボニル基の吞収が認められ、800cm-1に匱い
ペルオキシの結合の吞収が認められた。たた、こ
の癜色結晶をメタノヌル䞭で再結晶させた詊料を
甚いお元玠分析を行な぀た結果、炭玠69.71重量
、氎玠7.25重量及び蚈算により酞玠23.04重
量であ぀た。理論倀は炭玠69.54重量、氎玠
7.30重量及び酞玠23.16重量である。又ペヌ
ドメトリヌ法に求めた掻性酞玠量は7.68であ぀
た。以䞊の結果からこの癜色結晶は−ゞメ
チル−−ゞ−メチルベンゟむルペルオ
キシヘキサンであるこずが確認された。 たたこのペルオキシ゚ステルのベンれン䞭にお
ける10時間半枛期枩床濃床が半分になる芁する
時間が10時間の堎合の枩床及びスチレン単量
䜓、トル゚ン及び゚チルベンれン䞭の溶解床を衚
に瀺す。 実斜䟋 〜 −メチルベンゟむルクロラむドの代わりにそ
れぞれ−む゜プロピルベンゟむルクロラむド
91.30.5モル又は−−ブチルベンゟむ
ルクロラむド98.30.5モルを甚いた倖は実
斜䟋に準じた方法で、−ゞメチル−
−ゞ−む゜プロピルベンゟむルペルオキ
シヘキサン及び−ゞメチル−−ゞ
−−ブチルベンゟむルペルオキシヘキサ
ンを合成した。たた、それぞれの10時間半枛期枩
床及びスチレン単量䜓、トル゚ン、メタクリル酞
メチル䞭の溶解床を枬定した。その結果を衚に
瀺す。
[Industrial Application Field] The present invention relates to a radical polymerization initiator, and particularly relates to a styrene monomer in which a styrene monomer or a rubbery polymer is dissolved, among ethylenically unsaturated monomers (hereinafter, both are referred to as styrene monomers). It is used in the polymerization of styrenic monomers) and acrylic monomers, and has good workability in polymerization operations, can perform polymerization reactions in high yields, and has a high average molecular weight. This invention relates to a radical polymerization initiator that can be combined. Among polymers, styrene polymers and acrylic polymers are used in a wide range of applications as molding materials, but in this case, they are required to have increased mechanical strength and thermal strength. [Prior Art] Many studies have been made to meet these requirements. For example, in order to obtain a styrene polymer with a high average molecular weight in a method for producing a styrenic polymer, two peroxy groups are added in the molecule instead of t-butylperoxybenzoate, which is a normal monofunctional radical polymerization initiator. This is a method in which peroxide containing a 100% peroxide is used as a radical polymerization initiator. JP-A-48-55981 discloses a method for producing a styrenic polymer with a high average molecular weight using 2,5-dimethyl-2,5-di(benzoylperoxy)hexane; In the publication, 1,1-di(t-butylperoxy)-3,3,
A method using 5-trimethylcyclohexane is
JP-A-52-151383 discloses a method using di(t-butylperoxy)isophthalate. [Problems to be Solved by the Invention] However, each of the above-mentioned bifunctional peroxides has the following problems. In other words, 2,5-dimethyl-2,5-di(benzoylperoxy)hexane is not only solid at room temperature, but also resistant to styrene and acrylic monomers and aromatic hydrocarbon solvents used during polymerization. It has low solubility, and during polymerization operations, it is necessary to dissolve it in a large amount of monomer or solvent and charge it into the polymerization reaction tank, a large capacity polymerization initiator preparation tank is required, and a large amount of solvent may enter the polymerization system. The problem is that the quality of the polymer that is produced is deteriorated. Also, 1,1-di(t-butylperoxy)-3,
3,5-Trimethylcyclohexane has a low 10-hour half-life temperature of 90°C, and its thermal decomposition rate is fast, so if it is polymerized at the same temperature as the other bifunctional peroxides mentioned above, a high molecular weight polymer cannot be obtained. It is a point. Furthermore, di(t-butylperoxy)isophthalate has a high active oxygen content of 10.31%, and in its pure state, there are problems with handling safety, such as rapid decomposition due to friction or impact. In view of the above-mentioned problems, the present inventors conducted long-term research and found that the m
Peroxides with a specific structure in which each position is substituted with an alkyl group have high solubility in styrene and acrylic monomers and aromatic hydrocarbon solvents, and have good workability. The present invention was completed after discovering that a polymer can be obtained in high yield, a polymer with a high average molecular weight, and that it is highly safe to handle. [Means and effects for solving the problems] That is, the present invention has the following general formula: (In the formula, R represents a straight chain alkyl group or a branched alkyl group having 1 to 4 carbon atoms.) A radical polymerization initiator containing a compound represented by the following as an active ingredient. The substitution position of the alkyl group on the aromatic ring has a large effect on the solubility and thermal decomposition rate of peroxides. O
When substituted at the P position, the 10-hour half-life temperature decreases by about 8 degrees, and when substituted at the P position, solubility is not improved. Only those substituted at the m-position do not have a 10-hour half-life temperature drop and exhibit increased solubility. Furthermore, if the number of carbon atoms in the alkyl group exceeds 4, the amount of active oxygen in the peroxide decreases, making it necessary to increase the amount added during polymerization, which is not preferable. Specifically, the above-mentioned peroxides having a specific structure include 2,5-dimethyl-2,5-di(3-methylbenzoylperoxy)hexane, 2,5-dimethyl-2,5-di(3-ethylbenzoylperoxy) ) hexane, 2,5-dimethyl-2,5-
di(3-n-propylbenzoylperoxy)hexane, 2,5-dimethyl-2,5-di(3-isopropylbenzoylperoxy)hexane,
2,5-dimethyl-2,5-di(3-n-butylbenzoylperoxy)hexane, 2,5-dimethyl-2,5-di(3-isobutylbenzoylperoxy)hexane, 2,5-dimethyl-2, 5
-di(3-sec-butylbenzoylperoxy)
Hexane, 2,5-dimethyl-2,5-di(3-
tert-butylbenzoylperoxy)hexane. The peroxide represented by the above general formula of the present invention is produced by a general method for producing peroxyesters. That is, 2,5-dimethylhexane-
It is produced in a yield of 80 to 90 mol% by reacting 2,5-dihydroperoxide and 3-alkylbenzoyl chloride at 0 to 30°C. This peroxide can be confirmed and quantified by infrared absorption spectroscopy, nuclear magnetic resonance spectroscopy, elemental analysis, and measurement of the amount of active oxygen by iodometry. The radical polymerization initiator of the present invention can be used as a polymerization initiator for general ethylenic monomers and a curing agent for unsaturated polyester resins, but in particular, it can be used as a radical polymerization initiator for styrene and acrylic monomers. preferred as Rubbery polymers used for the styrene monomer in which a rubbery polymer is dissolved in a styrene monomer include, for example, polybutadiene, copolymers of butadiene and styrene, acrylonitrile, methyl methacrylate, etc. Examples include natural rubber and ethylene-propylene copolymer.
The ratio of the rubbery polymer to the styrene monomer is usually 1 to 20% by weight based on the styrene monomer.
This is the percentage of The reasons why the above monomers are particularly preferable are that the general polymerization temperature of the above monomers and the temperature at which the peroxide of the present invention is used are almost the same, so that the polymerization reaction can be carried out efficiently, and that polymers with a high average molecular weight can be used. This is because union can be obtained. The method of using the radical polymerization initiator of the present invention is t-
It may be substantially the same as butylperoxybenzoate or 2,5-dimethyl-2,5-di(benzoylperoxy)hexane. That is, the operating temperature is 70 to 180℃,
Preferably it is 90-160°C. A temperature lower than 70° C. is undesirable because the decomposition rate becomes extremely slow and it takes a long time to complete the polymerization, or a large amount of peroxide remains in the polymer. Also 180℃
As the peroxide rapidly decomposes when it exceeds
This is undesirable as it makes it impossible to control the polymerization reaction. The amount used is usually 0.01 to 2% by weight, preferably 0.02 to 0.5% by weight, based on the monomer. If it is less than 0.01% by weight, the polymerization rate becomes extremely slow, which is not preferable. Moreover, if it exceeds 2% by weight, the polymerization reaction will occur rapidly and temperature control will become difficult, which is undesirable. Further, the polymerization initiator of the present invention may be used alone or in combination of two or more, and furthermore, other general polymerization initiators such as dibenzoyl peroxide and di-t
-Butyl peroxide etc. may be used in combination. The radical polymerization initiator of the present invention can be used by known general polymerization methods such as bulk polymerization, suspension polymerization, and solution polymerization, as well as by four-part polymerization methods, continuous polymerization methods, and the like. [Effects of the Invention] (1) Since the peroxide with a specific structure of the present invention has high solubility in styrene-based and acrylic-based monomers and aromatic hydrocarbon-based solvents, workability such as preparing a polymerization initiator liquid during polymerization is improved. Excellent. (2) Long-term handling and storage is possible in the form of a highly concentrated polymerization initiator solution. (3) General formula known polymerization method used for t-butyl peroxybenzoate etc. (Modern
Plastics, Vol. 51, pp. 69-71 (1974))
It can be applied directly to the conditions described above, and the polymer can be obtained in high yield. (4) A polymer having a high average molecular weight can be obtained. [Examples], [Reference Examples], and [Comparative Examples] The present invention will be specifically explained below with reference to Examples, Reference Examples, and Comparative Examples. Example 1 [Synthesis of 2,5-dimethyl-2,5-di(3-methylbenzoylperoxy)hexane] 10% by weight of sodium hydroxide was placed in a 4-neck flask with an internal volume of 1 equipped with a stirrer and a thermometer. aqueous solution
Add 240.0g (0.6mol) and then add purity while stirring.
57.6 g (0.25 mol) of 77.4% by weight hydrated powder of 2,5-dimethyl-2,5-dihydroperoxyhexane was added. Next, the temperature of the reaction liquid in the flask is
While keeping the temperature at 20℃ and stirring vigorously, add 92.8 g (0.5 mol) of 3-methylbenzoyl chloride for 20 minutes.
It was administered within minutes. Stirring was then continued for 1 hour.
The white crystals formed were separated, pre-cleaned twice with 300 ml of water, filtered and dried under reduced pressure in a desiccator.
When the weight was measured after reaching a constant weight, it was 91.2 g. The infrared absorption spectrum of this white crystal
Measured by KBr pellet method. As a result, carbonyl group absorption was observed at 1750 cm -1 and weak peroxy bond absorption was observed at 800 cm -1 . Elemental analysis was performed using a sample of the white crystals recrystallized in methanol, and the results showed that carbon was 69.71% by weight, hydrogen was 7.25% by weight, and oxygen was calculated to be 23.04% by weight. Theoretical value is 69.54% by weight of carbon, hydrogen
7.30% by weight and 23.16% by weight of oxygen. The amount of active oxygen determined by iodometry was 7.68%. From the above results, it was confirmed that this white crystal was 2,5-dimethyl-2,5-di(3-methylbenzoylperoxy)hexane. Table 1 also shows the 10-hour half-life temperature of this peroxyester in benzene (temperature when the time required for the concentration to be reduced to half is 10 hours) and the solubility in styrene monomer, toluene, and ethylbenzene. Examples 2-3 3-isopropylbenzoyl chloride in place of 3-methylbenzoyl chloride, respectively
2,5-dimethyl-2,
5-di(3-isopropylbenzoylperoxy)hexane and 2,5-dimethyl-2,5-di(3-t-butylbenzoylperoxy)hexane were synthesized. In addition, the 10-hour half-life temperature and solubility in styrene monomer, toluene, and methyl methacrylate were also measured. The results are shown in Table 1.

〔−ゞメチル−−ゞ−メチルベンゟむルペルオキシヘキサンの゚チルベンれン垌釈品の合成〕[Synthesis of 2,5-dimethyl-2,5-di(3-methylbenzoylperoxy)hexane diluted with ethylbenzene]

撹拌噚及び枩床蚈をそなえた内容積の぀
口フラスコに20重量の氎酞化カリりム氎溶液
358.41.3モルを入れ、次いで撹拌䞋に玔床
77.4重量の−ゞメチル−−ゞヒド
ロペルオキシヘキサンの含氎粉䜓115.10.5モ
ルを加えた。次に゚チルベンれン240を加え、
反応液の枩床を25℃に保ち぀぀−メチルベンゟ
むルクロラむド154.61.0モルをはげしく撹
拌しながら30分間で滎䞋した。その埌時間撹拌
を぀づけた。次いで分液ロヌトで氎盞を分離し、
有機盞を重量の氎酞化ナトリりム氎溶液で掗
浄し、の氎で回掗浄した埌無氎硫酞マグネ
シりム䞊で也燥させた。これを別しお無色透明
の液䜓403.2を埗た。この液䜓の赀倖吞収スペ
クトルを枬定した結果1750cm-1にカルボニル基の
吞収が認められた。たたペヌドメトリヌ法による
掻性酞玠量は3.61であ぀た。以䞊からこの液䜓
は玔床46.3重量の−ゞメチル−−
ゞ−メチルベンゟむルペルオキシヘキサン
の゚チルベンれン溶液である。 参考䟋  〔スチレン単量䜓の重合〕 撹拌噚、枩床蚈を䟛えた内容積500mlのガラス
補オヌトクレヌブにむオン亀換氎100ml、第リ
ン酞カルシりム0.4、ドデシルベンれンスルホ
ン酞ナトリりム0.0002を入れ、窒玠ガス眮換を
した。次にスチレン単量䜓80を加えた。油济で
加枩し液枩を110℃たで䞊昇させた埌、実斜䟋
で調補した−ゞメチル−−ゞ−
メチルベンゟむルペルオキシヘキサンの゚チル
ベンれン溶液0.35玔分換算0.2重量察スチ
レン単量䜓を窒玠ガスで圧入した。10時間反応
を続けた埌宀枩たで冷华し、生じた癜色ビヌズ状
固䜓を別し、500mlの氎で回掗浄した埌枛圧
也燥した。埗られたスチレン重合䜓の収量は77.8
であ぀た。このスチレン重合䜓の25℃における
ベンれン䞭の極限粘床は1.20平均分子量325000
であ぀た。 参考䟋  〔メタクリル酞メチルの重合〕 撹拌噚、枩床蚈、ゞムロヌト冷华噚及び窒玠ガ
ス導入管を䟛えた500mlの぀口フラスコに、懞
濁散剀ずしおラりリル硫酞ナトリりム0.04、ポ
リアクリル酞ナトリりム0.53ず硫酞ナトリりム
1.62ずを200mlのむオン亀換氎に溶解させたも
のを加え、次にメタクリル酞メチル100に実斜
䟋で合成した−ゞメチル−−ゞ
−む゜プロピルベンゟむルペルオキシヘキ
サンの玔品0.1を溶解させた溶液を加えはげし
く撹拌した。枩氎济で90℃たで昇枩し、その埌冷
华により90℃に保぀た。時間埌宀枩たで冷华
し、生じた癜色のビヌズ状固䜓を300mlの氎で掗
浄した埌枛圧也燥した。埗られたポリメタクリル
酞メチルの重量は94.8であ぀た。このもののベ
ンれン䞭25℃における極限粘床は0.66平均分子
量233000であ぀た。 比范䟋 〜 酞クロラむドずしおそれぞれベンゟむルクロラ
むド、−メチルベンゟむルクロラむド及び−
メチルベンゟむルクロラむドを0.5モル甚いた他
は実斜䟋に準じた方法で−ゞメチル−
−ゞベンゟむルペルオキシヘキサン、
−ゞメチル−−ゞ−メチルベン
ゟむルペルオキシヘキサン及び−ゞメチ
ル−−ゞ−メチルベンゟむルペルオキ
シヘキサンをそれぞれ合成し、10時間半枛期枩
床ず溶解床を枬定した。結果を衚に瀺す。 比范䟋  ラゞカル重合開始剀ずしお−ブチルペルオキ
シベンゟ゚ヌト0.16玔分換算0.2重量察ス
チレン単量䜓を甚いた他は参考䟋に準じた方
法でスチレン単量䜓の重合を行な぀た。埗られた
スチレン重合䜓の収量は78.2であり25℃におけ
るベンれン䞭の極限粘床は0.98平均分子量
247300であ぀た。 比范䟋  ラゞカル重合開始剀ずしお−ゞ−ブ
チルペルオキシ−トリメチルシクロ
ヘキサンを0.18玔床90を甚いた他は参考
䟋に準じた方法でスチレン単量䜓の重合を行な
぀た。埗られたスチレン重合䜓の重量は78.8で
あ぀た。そしおこのものの25℃ベンれン䞭の極限
粘床は1.03平均分子量264400であ぀た。
20% by weight aqueous potassium hydroxide solution in a 4-necked flask with an internal volume of 2 equipped with a stirrer and a thermometer.
Add 358.4g (1.3mol) and then add purity while stirring.
115.1 g (0.5 mol) of 77.4% by weight hydrated powder of 2,5-dimethyl-2,5-dihydroperoxyhexane was added. Next, add 240g of ethylbenzene,
While maintaining the temperature of the reaction solution at 25° C., 154.6 g (1.0 mol) of 3-methylbenzoyl chloride was added dropwise over 30 minutes with vigorous stirring. Stirring was then continued for 1 hour. The aqueous phase is then separated in a separatory funnel,
The organic phase was washed with a 3% by weight aqueous sodium hydroxide solution, once with 1 portion of water, and then dried over anhydrous magnesium sulfate. This was separated to obtain 403.2 g of a colorless and transparent liquid. As a result of measuring the infrared absorption spectrum of this liquid, carbonyl group absorption was observed at 1750 cm -1 . The amount of active oxygen determined by iodometry was 3.61%. From the above, this liquid has a purity of 46.3% by weight, 2,5-dimethyl-2,5-
This is a solution of di(3-methylbenzoylperoxy)hexane in ethylbenzene. Reference Example 1 [Polymerization of styrene monomer] Put 100 ml of ion-exchanged water, 0.4 g of tribasic calcium phosphate, and 0.0002 g of sodium dodecylbenzenesulfonate into a 500 ml glass autoclave equipped with a stirrer and a thermometer, and add nitrogen gas. I made a replacement. Next, 80 g of styrene monomer was added. After heating in an oil bath and raising the liquid temperature to 110°C, Example 4
2,5-dimethyl-2,5-di(3-
0.35 g of an ethylbenzene solution of methylbenzoylperoxy)hexane (0.2% by weight based on pure content vs. styrene monomer) was pressurized with nitrogen gas. After continuing the reaction for 10 hours, the mixture was cooled to room temperature, and the resulting white bead-like solids were separated, washed twice with 500 ml of water, and then dried under reduced pressure. The yield of the obtained styrene polymer was 77.8
It was hot at g. The intrinsic viscosity of this styrene polymer in benzene at 25°C is 1.20 (average molecular weight 325,000)
It was hot. Reference Example 2 [Polymerization of methyl methacrylate] In a 500 ml four-necked flask equipped with a stirrer, thermometer, Dimroth condenser, and nitrogen gas inlet tube, 0.04 g of sodium lauryl sulfate and 0.53 g of sodium polyacrylate as a suspended powder were added. g and sodium sulfate
1.62 g of 2,5-dimethyl-2,5-di(3-isopropylbenzoylperoxy) hexane synthesized in Example 2 was added to 100 g of methyl methacrylate dissolved in 200 ml of ion-exchanged water. A solution containing 0.1 g of pure product was added and stirred vigorously. The temperature was raised to 90°C in a hot water bath, and then maintained at 90°C by cooling. After 3 hours, the mixture was cooled to room temperature, and the resulting white bead-like solids were washed with 300 ml of water and dried under reduced pressure. The weight of the obtained polymethyl methacrylate was 94.8 g. The intrinsic viscosity of this product in benzene at 25°C was 0.66 (average molecular weight 233,000). Comparative Examples 1 to 3 Benzoyl chloride, 2-methylbenzoyl chloride and 4-methylbenzoyl chloride were used as acid chlorides, respectively.
2,5-dimethyl-
2,5-di(benzoylperoxy)hexane,
2,5-dimethyl-2,5-di(2-methylbenzoylperoxy)hexane and 2,5-dimethyl-2,5-di(4-methylbenzoylperoxy)hexane were synthesized, and the 10-hour half-life temperature and Solubility was measured. The results are shown in Table 1. Comparative Example 4 Styrene monomer was polymerized in the same manner as in Reference Example 1, except that 0.16 g of t-butyl peroxybenzoate (0.2% by weight of styrene monomer in terms of purity) was used as a radical polymerization initiator. Ta. The yield of the obtained styrene polymer was 78.2 g, and the intrinsic viscosity in benzene at 25°C was 0.98 (average molecular weight
247300). Comparative Example 5 Styrene monomer was prepared in the same manner as in Reference Example 1, except that 0.18 g (90% purity) of 1,1-di(t-butylperoxy)3,3,5-trimethylcyclohexane was used as a radical polymerization initiator. Polymerization of polymers was carried out. The weight of the obtained styrene polymer was 78.8 g. The intrinsic viscosity of this product in benzene at 25°C was 1.03 (average molecular weight 264,400).

Claims (1)

【特蚱請求の範囲】  䞀般匏 匏䞭、は炭玠数〜の盎鎖アルキル基又は
分枝アルキル基を衚わす。 で瀺される化合物を有効成分ずするラゞカル重合
開始剀。
[Claims] 1. General formula (In the formula, R represents a straight-chain alkyl group or a branched alkyl group having 1 to 4 carbon atoms.) A radical polymerization initiator containing a compound represented by the following as an active ingredient.
JP26517484A 1984-12-18 1984-12-18 Radical polymerization initiator Granted JPS61143402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26517484A JPS61143402A (en) 1984-12-18 1984-12-18 Radical polymerization initiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26517484A JPS61143402A (en) 1984-12-18 1984-12-18 Radical polymerization initiator

Publications (2)

Publication Number Publication Date
JPS61143402A JPS61143402A (en) 1986-07-01
JPH0130843B2 true JPH0130843B2 (en) 1989-06-22

Family

ID=17413608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26517484A Granted JPS61143402A (en) 1984-12-18 1984-12-18 Radical polymerization initiator

Country Status (1)

Country Link
JP (1) JPS61143402A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5041624A (en) * 1988-10-13 1991-08-20 Nippon Oil And Fats Company, Limited Polymeric peroxy ester and its use

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3743630A (en) * 1971-06-30 1973-07-03 Argus Chem Styrene polymerization with ring substituted alkyl perbenzoates and new branched chain alkyl perbenzoates
JPS52151383A (en) * 1976-06-12 1977-12-15 Nippon Oil & Fats Co Ltd Preparation of styrene polymers
JPS5792005A (en) * 1980-11-28 1982-06-08 Nippon Oil & Fats Co Ltd Peroxy ester composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3743630A (en) * 1971-06-30 1973-07-03 Argus Chem Styrene polymerization with ring substituted alkyl perbenzoates and new branched chain alkyl perbenzoates
JPS52151383A (en) * 1976-06-12 1977-12-15 Nippon Oil & Fats Co Ltd Preparation of styrene polymers
JPS5792005A (en) * 1980-11-28 1982-06-08 Nippon Oil & Fats Co Ltd Peroxy ester composition

Also Published As

Publication number Publication date
JPS61143402A (en) 1986-07-01

Similar Documents

Publication Publication Date Title
US5274059A (en) Maleimide copolymer and process for preparing same
JPH0130843B2 (en)
US3435060A (en) Novel organic peresters and process therefor
US3743630A (en) Styrene polymerization with ring substituted alkyl perbenzoates and new branched chain alkyl perbenzoates
US5140083A (en) Maleimide copolymer and process for preparing same
US5258465A (en) Polymeric peroxide, polymerization initiator and method for production of block copolymer
JP2745602B2 (en) Polymerization method of vinyl chloride
JPS5952646B2 (en) Manufacturing method of block copolymer
JP3275714B2 (en) Polymerization initiator for peroxide and vinyl monomers and polymerization method using the same
US5292914A (en) Organic peroxide and use thereof
JP3106505B2 (en) 1-cyclohexyl-1-methylethyl peroxyneoalkanoate and use thereof
JP2743487B2 (en) Polymerization method of vinyl chloride and polymerization initiator
JPS62124102A (en) Production of polymer or copolymer containing unsaturated group
KR970007195B1 (en) Novel peroxy alkylester, and polymerization initiator and curing agent using the ester
JP4453160B2 (en) Polydimethylsiloxane compound having peroxyester group and use thereof
JP3214955B2 (en) New polymerization initiator
JPS63132911A (en) Polymerization and copolymerization of vinyl chloride
JPH03255065A (en) Organic peroxide, polymerization initiator and crosslinking agent composed of the same oxide
JPS60155207A (en) Polymerization or copolymerization of vinyl chloride
JPH02251506A (en) Method and initiator for polymerizing vinyl chloride
EP0096365A1 (en) Shortened reaction cycle times in vinyl chloride-propylene copolymerization
JPH05202112A (en) Halomethyl group-containing azo-based polymerization initiator, macromolecular polymerization initiator synthesized from the same initiator and production of block polymer using the same initiator
JP2682081B2 (en) Bifunctional peroxyester and polymerization initiator containing the same ester as active ingredient
JPH0320309A (en) Polymerization of vinyl chloride and polymerization initiator
JPH06136017A (en) Polymerization initiator for styrenic polymer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees