JPH01308256A - Gas-phase chlorination of pyridine - Google Patents

Gas-phase chlorination of pyridine

Info

Publication number
JPH01308256A
JPH01308256A JP13674388A JP13674388A JPH01308256A JP H01308256 A JPH01308256 A JP H01308256A JP 13674388 A JP13674388 A JP 13674388A JP 13674388 A JP13674388 A JP 13674388A JP H01308256 A JPH01308256 A JP H01308256A
Authority
JP
Japan
Prior art keywords
pyridine
gas
reaction
diluent
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13674388A
Other languages
Japanese (ja)
Other versions
JP2563484B2 (en
Inventor
Noboru Kamei
登 亀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP63136743A priority Critical patent/JP2563484B2/en
Publication of JPH01308256A publication Critical patent/JPH01308256A/en
Application granted granted Critical
Publication of JP2563484B2 publication Critical patent/JP2563484B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pyridine Compounds (AREA)

Abstract

PURPOSE:To obtain a compound useful as a synthetic intermediate for drugs and agricultural chemicals at a promoted reaction rate and in high yield without causing polymerization of pyridine, etc., by blending pyridine with a chlorine gas in a diluent in a gaseous state and reacting in a gas phase. CONSTITUTION:Pyridine is premixed with a chlorine gas in the presence of a diluent such as water, carbon tetrachloride or nitrogen gas, fed to a reactor, chlorinated in a gas phase at >=120 deg.C and neutralized to give 2-chloropyridine and/or 2,6-dichloropyridine. The diluent is added to prevent contamination of ultraviolet lamp and to suppress conversion of pyridine into tar and the amount of the diluent used is 10-30 mols based on pyridine.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は気相反応によって、ピリジンと塩素から医農薬
の中間体として有用な2−クロロピリジン及び/又は2
,6−ジクロロピリジンを製造する方法の改良に関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention produces 2-chloropyridine and/or 2-chloropyridine, which is useful as an intermediate for pharmaceuticals and agricultural chemicals, from pyridine and chlorine through a gas phase reaction.
, 6-dichloropyridine.

〔従来の技術及び発明が解決しようとする課題〕以下、
ピリジンの気相塩素化のうち、光反応を例にとり本発明
の詳細な説明する。
[Problems to be solved by conventional techniques and inventions] Below,
The present invention will be described in detail by taking photoreaction as an example of gas phase chlorination of pyridine.

ピリジンと塩素とを紫外線照射下、気相にて反応させ、
2−クロロピリジン及び/又は2,6−ジクロロピリジ
ンを合成する方法は既にいくつか知られている。ところ
で、工業化に際し、長期安定運転といった観点が大きな
要素を占めるが、当該反応では次の特有な現象が問題と
なる。
Pyridine and chlorine are reacted in the gas phase under ultraviolet irradiation,
Several methods for synthesizing 2-chloropyridine and/or 2,6-dichloropyridine are already known. By the way, long-term stable operation is a major factor in industrialization, but the following unique phenomenon poses a problem in this reaction.

ピリジンと塩素だけては、ピリジン−塩素コンプレック
スに由来するクール物の生成のため、ランプが汚れたり
、反応物流出配管がつまるなどして、安定に反応を続け
ることが困難なことがある。
If only pyridine and chlorine are used, it may be difficult to continue the reaction stably, as the lamp may become dirty or the reactant outflow piping may become clogged due to the generation of cool substances originating from the pyridine-chlorine complex.

これを避けるため四塩化炭素を稀釈剤として用いている
例がある(米国特許第3.297.556号)。
To avoid this, there is an example of using carbon tetrachloride as a diluent (US Pat. No. 3,297,556).

しかしながら、この方法は副生ずるピリジン塩酸塩がラ
ンプに付着し、ランプ効率が低下するという欠点を有す
る。又、ピリジンに対し、少なくとも1モル以上の水蒸
気又はハロゲン化炭化水素−水蒸気を添加している改良
例がある(特公昭52−3935号、特公昭52−39
36号、特公昭55−4742号)。
However, this method has the disadvantage that by-product pyridine hydrochloride adheres to the lamp, reducing lamp efficiency. In addition, there are improvements in which at least 1 mole of water vapor or halogenated hydrocarbon-steam is added to pyridine (Japanese Patent Publication No. 52-3935, Japanese Patent Publication No. 52-39).
No. 36, Special Publication No. 55-4742).

しかしながらこれらの方法も、ピリジンの転化率が低い
ために2−クロロピリジン収率は30%程度しか得られ
ない欠点がある。また、2,6−ジクロロピリジンを主
生成物として得ることを目的として、ピリジンに対する
塩素の仕込モル比を増やして運転すると、例えば2モル
倍の塩素を仕込んだ場合その半分が未反応塩素として排
ガス中に含まれる。この結果、ピリジンの転化率はやは
り50%と低い値しか得られていないのである。
However, these methods also have the drawback that the yield of 2-chloropyridine is only about 30% due to the low conversion rate of pyridine. In addition, when operating with an increased molar ratio of chlorine to pyridine in order to obtain 2,6-dichloropyridine as the main product, for example, if 2 moles of chlorine is charged, half of it becomes unreacted chlorine in the exhaust gas. contained within. As a result, the conversion rate of pyridine was still as low as 50%.

以上のように、未反応ピリジンが多く残存することや、
未反応塩素ガスが多い場合には、その工程上、多くの問
題を生じる。
As mentioned above, a large amount of unreacted pyridine remains,
When there is a large amount of unreacted chlorine gas, many problems arise in the process.

まず未反応ピリジンが排ガスラインで凝縮しそこで塩酸
ガスと反応し、ピリジン塩酸塩となって析出を始め、閉
塞を引き起こす問題がある。
First, unreacted pyridine condenses in the exhaust gas line, where it reacts with hydrochloric acid gas to form pyridine hydrochloride, which begins to precipitate, causing blockage.

また排ガス量が多いと、未反応ピリジンもこれに同伴し
、そのロスも無視てきない。ピリジンの回収率も後工程
の複雑さからそれ程よくないため、ピリジンの転化率を
高くすることと、塩素ガスの反応率を上げることは、該
プロセスを安定運転する上で重要なポイントとなると思
われブこ。
Furthermore, if the amount of exhaust gas is large, unreacted pyridine will also accompany it, and its loss cannot be ignored. The recovery rate of pyridine is also not that good due to the complexity of the post-process, so increasing the conversion rate of pyridine and the reaction rate of chlorine gas are considered to be important points for stable operation of the process. I'm crazy.

反応を速くするために、水や四塩化炭素のような稀釈剤
を少なくすると、反応中にピリジンの重合等の副反応が
進む。一方、反応温度は装置の材質等の問題から通常2
00℃を超えて運転することは困難であり、該反応を本
質的に促進させる対策が必要であると考えられた。
If the amount of diluent such as water or carbon tetrachloride is reduced in order to speed up the reaction, side reactions such as pyridine polymerization will proceed during the reaction. On the other hand, the reaction temperature is usually 2.
It is difficult to operate above 00°C, and it was thought that measures to essentially accelerate the reaction were required.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者は、以上のような問題点を改良すべく鋭意検討
を重ねた結果、稀釈剤存在下でピリジンと塩素ガスを予
め混合して反応器に供給しても意外にもピリジンの重合
等を起こすことなく、反応速度が大幅に改善されること
を見出し、本発すに至った。
As a result of intensive studies to improve the above-mentioned problems, the inventors of the present invention found that even if pyridine and chlorine gas were mixed in advance in the presence of a diluent and supplied to the reactor, pyridine polymerization, etc. They discovered that the reaction rate was significantly improved without causing any problems, and came up with the present invention.

即ち本発すは、ピリジンと塩素とを気相で反応せしめる
に当たり、ピリジンと塩素ガスを、稀釈剤存在下で、ガ
ス状で混合した後、反応器へ供給することを特徴とする
ピリジンの気相塩素化反応法である。
That is, the present invention is a gas phase method of pyridine, which is characterized in that, when reacting pyridine and chlorine in a gas phase, pyridine and chlorine gas are mixed in a gaseous state in the presence of a diluent and then supplied to a reactor. This is a chlorination reaction method.

ピリジン単独或いは稀釈剤存在下に、液相で塩素ガスを
吹き込むと激しくタール化を起こすことが知られている
が、光の存在なしで、例えば120℃の条件で、稀釈剤
存在下でピリジンと塩素ガスを気相混合すると、冷却し
て得られる液は真黒であることから、気相でかつ事実上
反応の進行しない条件(光の存在がないか、250℃未
満)では、ピリジンが不安定な塩素塩を経由して重合す
るものと考えられていた。
It is known that blowing chlorine gas in the liquid phase into pyridine alone or in the presence of a diluent causes severe tarring, but if pyridine is mixed with pyridine in the presence of a diluent without the presence of light, for example at 120°C, When chlorine gas is mixed in the gas phase, the liquid obtained after cooling is jet black, indicating that pyridine is unstable in the gas phase and under conditions where the reaction does not proceed (in the absence of light or below 250°C). It was thought that polymerization occurs via chlorine salts.

この現象は一般的に公知の事実として受けとめられてお
り、特公昭52−3935号、特公昭52−3936号
、特公昭55=4742号の実施例では、塩素を直接反
応器へ吹き込んでいる。気相熱塊素化反応でも同様で、
特公昭35−2930号、特公昭52−952号、特公
昭54−22983号、特公昭43−9224号、米国
特許第3.251.848号に於いてはいずれも塩素ガ
スは反応器へ単独で導入され、特公昭4]=20946
号、特開昭60−166664号、特開昭61−831
62号では塩素ガスと稀釈剤が混合されて吹き込まれい
る。またこの中で、特公昭43−9224号に於いては
、塩素とピリジンを別々に予熱し供給することが勧めら
れている。
This phenomenon is generally accepted as a well-known fact, and in the examples of Japanese Patent Publication Nos. 3935-1982, 3936-1982, and 4742-1987, chlorine is directly blown into the reactor. The same is true for gas phase thermal bulk plating reactions.
In Japanese Patent Publication No. 35-2930, Japanese Patent Publication No. 52-952, Japanese Patent Publication No. 54-22983, Japanese Patent Publication No. 43-9224, and U.S. Patent No. 3.251.848, chlorine gas is supplied to the reactor alone. Introduced in the Tokko Sho 4] = 20946
No., JP-A-60-166664, JP-A-61-831
In No. 62, a mixture of chlorine gas and diluent is injected. Among them, Japanese Patent Publication No. 43-9224 recommends that chlorine and pyridine be separately preheated and supplied.

本発明者等はまず、前述のタール化は稀釈剤存在下の気
相で起きるのではなく、凝縮した際の液相でのみ起きる
ことをつきとめた。従って反応槽へ供給する混合ガスを
凝縮しない様にすればタール化の問題は解消する。また
反応槽内では反応の進行に伴い未反応ピリジンは、すべ
て塩酸塩として凝縮液中に存在することになるため、気
相に存在するランプが汚れることもなく、タール化は起
きないことを見出したのである。
The present inventors first found that the above-mentioned tar formation does not occur in the gas phase in the presence of a diluent, but occurs only in the liquid phase upon condensation. Therefore, the problem of tarring can be solved by preventing the mixed gas supplied to the reaction tank from condensing. Furthermore, as the reaction progresses in the reaction tank, all unreacted pyridine will exist in the condensate as hydrochloride, so the lamp, which is present in the gas phase, will not be contaminated and tar will not occur. It was.

かくして得られる混合ガスを反応器へ供給し、気相光塩
素化反応を行った場合、ピリジンと塩素を別々に反応器
へ導いた場合に比べ、その反応速度が著しく促進される
ことを見出した。即ち、このような混合ガスを反応器へ
供給した場合、反応器の型式にもよるが、通常ピリジン
の転化率を80%以上にすることができる。
It has been found that when the gas mixture thus obtained is supplied to a reactor and a gas phase photochlorination reaction is performed, the reaction rate is significantly accelerated compared to when pyridine and chlorine are introduced separately into the reactor. . That is, when such a mixed gas is supplied to a reactor, the conversion rate of pyridine can usually be increased to 80% or more, although it depends on the type of reactor.

また、反応器へ撹拌機を取付ける方法(本発明者の先願
である特願昭62.−256104号)を併用すると、
反応成績は更に好ましいものとなる。
In addition, when using the method of attaching a stirrer to the reactor (Japanese Patent Application No. 1982-256104, which is an earlier application of the present inventor),
The reaction results become even more favorable.

この場合、原料ガスの混合は充分であるので、別々の仕
込口からピリジンと塩素ガスを供給する場合に比べて、
撹拌機の大きさや回転数は、相当小規模なもので済む利
点がある。
In this case, the raw material gases are sufficiently mixed, so compared to the case where pyridine and chlorine gas are supplied from separate ports,
The advantage is that the size and rotational speed of the stirrer can be quite small.

翼の形式はタービン型、ファウドラー型、プロペラ型等
いずれも使用可能である。回転数は反応槽の大きさや形
状によって異なるが50〜300rpmによって行われ
る。
Any type of blade can be used, such as a turbine type, a Faudler type, or a propeller type. Although the rotation speed varies depending on the size and shape of the reaction tank, the rotation speed is 50 to 300 rpm.

本発明の方法によって反応を行う場合、滞留時間は10
〜30秒あれば充分であるが、これ以上の滞留時間をと
っても、反応成績には影響を及ぼさないので、仕込み量
を、任意に変えることが可能である。反応原料であるピ
リジンと塩素の仕込みモル比は2−クロロピリジンを主
生成物にするか、2.6−ジクロロピリジンを主生成物
にするかで任意に選択される。
When carrying out the reaction according to the method of the invention, the residence time is 10
~30 seconds is sufficient, but even if the residence time is longer than this, the reaction results will not be affected, so the amount charged can be changed arbitrarily. The molar ratio of pyridine and chlorine, which are reaction raw materials, is arbitrarily selected depending on whether 2-chloropyridine or 2,6-dichloropyridine is used as the main product.

反応温度は120℃以上、好ましくは140℃以上で行
われる。反応温度は高い程そ、の反応速度が上がるが前
述のように、反応器材質の問題のため、通常は200℃
を超える温度は困難である。
The reaction temperature is 120°C or higher, preferably 140°C or higher. The higher the reaction temperature, the higher the reaction rate, but as mentioned above, due to problems with the reactor material, the temperature is usually 200°C.
Temperatures exceeding 100% are difficult.

稀釈剤は紫外線ランプの汚れを防止すると共にピリジン
のクール化を抑制するために加えられるが水、四塩化炭
素、窒素ガス等いずれも使用できる。稀釈率は従来法で
は、反応が遅かったため、あまり大きくできなかったが
、本反応方法によれば、例えば20モル倍以上の稀釈率
で行っても何ら問題を生じない。通常は10〜30モル
倍(対ピリジン)の稀釈剤が使用される。
The diluent is added to prevent staining of the ultraviolet lamp and to suppress cooling of the pyridine, and any of water, carbon tetrachloride, nitrogen gas, etc. can be used. In the conventional method, the dilution rate could not be increased very much because the reaction was slow, but according to the present reaction method, no problem occurs even if the dilution rate is 20 times or more by mole. Usually, a diluent of 10 to 30 moles (to pyridine) is used.

反応混合物は、温水を冷媒としたコンデンサーを通し、
凝縮させ、排気ラインを備えた受は器に導く。
The reaction mixture is passed through a condenser using hot water as a coolant.
Condense and lead to a vessel with an exhaust line.

得られた反応液は、水酸化ナトリウムで中和した後、四
塩化炭素で抽出し、次いで簡単な分留を経て、目的物を
得ることができる。
The obtained reaction solution is neutralized with sodium hydroxide, extracted with carbon tetrachloride, and then subjected to simple fractional distillation to obtain the desired product.

〔発明の効果〕〔Effect of the invention〕

本発明の方法により、2−クロロピリジンあるいは2,
6−ジクロロピリジンを従来法に較べ数倍の収率で得る
ことができる。又閉塞等の問題もなく長期間安定して運
転することが可能になった。
By the method of the present invention, 2-chloropyridine or 2,
6-dichloropyridine can be obtained in a yield several times higher than that of conventional methods. Furthermore, it has become possible to operate stably for a long period of time without problems such as blockages.

〔実施例〕〔Example〕

以下、実施例により本発明をさらに詳しく説明するが、
本発明はこれらの実施例に限定されるものではない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to these examples.

実施例1 光反応缶としてはランプ据え付は口、撹拌機取付は口、
温度計口、ガス導入口、ガス流出口等を有するジャケッ
トつきの51パイレックス缶を、そして光源としては1
00W、高圧水銀灯を用いた。
Example 1 As a photoreaction can, the lamp is installed at the mouth, the stirrer is installed at the mouth,
A 51 Pyrex can with a jacket that has a thermometer port, gas inlet, gas outlet, etc., and 1 as a light source.
A 00W, high pressure mercury lamp was used.

ランプは反応器のほぼ中央に据え付け、反応器上部に翼
径5cmのテフロン製のプロペラ型撹拌翼を取付けた。
The lamp was installed approximately in the center of the reactor, and a Teflon propeller-type stirring blade with a blade diameter of 5 cm was attached to the top of the reactor.

撹拌回転数は200rl1mとした。The stirring rotation speed was 200 rl1m.

ピリジン90.0 g / H1水512g/Hを蒸発
器で蒸発させ、その混合ガス中へ塩素ガスを121g/
Hで供給し、内容積的200m1のラインミキサーを経
由させ、原料ガスを混合した。そして130℃に予熱さ
れた反応缶へこれら混合ガスを供給した。この際混合ガ
スが凝縮しない様にラインミキサー等を加熱する。
Pyridine 90.0 g/H1 Water 512 g/H is evaporated in an evaporator, and chlorine gas is added to the mixed gas at 121 g/H.
The raw material gas was mixed through a line mixer with an internal volume of 200 ml. These mixed gases were then supplied to a reaction vessel preheated to 130°C. At this time, heat the line mixer etc. to prevent the mixed gas from condensing.

反応槽の温度が160℃を保つようにジャケットの熱媒
温度を調節しながら反応を継続した。
The reaction was continued while adjusting the temperature of the heat medium in the jacket so that the temperature of the reaction tank was maintained at 160°C.

一方反応ガスは温水コンデンサーで凝縮した後ジャケッ
トに温水を循環した1βの受器へためておき、間欠的に
抜き取った。この結果719g/Hの反応液を得、この
うち未反応ピリジン8.2g/H,2−クロロピリジン
71.7g/H,2,6−ジクロロピリジン56.4 
g / Hが含有されていたことが判った。以上からピ
リジンの転化率は91%、2−クロロピリジンの選択率
は61.0%、2.6−ジクロロピリジンの選択率は3
6.8%であった。また、吹き込んだ塩素ガスの反応率
は83.0%であった。
On the other hand, the reaction gas was condensed in a hot water condenser and then stored in a 1β receiver with hot water circulating through the jacket, and was extracted intermittently. As a result, 719 g/H of the reaction solution was obtained, of which 8.2 g/H, 2-chloropyridine 71.7 g/H, 2,6-dichloropyridine 56.4 g/H, unreacted pyridine.
It was found that g/H was contained. From the above, the conversion rate of pyridine is 91%, the selectivity of 2-chloropyridine is 61.0%, and the selectivity of 2,6-dichloropyridine is 3.
It was 6.8%. Further, the reaction rate of the blown chlorine gas was 83.0%.

実施例2 反応槽の撹拌機を停止すること以外、実施例1と同様に
処理した。この結果、712g/Hの反応液を得、この
うぢ未反応ピリジン15.4 g / H12−クロロ
ピリジン66、3 g / H12,6−ジクロロピリ
ジン39.2g/I−(が含有されていることが判った
。以上からピリジンの転化率は83%、2−クロロピリ
ジンの選択率は70.3%、2,6−ジクロロピリジン
の選択率は28.0%であった。吹き込んだ塩素ガスの
反応率は72%であった。
Example 2 The same procedure as in Example 1 was carried out except that the stirrer in the reaction tank was stopped. As a result, a reaction solution of 712 g/H was obtained, which contained 15.4 g of unreacted pyridine/66.3 g of H12-chloropyridine/39.2 g/I-(of H12,6-dichloropyridine). From the above, the conversion rate of pyridine was 83%, the selectivity of 2-chloropyridine was 70.3%, and the selectivity of 2,6-dichloropyridine was 28.0%. The reaction rate was 72%.

比較例1 実施例2の操作に於いて、塩素ガスを反応槽に設けられ
た別の供給口により、直接反応器へ吹き込むこと以外、
同様に処理した。この結果、反応液及び排ガス中には未
反応ピリジン52.4 g/H12−クロロピリジン3
7.8g/H,2,6−ジクロロピリジン19.7 g
 / Hが含有されていた。
Comparative Example 1 In the operation of Example 2, except that chlorine gas was directly blown into the reactor through a separate supply port provided in the reaction tank.
Treated in the same way. As a result, 52.4 g of unreacted pyridine/H12-chloropyridine 3 was found in the reaction solution and exhaust gas.
7.8g/H,2,6-dichloropyridine 19.7g
/H was contained.

ピリジンの転化率は41.8%で、塩素ガスの吸収率は
35%に過ぎなかった。
The conversion rate of pyridine was 41.8%, and the absorption rate of chlorine gas was only 35%.

Claims (1)

【特許請求の範囲】 1 ピリジンと塩素とを気相で反応せしめるに当たり、
ピリジンと塩素ガスを、稀釈剤存在下で、ガス状で混合
した後、反応器へ供給することを特徴とするピリジンの
気相塩素化反応法。 2 反応器内のガスを撹拌混合することを特徴とする請
求項1記載のピリジンの気相塩素化方法。
[Claims] 1. In reacting pyridine and chlorine in the gas phase,
A gas phase chlorination reaction method for pyridine, which comprises mixing pyridine and chlorine gas in gaseous form in the presence of a diluent and then supplying the mixture to a reactor. 2. The method for gas phase chlorination of pyridine according to claim 1, characterized in that the gas in the reactor is stirred and mixed.
JP63136743A 1988-06-03 1988-06-03 Gas phase chlorination of pyridine Expired - Lifetime JP2563484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63136743A JP2563484B2 (en) 1988-06-03 1988-06-03 Gas phase chlorination of pyridine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63136743A JP2563484B2 (en) 1988-06-03 1988-06-03 Gas phase chlorination of pyridine

Publications (2)

Publication Number Publication Date
JPH01308256A true JPH01308256A (en) 1989-12-12
JP2563484B2 JP2563484B2 (en) 1996-12-11

Family

ID=15182467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63136743A Expired - Lifetime JP2563484B2 (en) 1988-06-03 1988-06-03 Gas phase chlorination of pyridine

Country Status (1)

Country Link
JP (1) JP2563484B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536376A (en) * 1992-12-28 1996-07-16 Sumitomo Seika Chemicals Co., Ltd. Method for production of 2-chloropyridine and 2,6-dichloropyridine
WO2009122940A1 (en) * 2008-03-31 2009-10-08 住友精化株式会社 Method for purification of pyridine, and method for production of chlorinated pyridine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6078967A (en) * 1983-10-05 1985-05-04 Daicel Chem Ind Ltd Production of 2-chloropyridine and/or 2,6-dichloropyridine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6078967A (en) * 1983-10-05 1985-05-04 Daicel Chem Ind Ltd Production of 2-chloropyridine and/or 2,6-dichloropyridine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536376A (en) * 1992-12-28 1996-07-16 Sumitomo Seika Chemicals Co., Ltd. Method for production of 2-chloropyridine and 2,6-dichloropyridine
WO2009122940A1 (en) * 2008-03-31 2009-10-08 住友精化株式会社 Method for purification of pyridine, and method for production of chlorinated pyridine
US20100324299A1 (en) * 2008-03-31 2010-12-23 Sumitomo Seika Chemicals Co., Ltd. Method for purification of pyridine, and method for production of chlorinated pyridine

Also Published As

Publication number Publication date
JP2563484B2 (en) 1996-12-11

Similar Documents

Publication Publication Date Title
KR100415889B1 (en) Process for the production of allyl chloride and reactors useful in the process
US3987119A (en) Production of vinyl chloride from ethane
CA1248973A (en) Process for the preparation of tertiary-butyl hydroperoxide
IL125840A (en) Bromine compound production method
JPH01308256A (en) Gas-phase chlorination of pyridine
US4054499A (en) Process for producing 2-chloropyridine
CN214528133U (en) Continuous flow method synthesis system of bromine chloride
US3969205A (en) Process for producing 2-chloropyridine
JPS60116635A (en) Manufacture of 1,2-dichloroethane from ethylene and chlorinegas
CN111302971B (en) Method for continuously preparing 5-cyanodiol
JPS5949217B2 (en) Method for producing substituted diphenyl ether
US5141608A (en) Process of preparing 2-chloropyridine and/or 2,6-dichloropyridine
CN113979965B (en) Continuous production method of 4, 5-dichloro-2-octyl-4-isothiazolin-3-ketone
JPS6078967A (en) Production of 2-chloropyridine and/or 2,6-dichloropyridine
JPH01207270A (en) Production of 2-chloropyridine and/or 2,6-dichloropyridine
US4908472A (en) Preparation process of cinnamate ester
CN1129586C (en) Method for preparing melamine
Rosas et al. 42 Optimazation of consecutive, bimolecular reaction systems a commercial synthesis of nicotinamide
JPS58188836A (en) Manufacture of isobutyric acid fluoride or isobutyric acid
US4072728A (en) Process for the preparation of 1,2-dichloroethane in two reaction zones by reacting chlorine with not more than 102 mole percent of ethylene
US3949009A (en) Process for preparing trichloroethylene
RU2128639C1 (en) Method of preparing allyl chloride
US4908270A (en) Continuous preparation of nitrosyl fluoride
JP2613515B2 (en) Method for producing sodioformylacetone
JPH01308255A (en) Production of chlorinated pyridine