JPH0130787B2 - - Google Patents

Info

Publication number
JPH0130787B2
JPH0130787B2 JP59191671A JP19167184A JPH0130787B2 JP H0130787 B2 JPH0130787 B2 JP H0130787B2 JP 59191671 A JP59191671 A JP 59191671A JP 19167184 A JP19167184 A JP 19167184A JP H0130787 B2 JPH0130787 B2 JP H0130787B2
Authority
JP
Japan
Prior art keywords
glass
capsule
molded body
container
degassing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59191671A
Other languages
Japanese (ja)
Other versions
JPS6172689A (en
Inventor
Takao Fujikawa
Junichi Myanaga
Hiroshi Okada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59191671A priority Critical patent/JPS6172689A/en
Publication of JPS6172689A publication Critical patent/JPS6172689A/en
Publication of JPH0130787B2 publication Critical patent/JPH0130787B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は熱間静水圧プレス法、特に高密度でバ
ラツキの少ない均質なセラミツク高密度焼結体を
製造するに好適な熱間静水圧プレス法に関するも
のである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a hot isostatic pressing method, particularly a hot isostatic pressing method suitable for producing a homogeneous ceramic high-density sintered body with high density and little variation. It is about law.

(従来の技術) セラミツクスは粉末原料を焼き固めて作られる
ため不可避的に残留空孔を含み、かつ信頼性に乏
しい。そのため残留空孔を除去し、高密度化を達
成するため熱間静水圧プレス(以下、HIPと略記
する。)処理することが従来より試みられている。
(Prior Art) Since ceramics are made by baking and solidifying powder raw materials, they inevitably contain residual pores and are poor in reliability. Therefore, attempts have been made to perform hot isostatic pressing (hereinafter abbreviated as HIP) to remove residual pores and achieve high density.

この方法は、例えば(a)粉末成形体を気密性のカ
プセル内に封入してHIP処理する方法、(b)相対密
度95%以上、即ち、残留空孔が閉鎖状態になるま
で焼結した後、そのままHIP処理する方法であ
る。
This method includes, for example, (a) a method in which the powder compact is encapsulated in an airtight capsule and subjected to HIP treatment; (b) after sintering until the relative density is 95% or more, that is, the residual pores are closed. , is a method of performing HIP processing as is.

このうち、前者(a)の方法は焼結助剤が少なくて
よい、大型の焼結体の製造が可能であるなどの利
点を有するのでその用途が期待されているが、
1400℃以上の高温でのHIP処理を必要とする窒化
ケイ素、炭化ケイ素、ジルコニアなどのセラミツ
クスについては適当なカプセル材料が限定される
という問題がある。
Among these methods, the former method (a) has advantages such as requiring less sintering aid and being able to produce large sintered bodies, and is therefore expected to be used.
There is a problem in that suitable capsule materials are limited for ceramics such as silicon nitride, silicon carbide, and zirconia, which require HIP treatment at a high temperature of 1400° C. or higher.

しかし、この方法は上述の利点を有することか
ら焼結助剤を含まないセラミツクスの物性を測定
するための研究などを目的としてカプセル材料の
検討が進められ、種々のガラス材料を用いてHIP
処理することが試みられて、例えば特公昭46−
2731号公報、特公昭52−43761号公報などにその
一端が開示されている。
However, since this method has the above-mentioned advantages, studies have been carried out on capsule materials for the purpose of research to measure the physical properties of ceramics that do not contain sintering aids, and HIP using various glass materials has been carried out.
Attempts have been made to treat the
Part of this is disclosed in Japanese Patent Publication No. 2731, Japanese Patent Publication No. 52-43761, etc.

この場合、ガラスカプセルの形状としては第3
図、第4図に図示する如きものが用いられるが、
第3図に示すカプセルは元来、直径数mm〜20mm程
度の小さな焼結体を製造するのに最もよく用いら
れているもので一端を封じたガラス管12に中子
13,13を用いて成形体11をBN粉末14内
に挿入配置した後、他端より真空引きしながら脱
気部15を封着するものであり、大型の成形体を
封入するにはガラスの封着が困難であるという難
点があつて、大型成形体のHIP処理には適当でな
い。一方、第4図に図示するカプセルは広口の開
口部16aを有するガラス製容器16に例えば
BN成形体からなるスペーサー13′,13′を介
装して成形体11′を挿入し、これに脱気用の細
径のガラス管18を有する蓋17を融着した後、
脱気用ガラス管18を通じて真空引きしつつガラ
ス管18根元部を加熱封着し、HIP処理するが、
容器底部の形状には平底もしくは外側に凸状をな
す丸底形状が用いられている。しかし、平底の場
合にせよ、外側に凸状の丸底の場合であるにせよ
底部は第4図イの如くバーナ19等により加熱し
て太いパイプを絞り、変形融着するため融着部2
0近傍に融着部の熱による残留応力が生じ易く、
かつ外圧により底部に生じる曲で応力の緩和がで
きず、底部の強度が不足してHIP処理工程の初期
の十分に加熱されていないときに注入される圧媒
ガスの圧力で割れを生じ、カプセルの機能を損な
うことが多く、また、ガラス製容器16と蓋17
の封着代も大きくとることが困難で、この融着部
20′近傍にも同様、融着部の熱による残留応力
が生じ易くHIP処理時の初期の加圧による破損す
ることが多い問題がある。
In this case, the shape of the glass capsule is tertiary.
The one shown in Fig. 4 is used, but
The capsule shown in Fig. 3 was originally most commonly used to manufacture small sintered bodies with a diameter of several mm to 20 mm, and was made by using cores 13, 13 in a glass tube 12 with one end sealed. After the compact 11 is inserted into the BN powder 14, the degassing section 15 is sealed while vacuuming from the other end, and it is difficult to seal the glass when enclosing a large compact. Due to these drawbacks, it is not suitable for HIP treatment of large molded objects. On the other hand, the capsule shown in FIG. 4 is placed in a glass container 16 having a wide opening 16a, for example.
A molded body 11' is inserted with spacers 13', 13' made of a BN molded body interposed therebetween, and a lid 17 having a small diameter glass tube 18 for degassing is fused thereto.
The base of the glass tube 18 is heated and sealed while being evacuated through the degassing glass tube 18 and subjected to HIP treatment.
The bottom of the container has a flat bottom or a round bottom with a convex shape on the outside. However, regardless of whether it is a flat bottom or a round bottom with a convex shape on the outside, the bottom is heated by a burner 19 or the like as shown in Fig. 4A to squeeze the thick pipe and deform and fuse the welded part 2.
Residual stress is likely to occur near 0 due to the heat of the fused part,
In addition, the stress cannot be relaxed due to the bending that occurs at the bottom due to external pressure, and the strength of the bottom is insufficient and the pressure of the pressure medium gas injected when it is not sufficiently heated at the beginning of the HIP process causes cracks, causing the capsule to crack. glass container 16 and lid 17.
It is also difficult to ensure a large sealing margin, and the problem is that residual stress tends to occur in the vicinity of the fused part 20' due to the heat of the fused part, which often causes damage due to initial pressure during HIP processing. be.

従つて、このように従来試みられている各種ガ
ラスカプセルは直径が30mm以下の小径で、テスト
ピースを作製するような場合には十分に使用が可
能であるが、工業生産に使用するには大きなもの
が必要であり、到底、適用することは出来ないと
いう問題を残し、その研究が望まれている。
Therefore, the various glass capsules that have been tried in the past have a diameter of 30 mm or less and can be used sufficiently for making test pieces, but they are too large to be used in industrial production. The problem remains that something is needed, and it cannot be applied at all, and research on this issue is desired.

(発明が解決しようとする問題点) かくて、本発明は上述の如き実状に対処し、従
来のガラスカプセルの難点を排除しつつ、適切な
形状のガラスカプセルを見出し、これを使用する
ことによつてHIP処理により焼結助剤の量を低減
したセラミツク焼結体の工業生産を可能ならしめ
ようとするものである。
(Problems to be Solved by the Invention) Thus, the present invention deals with the above-mentioned actual situation, finds a glass capsule with an appropriate shape, and uses it while eliminating the difficulties of conventional glass capsules. Therefore, the present invention aims to enable industrial production of ceramic sintered bodies in which the amount of sintering aid is reduced by HIP treatment.

(問題点を解決するための手段) 即ち、上記目的を達成する本発明の特徴とする
ところは、セラミツク成形体をガラス製カプセル
内に封入した後、HIP処理して高密度焼結体を製
造する方法において、ガラス製の管よりなる脱気
部を有し、かつ他方に広口の開口部を有するガラ
ス製容器と、該ガラス容器の前記開口部を蓋止す
る内部に凸状をなす底蓋からなるガラスカプセル
を使用し、その広口の開口部から脱気孔をもつス
ペーサーを介してセラミツク成形体を挿入し、内
側に凸状をなす底蓋で該開口部を蓋止した後、前
記ガラス製の管から脱気しつつ前記容器と底蓋の
接触部分を火炎により加熱融着し、次いで全体を
炉中に収容し、炉内で加熱しながら脱気して脱気
部を更に火炎にて加熱して封着し、その後、これ
をHIP処理して成形体を高密度の焼結体とするこ
とにある。
(Means for Solving the Problems) That is, the feature of the present invention for achieving the above object is that a ceramic molded body is encapsulated in a glass capsule and then subjected to HIP treatment to produce a high-density sintered body. A method comprising: a glass container having a degassing section made of a glass tube and a wide opening on the other side; and a bottom lid having a convex shape on the inside to cover the opening of the glass container. A ceramic molded body is inserted into the wide opening of the glass capsule through a spacer having a deaeration hole, and the opening is covered with a bottom lid having a convex shape on the inside. While degassing from the tube, the contact portion of the container and the bottom cover is heated and fused with flame, and then the whole is placed in a furnace, degassing while heating in the furnace, and the degassing part is further flamed. The method involves heating and sealing, and then subjecting it to HIP treatment to form a compact into a high-density sintered body.

ここで、本発明の基本となる点は、そのガラス
カプセルの形状にあり、とりわけ底蓋を内側に凸
出する形状となした点にあるが、セラミツク成形
体の挿入に際しては少くとも脱気部に連なる容器
内に脱気部のガラス管側の容器形状に合致した、
例えば容器がガラス管側に凸となつた丸味をもつ
形状の場合には同様にガラス管側に凸となつた丸
味を帯びたスペーサーを介装することが好適であ
る。
Here, the basic point of the present invention lies in the shape of the glass capsule, especially in that the bottom cover is shaped to protrude inwardly. In the container connected to the container, there is a
For example, if the container has a rounded shape that is convex toward the glass tube side, it is suitable to similarly interpose a spacer that is convex and rounded toward the glass tube side.

このスペーサーは、これを通じて真空引きされ
ることから脱気用の孔を有していることが必要
で、通常、ガラス管に連なる貫通孔が設けられて
いるが、スペーサーに石英粉末の成形体を用いる
場合にはポーラスであることから必らずしも貫通
孔は必要でなく、そのポーラスな空孔を利用して
脱気孔とする。
This spacer needs to have a hole for degassing because the vacuum is drawn through it, and usually a through hole is provided that connects to the glass tube, but the spacer is made of quartz powder. When used, since it is porous, through holes are not necessarily required, and the porous holes are used as deaeration holes.

以下、更に添付図面を参照しつつ本発明方法を
詳説する。
Hereinafter, the method of the present invention will be explained in detail with further reference to the accompanying drawings.

第1図イ〜ニは本発明方法におけるカプセル封
入からHIP処理までの工程を模式的に示した説明
図であり、カプセルAはイに示す如く一方にガラ
ス管からなる脱気パイプ2aを有し、他方に広口
の開口部2bを有するガラス製の容気2と、該ガ
ラス製容器2の前記広口開口部2bに嵌入し、該
開口部を蓋止する底蓋3との両部分からなつてお
り、脱気バイプ2aを有するガラス製容器2にそ
の広口開口部2bよりガラスもしくはセラミツク
ス製のスペーサー4、成形体1を順次挿入し、最
後に内側に凸となるようにガラス製の底蓋3を嵌
入しセツトする。
Figures 1A to 1D are explanatory diagrams schematically showing the steps from encapsulation to HIP treatment in the method of the present invention.As shown in Figure 1A, capsule A has a degassing pipe 2a made of a glass tube on one side. , consisting of a glass container 2 having a wide opening 2b on the other side, and a bottom lid 3 that fits into the wide opening 2b of the glass container 2 and covers the opening. Then, a spacer 4 made of glass or ceramics and a molded body 1 are sequentially inserted into a glass container 2 having a degassing pipe 2a through its wide opening 2b, and finally a bottom lid 3 made of glass is inserted so as to be convex inward. Insert and set.

次に、上記セツトしたガラスカプセルAを回転
台(図示せず)上に載せて脱気パイプ2aから若
干真空引きをしながらガラス容器2と底蓋3の接
触する嵌入接合部分をロ図の如くガスバーナー5
により加熱する。
Next, place the glass capsule A set above on a rotary table (not shown), and while drawing a slight vacuum from the degassing pipe 2a, insert the fitting joint where the glass container 2 and the bottom cover 3 come into contact as shown in the diagram. gas burner 5
Heat.

このとき、加熱されたガラス容器2の底縁部は
内側の圧力が低いこと、及び火炎の圧力により内
側に変形し、底蓋3に融着せしめられる。次いで
脱気パイプ2a部分に図示していないが、ゴム管
等を介して油回転ポンプを接続し、全体を加熱炉
内に挿入しヒータ6で加熱する。そして内部の揮
発成分等が十分に除去されたことを確認し、ガス
バーナー5により脱気パイプ2aの根元近傍を加
熱し封着する。(第1図ハ参照) この場合、加熱温度は成形体1の種類等により
適宜選択が可能であるが、HIP処理工程における
初期圧力(数Kgf/cm2〜30Kgf/cm2)にて破損し
難くするため、ガラス容器2がある程度軟化して
内部の成形体と接する状態になし得る温度が好ま
しい。但し、完全に密着すると場合によつては、
成形体1とガラスの熱膨張係数の差により封入後
の冷却過程でガスが割れることがあるので注意を
要する。
At this time, the bottom edge of the heated glass container 2 is deformed inward due to the low pressure inside and the pressure of the flame, and is fused to the bottom lid 3. Next, although not shown, an oil rotary pump is connected to the degassing pipe 2a portion through a rubber tube or the like, and the whole is inserted into a heating furnace and heated by the heater 6. After confirming that the volatile components inside have been sufficiently removed, the gas burner 5 heats the vicinity of the base of the degassing pipe 2a to seal it. (See Figure 1 C) In this case, the heating temperature can be selected appropriately depending on the type of molded product 1, etc., but it may be damaged due to the initial pressure (several Kgf/cm 2 to 30 Kgf/cm 2 ) in the HIP process. In order to make it difficult, the temperature is preferably set so that the glass container 2 can soften to some extent and come into contact with the molded body inside. However, in some cases, if there is complete contact,
Due to the difference in thermal expansion coefficient between the molded body 1 and the glass, the gas may crack during the cooling process after being encapsulated, so care must be taken.

かくして、前記封着されたガラスカプセルは黒
鉛ルツボ7内に、例えばBN粉末8を充填した状
態で配置し、HIP処理に付す。(第1図ニ参照) BN粉末8は軟化したガラスがルツボ7に融着
するのを防止する効果を有すると同時に、ガラス
の粘度が102ポアズ以下の如き低粘度となるよう
な温度でHIP処理を行なう場合にガラスがルツボ
底部に流れ落ちて成形体1のシールが不完全とな
ることを防止する効果をも併せ有する。
Thus, the sealed glass capsule is placed in a graphite crucible 7 filled with, for example, BN powder 8, and subjected to HIP treatment. (See Figure 1 D) The BN powder 8 has the effect of preventing the softened glass from fusing to the crucible 7, and at the same time, it can be heated at a temperature where the viscosity of the glass is as low as 10 2 poise or less. It also has the effect of preventing glass from flowing down to the bottom of the crucible during processing, resulting in incomplete sealing of the molded body 1.

本発明方法は叙上の如き工程を経て高密度焼結
体を製造するが、上記方法を実施するに際し、更
に次のような手段を併用することも可能であり、
かつ有用である。
The method of the present invention produces a high-density sintered body through the steps described above, but when carrying out the above method, it is also possible to use the following means in combination,
and useful.

即ち、その1つは、成形体とガラスの反応もし
くはガラスの融着を防ぐために両者の間に第2図
の如くバリア材10を介在させることである。た
とえばBNの如き安定なセラミツク物質、炭素、
金属などが適宜使用される。付与の仕方は、粉末
であればスリツプのスプレーコーテイングや刷毛
塗り、CIP法による加圧形成等が利用でき、金属
であれば蒸着のような密着性のよい方法や、箔で
成形体を包む等の方法が用いられる。
That is, one of them is to interpose a barrier material 10 between the molded body and the glass as shown in FIG. 2 in order to prevent reaction between the molded body and the glass or fusion of the glass. For example, stable ceramic materials such as BN, carbon,
Metals and the like are used as appropriate. For powder application, slip spray coating, brush application, pressure forming using the CIP method, etc. can be used, and for metals, methods with good adhesion such as vapor deposition or wrapping the molded body with foil can be used. The following method is used.

又、他の手段としては、成形体1とガラス製容
器2との間に通常、間隙が残るため、これをスペ
ーサー4により埋めることである。このスペーサ
ー4は成形体1と底蓋3との間にも必要に応じ充
填されるが、ガラス製容器2とガラス製底蓋3の
融着時の熱により成形体1が変質するのを防止す
る効果を有する。
Another method is to fill the gap between the molded body 1 and the glass container 2 with a spacer 4, since there is usually a gap between the molded body 1 and the glass container 2. This spacer 4 is also filled between the molded body 1 and the bottom lid 3 as necessary, but it prevents the molded body 1 from deteriorating due to the heat generated when the glass container 2 and the glass bottom lid 3 are fused together. It has the effect of

スペーサー4としてはガラス製容器、ガラス製
底蓋と同材質のガラスブロツクや粉末を成形した
ものが好適であるが、BNなどセラミツク粉末を
成形したものも使用可能である。
As the spacer 4, it is preferable to use a molded glass block or powder made of the same material as the glass container and the glass bottom lid, but it is also possible to use a molded ceramic powder such as BN.

なお、小さな間隙が成形体1とガラス製容器2
との間に残存する場合には、成形体1にガラスウ
ールなどを巻き付けてガタを生じないようにする
ことも振動による成形体1の破損防止の点から有
効である。
Note that there is a small gap between the molded body 1 and the glass container 2.
If the molded body 1 remains between the two, it is also effective to wrap the molded body 1 with glass wool or the like to prevent it from wobbling, from the viewpoint of preventing damage to the molded body 1 due to vibration.

(実施例) 以下、更に本発明の具体的な実施例を述べる。(Example) Hereinafter, further specific examples of the present invention will be described.

実施例 1 50〓mm×70mmlの窒化ケイ素粉末成形体の表面に
CIP法によりBN粉末をコーテイングした後、外
寸を64〓mmに整形し、第2図の形状で内径65〓mmの
バイコールガラス製容器に加熱、真空封入した。
次いでこれをHIP装置中に第1図ニに示したよう
にルツボ内に配置して挿入し、2000℃、150MPa
でHIP処理を行ない、処理完了後、ルツボからガ
ラスに掩われた焼結体を取り出した。これを10回
くり返し、得られた各焼結体の密度を測定したと
ころ、すべて略真密度であつた。
Example 1 On the surface of a 50〓mm×70mm l silicon nitride powder compact
After coating with BN powder by the CIP method, it was shaped to have an outer dimension of 64 mm, heated and vacuum sealed in a Vycor glass container with an inner diameter of 65 mm as shown in Figure 2.
Next, this was placed in a crucible and inserted into a HIP device as shown in Figure 1D, and heated at 2000℃ and 150MPa.
After the HIP process was completed, the sintered body covered with glass was removed from the crucible. This was repeated 10 times and the density of each of the obtained sintered bodies was measured, and all were found to be approximately true density.

一方、前記窒化ケイ素粉末成形体を同径の第4
図図示構造をもつバイコールガラス製容器に加
熱、真空封入し、同条件のHIP処理を行なつた。
取り出したガラスにより掩われた焼結体にはその
うち2個にガラス割れガ見られ、その焼結体の真
密度にむらが生じた。
On the other hand, the silicon nitride powder molded body was
It was heated and vacuum sealed in a Vycor glass container with the structure shown in the diagram, and HIP treatment was performed under the same conditions.
Glass cracks were observed in two of the sintered bodies covered by the glass taken out, and the true density of the sintered bodies was uneven.

実施例 2 100mm〓×80lmmの窒化ケイ素粉末成形体の表面
にCIP法によりBN粉末をコートした後、外寸を
140〓mmに整形し、更にシリカガラスウールで包ん
で、第2図の如き形状とした後、内径145〓mmの石
英ガラスカプセルに加熱、真空封入した。
Example 2 After coating the surface of a 100 mm x 80 l mm silicon nitride powder molded body with BN powder by the CIP method, the outer dimensions were
The sample was shaped to 140 mm and further wrapped in silica glass wool to obtain the shape shown in Figure 2, and then heated and vacuum sealed in a quartz glass capsule with an inner diameter of 145 mm.

次に、これを実施例1と同じく第1図ニに示し
たようにルツボ内に配置してHIP装置内に挿入し
2000℃、150MPaでHIP処理を行ない処理完了
後、ガラスに掩われた焼結体を取り出した。
Next, as in Example 1, place this in a crucible as shown in Figure 1D and insert it into the HIP device.
HIP treatment was performed at 2000°C and 150 MPa, and after the treatment was completed, the sintered body covered with glass was taken out.

一方、第4図イのカプセルを使用する外は上記
と同様にしてHIP処理を行ない、同じくガラスに
掩われた焼結体を取り出した。
On the other hand, HIP treatment was carried out in the same manner as above except that the capsule shown in Figure 4A was used, and the sintered body covered by the glass was also taken out.

上記両操作を5回宛行ない、夫々の焼結体につ
いてその密度、ガラスの状態を対比したところ、
前者の本発明方法ではすべてがほぼ真密度である
ことが確認されたが、後者の対照例の場合にはそ
のうちの3個にガラスカプセルの破損の跡がみら
れた。
Both of the above operations were performed five times, and the density and glass condition of each sintered body were compared.
In the former method of the present invention, it was confirmed that all of the capsules had approximately the true density, but in the latter control example, traces of glass capsule breakage were observed in three of them.

(発明の効果) 以上のように、本発明方法は、ガラスカプセル
の底蓋を内側に凸状をなす蓋とし、これをガラス
製容器底部に嵌入すると共に容器と蓋の接触部分
を加熱融着した後、全体を炉中で加熱しながら脱
気して更に脱気部を封着し、HIP処理を行なう方
法であり、太いパイプを変形させて絞る必要がな
いので、従来のガラスカプセルでは困難であつた
大形カプセルの製作を容易とし、大型成形体の
HIP処理を可能ならしめて同成形体の工業生産に
極めて顕著な効果を奏すると共に、とりわけ、凸
状をなす底蓋となしたことから外圧によりカプセ
ル底部に生じる曲げ応力が緩和され、カプセル強
度を高めてHIP処理時における破損を防止して円
滑なHIP処理を達成し、更にガラスカプセルを脱
気部をもつガラス容器と底蓋とで形成し、脱気部
をもつ上蓋と容器との融着部は存在しないため、
融着熱による残留応力も生ぜず、HIP処理時の加
圧による破損の懸念もなく大形の略真密度の高密
度焼結体を製造する方法として極めて工業生産
上、有用性に富む方法である。
(Effects of the Invention) As described above, the method of the present invention involves forming the bottom lid of a glass capsule into an inwardly convex lid, fitting it into the bottom of a glass container, and heating and fusing the contact portion between the container and the lid. After that, the entire body is degassed while being heated in a furnace, and the degassing part is sealed and HIP processing is performed.There is no need to deform and squeeze a thick pipe, which is difficult to do with conventional glass capsules. It facilitates the production of large, hot capsules, and allows for the production of large molded objects.
It enables HIP processing, which has a very remarkable effect on the industrial production of the molded body, and in particular, the convex bottom cover relieves the bending stress generated at the bottom of the capsule due to external pressure, increasing the strength of the capsule. In addition, the glass capsule is formed of a glass container with a degassing part and a bottom lid, and the fused part of the top lid with a degassing part and the container is does not exist, so
It is an extremely useful method for industrial production as a method for manufacturing large-sized high-density sintered bodies with almost true density without generating residual stress due to heat of fusion and without worrying about damage due to pressure during HIP treatment. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図イ〜ニは本発明方法に使用するカプセル
の分解斜視図及び工程順序説明図、第2図は本発
明方法における成形体のカプセル収納収態の他の
例を示す断面図、第3図及び第4図イ,ロは従来
における成形体のカプセル収納状態を示す断面説
明図である。 A……ガラスカプセル、1……成形体、2……
ガラス製容器、2a……脱気パイプ(脱気部)、
2b……広口開口部、3……底蓋、4……スペー
サー、5……ガスバーナー、10……バリア材。
Figures 1A to 2D are exploded perspective views and process order explanatory diagrams of capsules used in the method of the present invention, Figure 2 is a sectional view showing another example of how the molded body is stored in capsules in the method of the present invention, and Figure 3 FIG. 4A and FIG. 4B are explanatory cross-sectional views showing a state in which a conventional molded body is housed in a capsule. A... Glass capsule, 1... Molded body, 2...
Glass container, 2a... Deaeration pipe (deaeration section),
2b...Wide opening, 3...Bottom lid, 4...Spacer, 5...Gas burner, 10...Barrier material.

Claims (1)

【特許請求の範囲】 1 セラミツク成形体をガラス製カプセル中に封
入し、熱間静水圧プレスして高密度焼結体を製造
する方法において、前記ガラス製カプセルとして
ガラス製の管よりなる脱気部を有し、かつ広口の
成形体挿入開口部を有するガラス製容器と、該容
器の前記広口の開口部に嵌入し、該開口部を蓋止
する内側に凸状をなすガラス製の底蓋からなるカ
プセルを使用し、先ず、ガラス製容器の広口開口
部から脱気孔をもつスペーサーを介してセラミツ
ク成形体を挿入し、次いで該開口部に前記内側に
凸状のガラス製底蓋を嵌入して、ガラス製の管か
ら脱気しつつガラス製容器と底蓋との接触部分を
火炎により加熱融着した後、全体を炉内に収納
し、炉中で加熱しながら脱気して脱気部を更に加
熱封着し、しかる後、これを熱間静水圧プレスし
て成形体を高密度の焼結体とすることを特徴とす
る熱間静水圧プレス法。 2 スペーサーがガラスブロツクである特許請求
の範囲第1項記載の熱間静水圧プレス法。 3 スペーサーがBNなどのセラミツク粉末を成
形してなる特許請求の範囲第1項記載の熱間静水
圧プレス法。 4 カブセル内に挿入する成形体に挿入に先立ち
ガラスウールを巻き付けガタを生じないようする
特許請求の範囲第1項、第2項又は第3項記載の
熱間静水圧プレス法。
[Scope of Claims] 1. A method for manufacturing a high-density sintered body by encapsulating a ceramic molded body in a glass capsule and hot isostatically pressing the glass capsule, wherein the glass capsule is a degassing tube made of glass. and a glass bottom lid having an inwardly convex shape that fits into the wide opening of the container and covers the opening. First, a ceramic molded body is inserted into the wide opening of a glass container through a spacer having a degassing hole, and then a convex glass bottom lid is fitted into the opening. Then, while degassing from the glass tube, the contact area between the glass container and the bottom cover is heated and fused using flame, and then the whole is placed in a furnace, and degassed while being heated in the furnace. A hot isostatic pressing method characterized in that the parts are further heated and sealed, and then hot isostatically pressed to form a compact into a high-density sintered body. 2. The hot isostatic pressing method according to claim 1, wherein the spacer is a glass block. 3. The hot isostatic pressing method according to claim 1, wherein the spacer is formed by molding ceramic powder such as BN. 4. The hot isostatic pressing method according to claim 1, 2 or 3, wherein the molded body to be inserted into the capsule is wrapped with glass wool prior to insertion to prevent play.
JP59191671A 1984-09-14 1984-09-14 Thermal hydrostatic press process Granted JPS6172689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59191671A JPS6172689A (en) 1984-09-14 1984-09-14 Thermal hydrostatic press process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59191671A JPS6172689A (en) 1984-09-14 1984-09-14 Thermal hydrostatic press process

Publications (2)

Publication Number Publication Date
JPS6172689A JPS6172689A (en) 1986-04-14
JPH0130787B2 true JPH0130787B2 (en) 1989-06-21

Family

ID=16278516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59191671A Granted JPS6172689A (en) 1984-09-14 1984-09-14 Thermal hydrostatic press process

Country Status (1)

Country Link
JP (1) JPS6172689A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100927255B1 (en) * 2006-02-23 2009-11-16 민병억 Artificial reef and its manufacturing method

Also Published As

Publication number Publication date
JPS6172689A (en) 1986-04-14

Similar Documents

Publication Publication Date Title
JPS597323B2 (en) Method of manufacturing articles from powder
JPS5820907B2 (en) Method for producing non-porous polycrystalline compacts by uniform heating press
KR970001557B1 (en) Method of manufacturing an object of powdered material by isostatic pressing
JPS6245195B2 (en)
US5791551A (en) Vacuum insulation vessels and methods of making same
JPS6255499B2 (en)
JPS641283B2 (en)
JPS6027654A (en) Manufacture of ceramic formed article
JPH0130787B2 (en)
US4505871A (en) Method for manufacturing an object of silicon nitride
US4960550A (en) Encapsulation method for hot isostatic pressing
US3221365A (en) Apparatus for forming optical elements
JP2686944B2 (en) Ceramic heat pipe manufacturing method
US3185750A (en) Method for forming dielectric elements
JPS58113232A (en) Sintering of porous body
JPS5936529B2 (en) How to manufacture metal thermos flasks
JPS62142703A (en) Hot hydrostatic pressing method
JPH10152707A (en) Manufacture of tubular sintered compact
JPH0361627B2 (en)
JPS6320793B2 (en)
JPS63210201A (en) Powder sintering method
JPS61232272A (en) Manufacture of high density silicon nitride sintered body
CN117199905A (en) Dumbbell-shaped contact piece single-hole sealing connector and sealing method thereof
JPH0717929B2 (en) Method for hot isostatic pressing of powder raw material and container for hot isostatic pressing
JPS649270B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term