JPH0130784B2 - - Google Patents

Info

Publication number
JPH0130784B2
JPH0130784B2 JP58156510A JP15651083A JPH0130784B2 JP H0130784 B2 JPH0130784 B2 JP H0130784B2 JP 58156510 A JP58156510 A JP 58156510A JP 15651083 A JP15651083 A JP 15651083A JP H0130784 B2 JPH0130784 B2 JP H0130784B2
Authority
JP
Japan
Prior art keywords
weight
alumina
raw material
thermal shock
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58156510A
Other languages
Japanese (ja)
Other versions
JPS6051660A (en
Inventor
Tsuyoshi Fujimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HARIMA SERAMITSUKU KK
Original Assignee
HARIMA SERAMITSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HARIMA SERAMITSUKU KK filed Critical HARIMA SERAMITSUKU KK
Priority to JP58156510A priority Critical patent/JPS6051660A/en
Publication of JPS6051660A publication Critical patent/JPS6051660A/en
Publication of JPH0130784B2 publication Critical patent/JPH0130784B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は取鍋、タンデイツシユなどのスライデ
イングノズル装置の耐火物部材であるスライデイ
ングノズルプレート(以下SNプレートと称す)
の製造方法に関するものである。 SNプレートは流出孔を穿設した複数枚のプレ
ートからなり、摺動による流出孔の開閉によつて
溶鋼の流量制御を行うものである。このため摺動
面の平滑度が良好であること、流出孔の拡大損傷
が少ないこと、熱衝撃により摺動面に亀裂が入ら
ないことなど、他の耐火物とは著しく異なり、し
かも厳しい特性が要求される。 SNプレートの材質としては従来、アルミナ原
料をベースに高アルミナ質原料、例えばムライト
原料、シリマナイト原料を添加し、混練・成形・
焼成したものにピツチ又はタールを含浸し、ピツ
チ又はタールの揮発熱により急熱時の熱衝撃を緩
和し、摺動面の亀裂発生をおさえた高アルミナ質
やまたアルミナ原料及び高アルミナ質原料にカー
ボン、金属珪素、金属アルミニウムなどを添加
し、ピツチ、フエノール樹脂などで混練、成形
後、非酸化性雰囲気中で焼成しカーボンボンドあ
るいは金属炭化物ボンドの形成による耐熱衝撃
性、耐溶損性の付与によつて耐用性を向上させた
アルミナ−カーボン質などが使用されている。し
かしながら前者は使用中にタール、ピツチからの
発煙で作業環境が悪く、またタール、ピツチが揮
発した後、耐熱衝撃性が極端に劣化し長期間の使
用に耐えられないし、後者は使用中に600℃以上
に熱せられると、カーボンボンド、金属炭化物ボ
ンドが酸化作用を受け組織劣化をおこし、摺動面
精度を長期間維持するのが困難などの欠点により
それぞれ一長一短があつた。 本発明者は上記従来材質の欠点を解決すべく研
究した結果、Al2O335〜90重量%、ZrO210〜50重
量%、SiO225重量%以下の化学組成からなる電
融アルミナ・ジルコニア質原料5〜50重量%、残
部にアルミナ質原料及び又は高アルミナ質原料を
混練・成形・焼成した後、ピツチ、タール、フエ
ノール系樹脂、フラン系樹脂から選ばれる一種又
は二種以上を含浸し、さらに加熱処理することに
より、ピツチ、タール等による使用中の発煙を皆
無とし、酸化による組織劣化を生じることなく、
しかも耐熱衝撃性、耐溶損性にすぐれたSNプレ
ートを得るに至つたものである。 本発明を詳細に説明すると次の通りである。 本発明で使用される電融アルミナ・ジルコニア
質原料(以下、単に、アルミナ・ジルコニア質原
料、と称す)はSNプレートに耐熱衝撃性を付与
するものである。その機構は、アルミナ・ジルコ
ニア質原料の組織中に存在するZrO2が1000℃付
近の単斜晶←→正方晶への変態による体積変化(第
1図に示す)と、共存するAl2O3、SiO2などの熱
膨脹、収縮とのバランスにより、1000℃以上で見
掛け上熱膨脹係数が非常に小さくなる。 そしてこの原料を加えることにより、SNプレ
ートが低膨脹材質になるためである。アルミナ・
ジルコニア質原料中のZrO2の量は10〜50重量%
でなければならない。10重量%未満ではZrO2
変態による体積変化量が小さすぎ、共存する
Al2O3、SiO2などの熱膨脹、収縮が支配的にな
り、50重量%を超えると逆にZrO2の変態体積変
化が支配的となつて、共に1000℃以上でのアルミ
ナ・ジルコニア質原料の見掛け熱膨脹係数が小さ
くなくなるからである。アルミナ・ジルコニア質
原料中のAl2O3、SiO2とも膨脹収縮のバランスを
考えるとAl2O335〜90重量%、SiO225重量%以下
でなければならない。なお、こゝでSiO2成分が
増加するほど熱膨脹率は小さくなり耐熱衝撃性は
さらに向上するが、多過ぎると溶鋼スラグに対す
る耐溶損性が低下する。 アルミナ・ジルコニア質原料は、アルミナとジ
ルコン、又はアルミナとジルコニアを主原料と
し、これを電融して製造される。 第1表はAl2O3、ZrO2、SiO2の化学成分を変化
させた電融のアルミナ・ジルコニア質原料を示し
たものである。このうち符号D〜Hは化学組成が
本発明の範囲のものである。
The present invention is a sliding nozzle plate (hereinafter referred to as SN plate) which is a refractory member of a sliding nozzle device such as a ladle or a tundish.
The present invention relates to a manufacturing method. The SN plate consists of multiple plates with outflow holes, and controls the flow rate of molten steel by opening and closing the outflow holes by sliding. For this reason, it is significantly different from other refractories, and has strict characteristics such as good smoothness of the sliding surface, little damage due to expansion of outflow holes, and no cracks in the sliding surface due to thermal shock. required. Traditionally, the material for SN plates is based on alumina raw materials with the addition of high alumina raw materials, such as mullite raw materials and sillimanite raw materials, and then kneaded, formed, and
The fired product is impregnated with pitch or tar, and the volatile heat of pitch or tar alleviates the thermal shock during rapid heating, suppressing the occurrence of cracks on the sliding surface. Carbon, metallic silicon, metallic aluminum, etc. are added, and after kneading and molding with pitch, phenolic resin, etc., it is fired in a non-oxidizing atmosphere to impart thermal shock resistance and erosion resistance by forming a carbon bond or metal carbide bond. Therefore, materials such as alumina-carbon materials with improved durability are used. However, the former creates a poor working environment due to smoke emitted from tar and pitch during use, and after the tar and pitch volatilize, its thermal shock resistance deteriorates extremely and cannot withstand long-term use. When heated above ℃, the carbon bond and metal carbide bond are oxidized, causing structural deterioration, and it is difficult to maintain sliding surface accuracy for a long period of time. Each bond has its advantages and disadvantages. As a result of research to solve the drawbacks of the above-mentioned conventional materials, the inventors of the present invention have developed a fused alumina material with a chemical composition of 35 to 90% by weight of Al 2 O 3 , 10 to 50% by weight of ZrO 2 , and 25% by weight of SiO 2 . After kneading, molding, and firing 5 to 50% by weight of zirconia raw material and the remainder of alumina raw material and/or high alumina raw material, impregnation with one or more selected from pitch, tar, phenol resin, and furan resin. By further heat-treating, there is no fuming during use due to pitch, tar, etc., and there is no structural deterioration due to oxidation.
Furthermore, an SN plate with excellent thermal shock resistance and erosion resistance has been obtained. The present invention will be explained in detail as follows. The fused alumina-zirconia raw material (hereinafter simply referred to as alumina-zirconia raw material) used in the present invention imparts thermal shock resistance to the SN plate. The mechanism is that ZrO 2 present in the structure of the alumina-zirconia raw material undergoes a volume change due to transformation to monoclinic ←→tetragonal crystal at around 1000°C (as shown in Figure 1), and coexisting Al 2 O 3 Due to the balance between thermal expansion and contraction of SiO2 , etc., the coefficient of thermal expansion appears to be very small at temperatures above 1000°C. By adding this raw material, the SN plate becomes a low-expansion material. alumina·
The amount of ZrO2 in the zirconia raw material is 10-50% by weight
Must. If it is less than 10% by weight, the volume change due to ZrO 2 transformation is too small and coexist.
Thermal expansion and contraction of Al 2 O 3 and SiO 2 become dominant, and when the concentration exceeds 50% by weight, the transformation volume change of ZrO 2 becomes dominant. This is because the apparent coefficient of thermal expansion of Considering the balance of expansion and contraction, both Al 2 O 3 and SiO 2 in the alumina-zirconia raw material should be 35 to 90% by weight of Al 2 O 3 and 25% by weight of SiO 2 or less. Note that as the SiO 2 component increases, the coefficient of thermal expansion decreases and the thermal shock resistance further improves, but if it is too large, the erosion resistance against molten steel slag decreases. The alumina-zirconia raw material uses alumina and zircon, or alumina and zirconia as main raw materials, and is produced by electrofusion. Table 1 shows electrofused alumina-zirconia raw materials with different chemical components of Al 2 O 3 , ZrO 2 , and SiO 2 . Among these, symbols D to H have chemical compositions within the scope of the present invention.

【表】 第2図は、上記第1表に示す各アルミナ・ジル
コニア質原料の熱膨脹曲線を示したものである。
この測定には、アルミナ・ジルコニア質原料を1
mm以下に粉砕し、メチルセロースと水とを加え
1000Kg/cm2で加圧成形し乾燥後、1500℃×5hrsで
焼成した試験片を使用した。 アルミナ・ジルコニア質原料の添加量は5〜50
重量%とする。5重量%未満では耐熱衝撃性向上
の効果が表われず、50重量%を超えると耐溶損性
向上に効果のあるアルミナ質原料及び又は高アル
ミナ質原料の相対量が減り、SNプレートとして
十分な耐溶損性が得られないからである。アルミ
ナ質原料は電融品でAl2O3成分が90重量%以上含
有されるものをいう。 高アルミナ質原料とは、Al2O3成分50重量%以
上、SiO2成分10重量%以上含有する原料で、一
般にムライト、シリマナイト、アンダルサイトの
鉱物からなるものをさす。これらの原料はSNプ
レートの耐溶損性付与に必要でAl2O3含有量が多
いものほどその効果は大きいため、主としてアル
ミナ質原料を使用し、高アルミナ質原料は全体配
合に対して20重量%以下であることが好ましい。 また、以上の配合物に酸化クロムを10重量%以
下、好ましくは1〜8重量%を添加するとCr2O3
成分が焼成中、Al2O3成分と固溶体を作りこれが
溶鋼スラグからくる鉄酸化物のSNプレート組織
内への浸透を抑制する働きがあり、耐溶損性をさ
らに向上させることができる。 酸化クロムは純度90重量%以上、粒度が10μ以
下が好ましい。割合が10重量%を超えると耐熱衝
撃性が劣化する。 本発明は以上の原料を所定量配合し、後は常法
により粘土、水、樹脂、ワツクスなど耐火物成形
に一般に用いられる結合剤を添加してフレツトア
イリツヒミキサーなどで混練し、オイルプレス、
フリクシヨンプレスなどの成形機にてSNプレー
ト形状に成形する。 得られた素地を十分乾燥させた後、酸化物セラ
ミツク結合が形成される温度にて焼成する。一般
的には1300℃以上好ましくは1400℃〜1700℃であ
る。 こうして得られた焼成体にピツチ、タール、フ
エノール系樹脂、フラン系樹脂から選ばれる一種
又は二種以上を含浸し、例えば350℃以上好まし
くは400〜1100℃の非酸化性雰囲気中で加熱処理
する。この加熱処理によりSNプレート組織中に
ピツチ、タール、フエノール系樹脂、フラン系樹
脂などの炭化したカーボンが残留する。カーボン
は溶鋼、スラグにぬれにくい性質を有するため
SNプレート組織中への溶鋼、スラグの侵入を抑
制し、SNプレート摺動面への地金付着、スラグ
付着を著しく軽減させ、同時に摺動面、ノズル孔
の耐溶損性を向上させる。加熱処理を350℃以上
の非酸化性雰囲気中で行なうとピツチ、タール、
フエノール系樹脂、フラン系樹脂中の揮発発煙成
分を完全に揮発させ、残留カーボンのみが残る。
これによりSNプレートは使用時に発煙すること
もなく、作業環境の向上を図る。 以上のとおり本発明方法により得られるSNプ
レートは、アルミナ・ジルコニア質原料により終
始安定した熱衝撃抵抗性を保持し、使用初期には
カーボンの溶鋼、スラグ浸透抑制効果があり、ま
た長時間使用してカーボンが酸化消失してもアル
ミナ質、高アルミナ質原料の効果により高い耐溶
損性を有し、カーボン消失による組織劣化が全く
おこらず、摺動面精度が長時間維持できるなど画
期的な材質である。 本発明実施例およびその比較例を第2表に示
す。 各例のアルミナ・ジルコニア質原料は前記第1
表に示したものを使用した。 アルミナ質原料はAl2O398重量%の焼結アルミ
ナを、高アルミナ質原料はAl2O370重量%、
SiO228重量%の合成ムライトをそれぞれ使用し
た。 比較例、実施例配合はいずれもフレツトにて混
練し、フリクシヨンプレスにより所定のSNプレ
ート形状に成形し、80〜150℃で48時間乾燥させ
た後トンネルキルンにて1600℃×5hrs焼成した。 試験方法を次に示す。(第2表)
[Table] Figure 2 shows the thermal expansion curves of each alumina-zirconia raw material shown in Table 1 above.
For this measurement, 1 alumina-zirconia raw material was used.
Grind into pieces less than mm and add methylcellose and water.
A test piece was used that was pressure-molded at 1000 Kg/cm 2 , dried, and then fired at 1500°C for 5 hours. The amount of alumina/zirconia raw materials added is 5 to 50
Weight%. If it is less than 5% by weight, the effect of improving thermal shock resistance will not appear, and if it exceeds 50% by weight, the relative amount of alumina raw material and/or high alumina raw material, which is effective in improving erosion resistance, will decrease, and it will not be sufficient as an SN plate. This is because corrosion resistance cannot be obtained. Alumina raw materials are electrically fused products containing 90% by weight or more of Al 2 O 3 components. The high alumina raw material is a raw material containing 50% by weight or more of Al 2 O 3 component and 10% by weight or more of SiO 2 component, and generally refers to a material consisting of minerals such as mullite, sillimanite, and andalusite. These raw materials are necessary to impart corrosion resistance to the SN plate, and the higher the Al 2 O 3 content, the greater the effect, so alumina raw materials are mainly used, and the high alumina raw materials are 20% by weight of the entire composition. % or less. Furthermore, when chromium oxide is added to the above formulation in an amount of 10% by weight or less, preferably 1 to 8% by weight, Cr 2 O 3
During firing, the component forms a solid solution with the Al 2 O 3 component, which works to suppress the penetration of iron oxides from molten steel slag into the SN plate structure, further improving corrosion resistance. The purity of chromium oxide is preferably 90% by weight or more and the particle size is preferably 10μ or less. If the proportion exceeds 10% by weight, thermal shock resistance will deteriorate. In the present invention, the above-mentioned raw materials are blended in a predetermined amount, and then a binder commonly used for molding refractories such as clay, water, resin, and wax is added using a conventional method, and the mixture is kneaded using a Flett-Eyrich mixer or the like, followed by an oil press. ,
Form into an SN plate shape using a forming machine such as a friction press. After the obtained base material is sufficiently dried, it is fired at a temperature at which an oxide-ceramic bond is formed. Generally, the temperature is 1300°C or higher, preferably 1400°C to 1700°C. The fired body thus obtained is impregnated with one or more selected from pitch, tar, phenolic resin, and furan resin, and then heat-treated in a non-oxidizing atmosphere at, for example, 350°C or higher, preferably 400 to 1100°C. . This heat treatment leaves carbonized carbon such as pitch, tar, phenolic resin, and furan resin in the SN plate structure. Carbon has the property of not being easily wetted by molten steel and slag.
It suppresses the intrusion of molten steel and slag into the structure of the SN plate, significantly reduces base metal adhesion and slag adhesion to the sliding surface of the SN plate, and at the same time improves the erosion resistance of the sliding surface and nozzle hole. If heat treatment is performed in a non-oxidizing atmosphere above 350℃, pitch, tar,
Volatile smoke components in phenolic resins and furan resins are completely volatilized, leaving only residual carbon.
As a result, the SN plate does not emit smoke during use, improving the working environment. As described above, the SN plate obtained by the method of the present invention maintains stable thermal shock resistance from beginning to end due to the alumina-zirconia raw materials, has the effect of suppressing the penetration of carbon into molten steel and slag at the initial stage of use, and also has the effect of suppressing the penetration of carbon into molten steel and slag. Even if carbon is lost by oxidation, it has high corrosion resistance due to the effects of alumina and high alumina raw materials, and there is no structural deterioration due to carbon loss, and sliding surface precision can be maintained for a long time. It is the material. Examples of the present invention and comparative examples thereof are shown in Table 2. The alumina-zirconia raw material in each example is
Those shown in the table were used. The alumina raw material is sintered alumina with 98% by weight of Al 2 O 3 , and the high alumina raw material is 70% by weight of Al 2 O 3 .
Synthetic mullite with 28% by weight of SiO 2 was used in each case. The Comparative Example and Example formulations were all kneaded in a fret, formed into a predetermined SN plate shape by a friction press, dried at 80 to 150°C for 48 hours, and then fired in a tunnel kiln at 1600°C for 5 hours. The test method is shown below. (Table 2)

【表】【table】

【表】 耐熱衝撃性; SNプレートの流出孔をプロパンガスバーナー
で加熱し、流出孔周辺に亀裂が入るまでの時間を
測定した。数字が大きい方が耐熱衝撃性が大き
い。 耐溶損性; 回転ドラム式侵食試験装置を用い1650℃×3hr
の条件で鉄100%の侵食剤にてプロパンガスバー
ナーで加熱し溶損寸法を測定した。 それぞれの溶損寸法のうち実施例No.1の溶損寸
法を100とし、他の例の溶損寸法を相対値で表わ
した。数字が小さい方が耐溶損性にすぐれてい
る。 バーナー加熱による発煙; バーナー加熱による耐熱衝撃性を測定する時、
発煙があつたかどうか肉眼にて観察した。 表から本発明実施例は耐熱衝撃性、耐溶損性と
も非常にすぐれた材質であることがわかる。 さらに本発明の効果を確認するため従来多用さ
れている、高アルミナ質、アルミナ−カーボン質
等の材質と耐酸化性、耐熱衝撃性、耐溶損性を比
較し第3表に示した。従来例1、2は実施例と全
く同じ作り方、従来例3、4は成形までは実施例
と同じであるが、焼成は1400℃×6Hでコークス
ブリーズ中で還元焼成した。
[Table] Thermal shock resistance: The outflow hole of the SN plate was heated with a propane gas burner, and the time until cracks appeared around the outflow hole was measured. The larger the number, the greater the thermal shock resistance. Erosion resistance: 1650℃ x 3hr using a rotating drum type erosion tester
The erosion dimensions were measured by heating with a propane gas burner using a 100% iron corrosive agent under the following conditions. Among the respective erosion dimensions, the erosion dimension of Example No. 1 was set as 100, and the erosion dimensions of the other examples were expressed as relative values. The smaller the number, the better the erosion resistance. Smoke generation due to burner heating; When measuring thermal shock resistance due to burner heating,
It was visually observed whether smoke was generated. From the table, it can be seen that the materials of the examples of the present invention have excellent thermal shock resistance and erosion resistance. Furthermore, in order to confirm the effects of the present invention, the oxidation resistance, thermal shock resistance, and erosion resistance are compared with conventionally frequently used materials such as high alumina and alumina-carbon materials, and the results are shown in Table 3. Conventional Examples 1 and 2 were made in exactly the same manner as in the Example, and Conventional Examples 3 and 4 were made in the same manner as in the Example up to molding, except that they were reduced and fired in a coke breeze at 1400° C. for 6 hours.

【表】 耐熱衝撃性Aと耐溶損性、バーナー加熱による
発煙は前記したと同じ方法で行なつた。 カーボン酸化後強度 SNプレート形状から20×20×120mmのテストピ
ースを切出し電気炉大気雰囲気中で800℃×5H酸
化させた後ピースの曲げ強度を測定した。 耐熱衝撃性B SNプレートを電気炉大気雰囲気中で800℃×
5H酸化させた後耐熱衝撃性Aと同様な方法で耐
熱衝撃性を試験した。 第3表からわかるように実施例No.3と7は従来
例No.1、2に比して酸化した後の耐熱衝撃性が大
きく、従来例No.3、4に比して酸化した後の曲げ
強度が大きいことがわかる。 また本発明実施例No.3とNo.7をA社250tが取鍋
スライデイング装置に取り付け試験使用したとこ
ろ、従来使用していた高アルミナ質SNプレート、
アルミナ・カーボン質SNプレートでは取鍋3〜
5チヤージ程度の耐用であつたが、本発明実施例
No.3、No.7は5〜8チヤージと飛躍的に耐用性が
向上した。 従来のプレートの使用後観察を行なつたとこ
ろ、高アルミナ質のものには流出孔周辺の亀裂が
多く、アルミナカーボン質のものはSNプレート
摺動面が酸化により組織が劣化し、面精度が維持
できていなかつた。 本発明品No.3は8チヤージ耐用が限界と見られ
たが、酸化クロムを添加したNo.7の摺動面はほと
んど荒れておらず面精度が維持されており、さら
に2チヤージ程度の耐用が可能であつた。
[Table] Thermal shock resistance A, melting resistance, and smoke generation by burner heating were conducted in the same manner as described above. Strength after carbon oxidation A test piece of 20 x 20 x 120 mm was cut out from the SN plate shape and oxidized at 800°C for 5 hours in an electric furnace atmosphere, and then the bending strength of the piece was measured. Thermal shock resistance B SN plate was heated at 800℃ in an electric furnace atmosphere.
After 5H oxidation, thermal shock resistance was tested in the same manner as in A. As can be seen from Table 3, Examples Nos. 3 and 7 have higher thermal shock resistance after oxidation than Conventional Examples Nos. 1 and 2, and have higher thermal shock resistance than Conventional Examples Nos. 3 and 4 after oxidation. It can be seen that the bending strength is large. In addition, when the present invention examples No. 3 and No. 7 were installed and tested on a ladle sliding device by Company A with 250 tons, it was found that the high alumina SN plate used conventionally,
For alumina/carbon SN plates, ladle 3~
It was durable for about 5 charges, but the example of the present invention
No. 3 and No. 7 had dramatically improved durability with 5 to 8 charges. When we observed conventional plates after use, we found that the ones made of high alumina had many cracks around the outflow holes, and the ones made of alumina carbon had deteriorated microstructure due to oxidation on the sliding surface of the SN plate, resulting in poor surface accuracy. I couldn't maintain it. Inventive product No. 3 seemed to have a lifespan of 8 charges at its limit, but the sliding surface of No. 7, which had chromium oxide added, was hardly rough and surface accuracy was maintained, and the product had a lifespan of about 2 charges. was possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はZrO2の熱膨脹収縮曲線図、第2図は
アルミナ・ジルコニア質原料の熱膨脹収縮曲線図
である。
FIG. 1 is a thermal expansion/contraction curve diagram of ZrO 2 , and FIG. 2 is a thermal expansion/contraction curve diagram of an alumina-zirconia raw material.

Claims (1)

【特許請求の範囲】 1 Al2O335〜90重量%、ZrO210〜50重量%、
SiO225重量%以下の化学組成からなる電融アル
ミナ・ジルコニア質原料5〜50重量%、残部アル
ミナ原料及び又は高アルミナ質原料を混練・成
形・焼成した後、ピツチ、タール、フエノール系
樹脂、フラン系樹脂から選ばれる一種又は二種以
上を含浸し、さらに加熱処理することを特徴とし
たスライデイングノズルプレートの製造方法。 2 Al2O335〜90重量%、ZrO210〜50重量%、
SiO225重量%以下の化学組成からなる電融アル
ミナ・ジルコニア質原料5〜50重量%、酸化クロ
ム10重量%以下、残部アルミナ原料及び又は高ア
ルミナ質原料を混練・成形・焼成した後ピツチ、
タール、フエノール系樹脂、フラン系樹脂から選
ばれる一種又は二種以上を含浸し、さらに加熱処
理することを特徴としたスライデイングノズルプ
レートの製造方法。
[Claims] 1 Al 2 O 3 35-90% by weight, ZrO 2 10-50% by weight,
After kneading, molding, and firing 5 to 50% by weight of the fused alumina/zirconia raw material with a chemical composition of 25% by weight or less of SiO 2 and the remainder of the alumina raw material and/or high alumina raw material, pitch, tar, phenolic resin, A method for producing a sliding nozzle plate, comprising impregnating it with one or more selected from furan-based resins and further heat-treating it. 2 Al2O3 35-90% by weight , ZrO2 10-50% by weight,
After kneading, molding, and firing 5 to 50% by weight of fused alumina/zirconia raw material having a chemical composition of 25% by weight or less of SiO 2 , 10% by weight or less of chromium oxide, and the balance of alumina raw material and/or high alumina raw material, pitch is prepared.
A method for manufacturing a sliding nozzle plate, comprising impregnating it with one or more selected from tar, phenolic resin, and furan resin, and further heat-treating.
JP58156510A 1983-08-29 1983-08-29 Manufacture of sliding nozzle plate Granted JPS6051660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58156510A JPS6051660A (en) 1983-08-29 1983-08-29 Manufacture of sliding nozzle plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58156510A JPS6051660A (en) 1983-08-29 1983-08-29 Manufacture of sliding nozzle plate

Publications (2)

Publication Number Publication Date
JPS6051660A JPS6051660A (en) 1985-03-23
JPH0130784B2 true JPH0130784B2 (en) 1989-06-21

Family

ID=15629343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58156510A Granted JPS6051660A (en) 1983-08-29 1983-08-29 Manufacture of sliding nozzle plate

Country Status (1)

Country Link
JP (1) JPS6051660A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256351A (en) * 1985-09-02 1987-03-12 ハリマセラミック株式会社 Carbon-containing refractories
JPS63103856A (en) * 1986-10-20 1988-05-09 川崎炉材株式会社 Plate refractories for sliding nozzle
JP2892005B2 (en) * 1988-02-24 1999-05-17 科学技術振興事業団 Electron spin resonance device
JPH06321618A (en) * 1993-05-10 1994-11-22 Harima Ceramic Co Ltd Production of sliding nozzle plate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4966711A (en) * 1972-10-17 1974-06-28
JPS5696775A (en) * 1979-12-28 1981-08-05 Kurosaki Refractories Co High endurance sliding nozzle plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4966711A (en) * 1972-10-17 1974-06-28
JPS5696775A (en) * 1979-12-28 1981-08-05 Kurosaki Refractories Co High endurance sliding nozzle plate

Also Published As

Publication number Publication date
JPS6051660A (en) 1985-03-23

Similar Documents

Publication Publication Date Title
US4585485A (en) Refractory sliding nozzle plate
KR910001934B1 (en) Carbon containing refractory
JPS6411590B2 (en)
JPH0130784B2 (en)
JPS58125660A (en) Sliding-nozzle-plate having high durability
KR860001649B1 (en) Refractory brick
JP2004331462A (en) Refractory for continuous casting nozzle for steel, and nozzle for continuous casting of steel
JP2575580B2 (en) Carbon containing refractories
JPH0127020B2 (en)
JPH0283250A (en) Production of carbon-containing calcined refractory
JPH039066B2 (en)
SU798506A1 (en) Protective coating for termocouple tips
JPH06321618A (en) Production of sliding nozzle plate
JPH07108804B2 (en) Process for producing unfired magnesia-carbon brick
JPS63117950A (en) Manufacture of plate brick for slide gate
JPH0510299B2 (en)
JP2971824B2 (en) High corrosion resistance refractory
JPS59131563A (en) Carbon containing refractories
JPH03205352A (en) Carbon-containing unburned refractory brick
JPS59107963A (en) Carbon-containing refractories
JPS61101453A (en) Manufacture of sliding nozzle plate
JPH05319902A (en) Carbon-containing basic refractory
JPH02267159A (en) Carbon-containing refractory for iron melting
JPH05131267A (en) Plate brick for sliding nozzle
JPH0747465A (en) Zirconia quality sliding nozzle plate