JPH01307687A - Precise distance measuring instrument - Google Patents

Precise distance measuring instrument

Info

Publication number
JPH01307687A
JPH01307687A JP13848988A JP13848988A JPH01307687A JP H01307687 A JPH01307687 A JP H01307687A JP 13848988 A JP13848988 A JP 13848988A JP 13848988 A JP13848988 A JP 13848988A JP H01307687 A JPH01307687 A JP H01307687A
Authority
JP
Japan
Prior art keywords
signal
mode
distance measuring
high frequency
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13848988A
Other languages
Japanese (ja)
Inventor
Kenzo Kasamaki
笠巻 健蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP13848988A priority Critical patent/JPH01307687A/en
Publication of JPH01307687A publication Critical patent/JPH01307687A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a reflecting signal from a building, etc., in the periphery and to raise the distance measuring accuracy by an on-board instrument by suppressing a radiation of a response signal of a final approach (FA) mode of a precise distance measuring instrument (DME/P), in the outside of a microwave landing system (MIS) azimuth covered area. CONSTITUTION:In this instrument, a high frequency switch 9 is connected between a transmitter 8 and a diplexer 2. In case when a question signal is an initial approach (IA) mode, the high frequency switch 9 supplies an output of the transmitter 8 to a horizontal surface non-directional antenna 11 through the diplexer 2 by a control signal 42 from a decoding circuit 4 which has discriminated said signal, and transmits a response signal to the whole peripheral direction. On the other hand, in case when a question of an FA mode, the high frequency switch 9 supplies the output of the transmitter 8 to a horizontal surface directional antenna 10 by the control signal 42 and radiates it. That is, the radiation to the outside of the MIS azimuth covered area is suppressed and a reflecting signal by a building, etc., being outside of the MIS azimuth covered area is suppressed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は航法システムにおけるマイクロ波着陸装置と共
に使用されるvI密距離測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a vI close distance measurement device for use with microwave landing gear in navigation systems.

(従来の技術) この種の精密距離測定装置(以下、DME/Pと呼ぶ)
はマイクロ波′4陸装置(以下、MLSと呼ぶ)におけ
る距離測定要素であり、一般の航空航法援助用に使用さ
れているDME (距離測定装置)と共用性を持つ高精
度の距離測定装置である。
(Prior art) This type of precision distance measuring device (hereinafter referred to as DME/P)
is a distance measuring element in the microwave '4 land system (hereinafter referred to as MLS), and is a high-precision distance measuring device that is compatible with DME (distance measuring device) used for general aviation navigation aids. be.

DME/Pの地上装置(トランスポンダ)は、第5図に
示すような構成であり、航空機上の装置(インタロゲー
タ)からの質問信号を空中線1により受信し、ダイブレ
フサ2を通して受信部3に供給する。受信部3は、通常
のDMEと同様の帯域幅を有するビデオ信号(狭帯域ビ
デオ信号)31と広シI2域のビデオ信号32を発生し
、それぞれデコード回路4及び遅延比較回路(DAC)
5に供給する。
The ground device (transponder) of the DME/P has a configuration as shown in FIG. The receiving unit 3 generates a video signal (narrowband video signal) 31 having a bandwidth similar to that of a normal DME and a video signal 32 in a wide I2 band, and each of them is connected to a decoding circuit 4 and a delay comparison circuit (DAC).
Supply to 5.

デコード回路4では、第6図に示すように、ビデオ信号
波形の振幅50%の時刻を検出すると共に、ベアパルス
間隔(図示省略)を測定して、通常のDME又はDME
/Pの初期進入モード(IAモード)と、D M E 
/ POI&終進入モード(FAモード)のいずれであ
るかの判定を行う。
As shown in FIG. 6, the decoding circuit 4 detects the time of 50% amplitude of the video signal waveform, measures the bare pulse interval (not shown), and decodes the normal DME or DME.
/P initial approach mode (IA mode) and D M E
/ Determine which mode is POI & final approach mode (FA mode).

IAモードとFAモードは機上DMEが距離測定値を監
視して、7海里以上と7海里以下とでベアパルス間隔を
切換えるようにして運用される。
IA mode and FA mode are operated by the onboard DME monitoring the distance measurement value and switching the bare pulse interval between 7 nautical miles or more and 7 nautical miles or less.

広帯域のビデオ信号32は急峻な立上りのパルス波形を
保っており、遅延比較回路5により第7図に示したよう
に遅延した広帯域ビデオ信号33と、振幅を減衰させた
広帯域ビデオ信号34を比較してパルス立上りの早い時
点で振幅が約10%の時刻を測定する。デコード回路4
のパルス時刻出力41と遅延比較回路5のパルス時刻出
力51はそれぞれゲート回路6に供給される。ゲート回
路6ではこれらのパルス時刻信号のいずれかを、デコー
ド回路4でベアパルス間隔を測定して得たIAモードと
FAモードとを区別する制御信号42にもとづいて選択
し、選択した信号を遅延制御回路7に供給する。遅延制
御回路7では制御信号42によりIAモードとFAモー
ド各々に規定される遅延時間を付加したパルス変調用基
準信号を発生して送信機8へ供給する。送信機8ではこ
のパルス変調用基準信号により送信タイミングを調整し
て高周波のペアパルス信号を発生し、ダイプレクサ2を
通して空中線1に供給する。空中線1の水平面指向性は
無指向性又はMLSの方位誘導角度覆域(±40°〜±
60°)以上の固定したパターンを持つ。
The wideband video signal 32 maintains a steeply rising pulse waveform, and the delay comparison circuit 5 compares the delayed wideband video signal 33 and the amplitude-attenuated wideband video signal 34 as shown in FIG. Measure the time when the amplitude is about 10% at the early point of the pulse rise. Decode circuit 4
The pulse time output 41 of the delay comparison circuit 5 and the pulse time output 51 of the delay comparison circuit 5 are respectively supplied to the gate circuit 6. The gate circuit 6 selects one of these pulse time signals based on the control signal 42 for distinguishing between IA mode and FA mode obtained by measuring the bare pulse interval in the decoding circuit 4, and delays the selected signal. Supplied to circuit 7. The delay control circuit 7 generates a reference signal for pulse modulation to which a delay time prescribed for each of the IA mode and the FA mode is added based on the control signal 42 and supplies it to the transmitter 8. The transmitter 8 adjusts the transmission timing using this pulse modulation reference signal, generates a high frequency paired pulse signal, and supplies it to the antenna 1 through the diplexer 2. The horizontal plane directivity of the antenna 1 is omnidirectional or MLS direction guidance angle coverage (±40° to ±
60°) or more.

(発明が解決しようとする課題) このような空中線を用いた従来のDME/Pでは、以下
のような欠点がある。すなわち、水平面無指向性の空中
線を用いた装置では、M L Sの方位誘導F2jil
l!を飛行中に、高精度測距を必要とする航空機のD 
M E / Pインタロゲータへの応答信号に周辺の建
物等の反射信号が混入することがあり、機上でのil!
II距精度を劣化させる。一方、MLSの方位誘導覆域
に限定した水平面指向性の空中線を使用した場合は、周
辺の建物等から反射信号を低減しaF+距精度の劣化を
防ぐことはできる。しかし、MLS覆域外での通常のD
ME及びDME/Pインタ1コゲータからの質問、応答
ができないという欠点がある。
(Problems to be Solved by the Invention) The conventional DME/P using such an antenna has the following drawbacks. That is, in a device using a horizontal omnidirectional antenna, the azimuth guidance F2jil of MLS
l! D for aircraft that require high-precision ranging during flight.
The response signal to the M E/P interrogator may be mixed with reflected signals from surrounding buildings, etc., and the il!
II Degrades distance accuracy. On the other hand, when using a horizontal plane directional antenna limited to the azimuth guidance coverage area of MLS, it is possible to reduce reflected signals from surrounding buildings and prevent deterioration of aF+range accuracy. However, normal D outside the MLS coverage area
There is a drawback that questions and responses from the ME and DME/P intercogators cannot be made.

このような欠点に鑑み本発明の技術的課題はIAモード
とFAモードの質問に応じて各々水平面無指向性とML
S方位誘導覆域に強い放射特性を持つ指向性で応答信号
を送信可能とし、IAモードで要望される全周覆域と、
FAモードでの高精度測距を実現することにある。
In view of these drawbacks, the technical problem of the present invention is to solve the problem of horizontal plane omnidirectionality and ML according to the questions of IA mode and FA mode, respectively.
It is possible to transmit response signals with directivity that has strong radiation characteristics in the S direction guidance coverage area, and provides the all-around coverage area required in IA mode.
The objective is to achieve high-precision distance measurement in FA mode.

(課題を解決するための手段) 本発明による精密距離測定装置は、質問信号の初期進入
モード(IAモード)と最終進入モード(FAモード)
とを判別する手段と、前記の各モードに応じて異なる指
向特性にて応答信号を放射する手段とを備えたことを特
徴とする。放射手段は、水平面指向性の異なる2秤の空
中線あるいは指向性が可変の空中線を含む。
(Means for Solving the Problems) The precision distance measuring device according to the present invention has an initial approach mode (IA mode) and a final approach mode (FA mode) of the interrogation signal.
and means for emitting a response signal with different directivity characteristics depending on each of the modes. The radiation means includes two antennas with different horizontal directivity or an antenna with variable directivity.

(実施例) 第1図は本発明の実施例で、9は高周波スイッチ、10
は水平面指向性空中線、11は水平面無指向性空中線で
あり、その他は第5図に示す従来のD M E / P
の地上装置と同じである。
(Embodiment) FIG. 1 shows an embodiment of the present invention, in which 9 is a high frequency switch, 10
11 is a horizontal plane directional antenna, 11 is a horizontal plane omnidirectional antenna, and the others are conventional DME/P shown in FIG.
This is the same as the ground equipment.

本実施例では、送信R8とダイプレクサ2との間に高周
波スイッチ9を接続している。高周波スイッチ9は質問
信号がIAモードの場合、それを判別したデコード回路
4からの制御信号42により、送m R8の出力をダイ
プレクサ2を通して水平面無指向性空中線11に供給し
、全周方向に応答信号を送信する。一方、FAモードの
質問を受18 した場合、高周波スイッチ9は制御信号
42により送信機8の出力を水平面指向性空中線10に
供給して放q・tする。すなわち、第2図に破線で示す
ように、MLS方位覆域外への放射を抑圧し、MLS方
位覆域外にある建物等による反射信号を抑圧する。
In this embodiment, a high frequency switch 9 is connected between the transmitter R8 and the diplexer 2. When the interrogation signal is in IA mode, the high frequency switch 9 supplies the output of the transmitter R8 to the horizontal omnidirectional antenna 11 through the diplexer 2 according to the control signal 42 from the decoding circuit 4 that discriminates it, and responds in all circumferential directions. Send a signal. On the other hand, when the FA mode inquiry 18 is received, the high frequency switch 9 supplies the output of the transmitter 8 to the horizontal plane directional antenna 10 and emits it q·t according to the control signal 42. That is, as shown by the broken line in FIG. 2, radiation outside the MLS azimuth coverage area is suppressed, and reflected signals from buildings, etc. outside the MLS azimuth coverage area are suppressed.

空中線としては上記の実施例の他、第3図に示すような
構成でも良い、すなわち、平面形の3面の指向性アンテ
ナ101,102,103を組み合せて無指向性の状態
で受信とIAモード応答信号の送信を行う。一方、高周
波スイッチ9がらの信号92(第1図参照)をサーキュ
レータ13に供給してFAモードの応答信・号をMLS
方位覆域に指向性を持つ1面の指向性アンテナ102の
みから放9・1することし可能である。この例では空中
線は3面の同一指向性の素子空中線を用いているが、構
成する素子空中線の指向性を異なるものとしたり、使用
する素子空中、線の個数を2個又は4個以上とすること
も可能である。
In addition to the above-mentioned embodiments, the antenna may have a configuration as shown in FIG. 3. In other words, three planar directional antennas 101, 102, and 103 are combined to perform reception in an omnidirectional state and IA mode. Sends a response signal. On the other hand, the signal 92 (see Fig. 1) from the high frequency switch 9 is supplied to the circulator 13, and the response signal/signal of the FA mode is sent to the MLS.
It is possible to emit light from only one directional antenna 102 having directivity in the azimuth coverage area. In this example, element antennas with three planes of the same directivity are used, but the directivity of the component antennas may be different, or the number of element antennas used may be two or four or more. It is also possible.

(発明の効果) 以上説明したように本発明では、DME/P地上装置の
FAモードの応答信号の放射を、MLS方位覆域外では
抑圧することにより周辺の建物等からの反射信号を低減
して機上装置での測距精度を高くできる利点がある。
(Effects of the Invention) As explained above, in the present invention, reflected signals from surrounding buildings, etc. are reduced by suppressing the emission of the FA mode response signal of the DME/P ground equipment outside the MLS azimuth coverage area. This has the advantage of increasing the distance measurement accuracy of the on-board device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の構成図、第2図は空中線放射
特性を説明するための図、第3図は他の実施例における
空中線の構成図、第4図は第3図の空中線の放射特性図
、第5図は従来のDME/P地上装置の構成図、第6図
、第7図はそれぞれ従来のDME/Pの測距方法を説明
するための信号波形図。 1・・・空中線、2・・・ダイプレクサ、3・・・受信
部、4・・・デコード回路、5・・・DAC16・・・
ゲート回路、7・・・遅延制御回路、8・・・送信機、
9・・・高周波スイッチ、10・・・指向性空中線、1
1・・・無指向性空中線、12・・・電力分配器、13
・・・サーキュレータ、101〜103・・・指向性ア
ンテナ。 第3図 qり 第4図 覇 瀝 ^                     へp 
                  (5■ 蓼 、            (j
Fig. 1 is a block diagram of an embodiment of the present invention, Fig. 2 is a diagram for explaining the antenna radiation characteristics, Fig. 3 is a block diagram of an antenna in another embodiment, and Fig. 4 is the antenna of Fig. 3. FIG. 5 is a configuration diagram of a conventional DME/P ground device, and FIGS. 6 and 7 are signal waveform diagrams for explaining a conventional DME/P distance measurement method. DESCRIPTION OF SYMBOLS 1... Antenna, 2... Diplexer, 3... Receiving part, 4... Decoding circuit, 5... DAC16...
Gate circuit, 7... Delay control circuit, 8... Transmitter,
9...High frequency switch, 10...Directional antenna, 1
1... Omnidirectional antenna, 12... Power divider, 13
...Circulator, 101-103...Directional antenna. Figure 3 q ri Figure 4 H Go to page
(5■ 蓼、(j

Claims (1)

【特許請求の範囲】[Claims] 1 航空機用の精密距離測定装置の航空機上装置からの
質問信号を受信して応答信号を送信する地上装置におい
て、前記質問信号の初期進入モード(IAモード)と最
終進入モード(FAモード)とを判別する手段と、前記
の各モードに応じて、異なる指向特性にて前記応答信号
を放射する手段とを備えたことを特徴とする精密距離測
定装置。
1. In a ground device that receives an interrogation signal from an onboard device of an aircraft precision distance measuring device and transmits a response signal, an initial approach mode (IA mode) and a final approach mode (FA mode) of the interrogation signal are set. A precision distance measuring device comprising: means for determining; and means for emitting the response signal with different directivity characteristics depending on each of the modes.
JP13848988A 1988-06-07 1988-06-07 Precise distance measuring instrument Pending JPH01307687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13848988A JPH01307687A (en) 1988-06-07 1988-06-07 Precise distance measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13848988A JPH01307687A (en) 1988-06-07 1988-06-07 Precise distance measuring instrument

Publications (1)

Publication Number Publication Date
JPH01307687A true JPH01307687A (en) 1989-12-12

Family

ID=15223297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13848988A Pending JPH01307687A (en) 1988-06-07 1988-06-07 Precise distance measuring instrument

Country Status (1)

Country Link
JP (1) JPH01307687A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04252983A (en) * 1991-01-30 1992-09-08 Nec Corp Antenna for dme/p

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5961790A (en) * 1982-10-01 1984-04-09 Nec Corp Radar system
JPS60100073A (en) * 1976-07-09 1985-06-03 インターナシヨナル・スタンダード・エレクトリツク・コーポレーシヨン Reference range finding station for measuring distance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100073A (en) * 1976-07-09 1985-06-03 インターナシヨナル・スタンダード・エレクトリツク・コーポレーシヨン Reference range finding station for measuring distance
JPS5961790A (en) * 1982-10-01 1984-04-09 Nec Corp Radar system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04252983A (en) * 1991-01-30 1992-09-08 Nec Corp Antenna for dme/p

Similar Documents

Publication Publication Date Title
US4866450A (en) Advanced instrument landing system
US4010465A (en) Channel encoding for distance measurement equipment
US5627546A (en) Combined ground and satellite system for global aircraft surveillance guidance and navigation
US4454510A (en) Discrete address beacon, navigation and landing system (DABNLS)
US4429312A (en) Independent landing monitoring system
KR20030041128A (en) Digital receiving system for dense environment of aircraft
US4990921A (en) Multi-mode microwave landing system
EP0233273A1 (en) Instrument landing system.
JPH05223931A (en) Mode s type interrogator with improved performance
US3349399A (en) Beacon system for simultaneous azimuth and elevation determination
RU2018855C1 (en) Aircraft radio navigation system
US20220075056A1 (en) Millimeter wavelength radar antenna for drone interception
US2821704A (en) Navigation system
US10536920B1 (en) System for location finding
EP0175967A1 (en) Navigation, communication, and surveillance system based on DME
JPH01307687A (en) Precise distance measuring instrument
US5812091A (en) Radio interferometric antenna for angle coding
US3680089A (en) Aircraft electronic landing responser system using airborne chirp interrogation
US4975708A (en) Time domain electronic antenna beam shaping
Honda et al. Optical-fiber-connected passive primary surveillance radar for aeronautical surveillance
Harris Some problems of secondary surveillance radar systems
JP2586130B2 (en) Transceiver
US3851334A (en) Collision avoidance and station keeping antenna system
JPH0253755B2 (en)
US3864682A (en) Binary phase coded navigation system (bicons)